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Abstract

Inclusion of ecosystem services (ES) information into national-scale development and cli-

mate adaptation planning has yet to become common practice, despite demand from deci-

sion makers. Identifying where ES originate and to whom the benefits flow–under current

and future climate conditions–is especially critical in rapidly developing countries, where the

risk of ES loss is high. Here, using Myanmar as a case study, we assess where and how

ecosystems provide key benefits to the country’s people and infrastructure. We model the

supply of and demand for sediment retention, dry-season baseflows, flood risk reduction

and coastal storm protection from multiple beneficiaries. We find that locations currently pro-

viding the greatest amount of services are likely to remain important under the range of cli-

mate conditions considered, demonstrating their importance in planning for climate

resilience. Overlap between priority areas for ES provision and biodiversity conservation is

higher than expected by chance overall, but the areas important for multiple ES are under-

represented in currently designated protected areas and Key Biodiversity Areas. Our results

are contributing to development planning in Myanmar, and our approach could be extended

to other contexts where there is demand for national-scale natural capital information to

shape development plans and policies.

Introduction

Attaining economic development goals while securing the natural capital and ecosystem ser-

vice (ES) benefits that underpin current and future human well-being remains a major societal

challenge. With the effects of climate change increasingly evident—and especially impacting
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developing countries–the challenge is even greater [1–3]. The adoption of the United Nations

Sustainable Development Goals [4] and growing popularity of ‘green economy’ approaches to

development [5] have been accompanied by an increasing demand from government deci-

sion-makers for ES information to guide development planning and climate change adapta-

tion at national scales [6,7]. In addition, conservation organizations are increasingly

incorporating ES into their programs in order to integrate conservation priorities into the

broader socioeconomic context, to mainstream environmental issues into decision-making in

the public and private sector beyond those institutions traditionally focused on the environ-

ment [8,9].

While the science and tools to support these efforts are advancing rapidly, substantial gaps

remain between the promise of ES-based approaches and their application in common prac-

tice. ES assessments routinely focus on ecosystem properties and processes without consider-

ing whether and for whom actual benefits are produced [10]. Furthermore, consideration of

the impacts of climate change on ES provision is rare, especially outside the U.S. and Europe

[11]. Methodological differences among ES and climate assessments to date may pose addi-

tional challenges to integrated work. These gaps hinder the use of ES information for decision-

making that is aimed at delivering durable gains in human well-being through an understand-

ing of synergies and trade-offs between development activities and benefits from nature.

Here we provide a practical example from Myanmar to demonstrate how natural capital

and climate change information can be integrated with data on the location and dependence

of people and infrastructure on ES in order to contribute to development planning. Myanmar

provides an excellent opportunity to advance natural capital assessment approaches and inte-

grate their results into development policy and planning. After decades of restrictive military

rule that both limited economic development and influenced the rate and nature of natural

resource exploitation, the country now faces a unique crossroads: unlike so many countries

that have prioritized economic development, but at great cost to their natural wealth, Myan-

mar may still have time to choose a path that allows for economic development while preserv-

ing ecosystems and the critical services they provide to the country’s citizens and its economy.

Myanmar’s development needs are immense: The country currently ranks 148 out of 188 in

Human Development Index [12], and more than 25% of the population lives below the

national poverty line [13]. Myanmar’s economy and people depend heavily on natural capital,

with the livelihoods of over 70% of the population and nearly 40% of Gross Domestic Product

reliant on agriculture, livestock, fisheries and forestry [14,15]. At the same time, the country is

home to some of the largest remaining intact forests in Southeast Asia. However, the country

lost more than 3% of its forest cover between 2000 and 2012, and the rate of deforestation has

accelerated [16].

Improving understanding of Myanmar’s natural capital stocks and the ES benefits they pro-

vide is particularly relevant in the context of climate change. A recent report ranked Myanmar

the second most historically vulnerable country to extreme weather events, due largely to the

heavy toll of Cyclone Nargis in 2008, which killed upwards of 130,000 people in one of the

deadliest tropical cyclones in history [17]. Extreme weather events seen in recent years–includ-

ing coastal flooding associated with sea level rise and tropical cyclones, droughts, inland flood-

ing and heat waves–are all projected to increase in frequency and intensity with climate

change [18,19].

Recognizing the role of natural capital in the country’s prosperity and the security of its

people, the Myanmar government is developing a number of strategies, procedures, rules and

policies to improve environmental conservation in the country, including an overarching envi-

ronmental policy aimed at mainstreaming environment and climate resilience into develop-

ment planning and implementation [20]. Natural capital assessments have an important role
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to play in the implementation of Myanmar’s National Land Use Policy, which includes as one

of its key objectives to “promote sustainable land use management and protection of cultural

areas, environment, and natural resources for the interest of all people in the country” [21].

Similarly, Myanmar’s Climate Change Strategy and Action Plan is intended to enhance the

resilience of the country to climate change [22].

In this context, there is a critical and immediate need for national-scale information on nat-

ural capital and the benefits it provides–both for local livelihoods and the larger economy–to

contribute to planning the country’s national development pathway. Here we map and quan-

tify how Myanmar’s natural capital provides key benefits to the country’s people and infra-

structure, both under baseline climate conditions and a range of projected future climate

conditions. This assessment resulted from a 2014 request by then-president of Myanmar, U

Thein Sein, after seeing early outputs from this study at a sub-national scale. Specifically, we

investigate at a national scale: 1) where natural ecosystems in Myanmar have the greatest

potential to provide benefits in the form of four ES: sediment retention, regulation of dry-sea-

son water availability, flood risk reduction, and coastal storm protection; 2) where, given the

locations of people and infrastructure that rely on these services, natural ecosystems are cur-

rently providing the greatest benefits; and 3) which beneficiaries are most susceptible to losing

ES benefits from loss of natural vegetation.

To understand the degree to which these conclusions are sensitive to climate change, we

assess whether the source and magnitude of benefits, as well as the susceptibility of beneficia-

ries, change under future climate scenarios. We use downscaled temperature and precipitation

projections from 21 General Circulation Models (GCMs) [23], and regionalized sea level rise

projections created using a blend of model- and observation-based terms [24,25]. To evaluate

the complementarity between ES and other conservation objectives, we assess the degree to

which the most important ES provision areas overlap with protected areas and Key Biodiver-

sity Areas (KBAs; sites contributing significantly to the global persistence of biodiversity).

Finally, reflecting on our experiences integrating ES and climate information in Myanmar, we

suggest priority directions for a decision-relevant applied research agenda.

Methods

Myanmar context

Myanmar is the largest country in mainland Southeast Asia. The country has a tropical mon-

soon climate, with three main seasons–cool (Nov.-Feb.), hot (Mar.-May) and wet (Jun.-Oct.).

Myanmar contains a diversity of ecosystems (Fig 1), which harbor high levels of biodiversity,

endemism and species richness. However, its natural resources are being degraded or lost as

the country accelerates its pace of economic growth. With a population of 51.4 million, its per

capita GDP is just over US$1,000, but GDP growth exceeds 8% [26].

In Myanmar, climate extremes have increased in frequency and intensity in recent decades,

and are resulting in impacts like soil erosion and soil fertility loss, declining water availability

and decreased river flows, inland flooding, and above-average storm surges, among many oth-

ers [27]. These impacts are augmented by existing environmental stresses; high deforestation

rates in Myanmar, for example, increase flooding and water quality impacts in areas down-

stream during extreme storm events as flood and soil retention services are compromised [27].

Identifying ecosystem service provision areas

We focus on evaluating four ES: sediment retention for drinking water quality and reservoir

function, regulation of dry-season baseflows for drinking water provision, inland flood risk

reduction for flood-prone villages and coastal protection for coastal populations. These

Ecosystem service provision under climate change in Myanmar
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Fig 1. Myanmar’s land cover and coastal habitats. Less-visible land cover types include water bodies,

which appear as large lakes and rivers through the central portion of the country, ending in the Ayeyarwady

delta; and coral reefs, primarily located around islands in the most southern state of Tanintharyi and along the

central Rakhine and Ayeyarwady coast. See S1 and S2 Appendices for details about the source and

timeframe for each map component.

https://doi.org/10.1371/journal.pone.0184951.g001
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services were chosen based on their relevance in Myanmar to people, infrastructure and cli-

mate resilience, as well as on the availability of data and models required to evaluate them at a

national scale.

We modeled the supply of these services under baseline climate conditions and under the

bounds of a range of possible future climate conditions. We then integrated measures of bio-

physical supply with information on the location and number of beneficiaries to determine

where ES provision is greatest, as well as to understand which beneficiaries would be most

impacted by ES losses. Finally, we compared hotspots of ES provision with other, established

priority areas for conservation–specifically, currently-protected areas and Key Biodiversity

Areas–to determine where and the degree to which conservation has the potential to contrib-

ute to multiple objectives. We provide additional details about each step in the following

sections.

Modelling ecosystem service supply

To map and quantify the biophysical supply of the focal ES, we used the InVEST 3.2.0 Sedi-

ment Delivery Ratio (SDR), Seasonal Water Yield (SWY) and Coastal Vulnerability (CV)

models [28] See S1 Appendix for more details about the models and data inputs. InVEST is a

suite of quantitative, spatially explicit, production function-based ES models. Model outputs

used in this study, described in detail below, are proxy variables that are interpreted in relative

terms, rather than physical quantities. Additional information on model uncertainty and value

interpretation is provided in the SI.

The SDR model estimates soil loss and sediment export in a watershed [29]. It relies on the

widely-used Universal Soil Loss Equation (USLE) to compute soil loss based on climate, soil,

topographic, and land use/land cover (LULC) information. The model converts soil loss esti-

mates into sediment export, i.e. the amount of sediment observed in streams after retention by

vegetation. In this study, we computed sediment retention maps as the difference in sediment

export (expressed in tons/pixel) between the current LULC and a hypothetical extreme sce-

nario where the current landscape was entirely converted to agriculture. In other words, this is

the sediment retention benefit of maintaining the current vegetation. We chose agriculture as

the alternative scenario for this heuristic experiment since agricultural expansion is an impor-

tant driver of deforestation and is expected to increase as Myanmar’s agriculture sector

becomes increasingly export oriented [30,31].

The SWY model estimates the amount of runoff production and relative contribution to

baseflow of different parts of the landscape. Based on monthly precipitation, reference evapo-

transpiration, and LULC runoff properties, the model computes two indices representing

quickflow and baseflow. Quickflow represents the amount of precipitation that is converted to

direct runoff, entering streams soon after a rain event, and is computed based on the NRCS

curve number method [32]. To assess flood risk reduction, we computed a non-dimensional

flow retention index on each pixel as follows:

Flow retention ¼ 1 � QF=P

where QF is the sum of quickflow over the main monsoon months (June–September) and P is

total precipitation over those same months. The index ranges between 0 and 1; a value of 0 cor-

responds to no retention by a pixel, a value of 1 corresponds to total retention.

Baseflow represents the amount of precipitation that enters streams through subsurface

flow, both during and between rain events, and is computed based on a local water balance

and hydrologic routing. The index used in this study represents baseflow over the entire year.

For both the flow retention and the baseflow indices, results are presented as the difference

Ecosystem service provision under climate change in Myanmar
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between the current landscape and the hypothetical alternate landscape in which all natural

vegetation has been converted to agriculture.

The CV model produces a qualitative estimate of how changes to natural habitats can affect

coastal communities’ exposure to storm-induced erosion and flooding [33]. By considering

biological and geophysical factors along the coastline, the model differentiates areas with rela-

tively high or low exposure to erosion and inundation during storms, and indicates the role

that natural habitats play in helping reduce that exposure. Combining these results with global

population information can show areas along a given coastline where humans are most vulner-

able to storm waves and surge, and where natural habitats play the greatest role in protecting

people. The output used from this model is “habitat role,” an index indicating how much pro-

tection coastal natural habitat provides to each shoreline segment. Habitat role is calculated as

the difference in exposure to coastal storms between current habitat and a total loss of coastal

habitats. This approach represents an extreme scenario of conversion but is useful for gauging

relative importance of ecosystems at the national scale.

The current LULC map (Fig 1) used for the SDR and SWY models was based on a custom

classification of 2013–2014 Landsat imagery (S2 Appendix). Areas classified as agriculture

were further differentiated by the types of crops grown in each administrative district, using

information from the FAO Digital Agricultural Atlas of the Union of Myanmar [34]. In gen-

eral, across the whole country, rice is the dominant crop, except in the interior east. Pulses are

also commonly grown, particularly in the interior east, and this area also is a significant pro-

ducer of sesame. Along with rice, maize is an important crop of the northeast, while oil palm

and rubber make up a significant percentage of agriculture in the south.

For the hypothetical scenario in which natural vegetation is converted to agriculture, all

LULC classes not already included in agriculture/urban/bare were changed to agriculture,

assuming the district-specific mix of crops. See S1 Appendix for more details. The locations of

coral reefs, sea grass and mangroves (Fig 1) used to assess the role of these habitats in reducing

coastal vulnerability were based on data from UNEP-WCMC [35–37]. Continental mangrove

data was updated for the Tanintharyi region with data provided by Myanmar’s Ministry of

Environmental Conservation and Forests (now the Ministry of Natural Resources and Envi-

ronmental Conservation), created in 2015.

Climate scenarios and integration into ecosystem service models

We used downscaled estimates of temperature, precipitation and sea level under baseline cli-

mate conditions (1980–2005 for temperature and precipitation, 2000–2004 for sea level rise) as

well as projections of future climate conditions. To represent the uncertainty in climate projec-

tions, we used the bounds of a range of future climate conditions, rather than a single average

estimate.

Baseline and future climate conditions for temperature and precipitation were developed

from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset

(NASA, 2015). The resolution of both the observed and the projected products is .25 degrees

by .25 degrees. For temperature and precipitation (total amount and number of rainfall

events> 0.2 mm), monthly means of long-term average climatology were projected for the

2040 (2031–2050) time period for each 0.25 degree gridcell and calendar month. The combina-

tion of 21 climate models and two climate forcing scenarios, or Representative Concentration

Pathways (RCPs) [38], yielded 42 potential outcomes for the projected time period. For each

gridcell and calendar month, the 25th percentile of numerically ranked model results for RCP

4.5 was defined as a low estimate for changes in climate, while the 75th percentile of numeri-

cally ranked model results for RCP 8.5 was defined as a high estimate. These points in the

Ecosystem service provision under climate change in Myanmar
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model output distribution represent a range of likely future climates. Because the 25th and 75th

percentiles are defined separately for each calendar month and gridcell, different GCMs can

occupy the 25th and 75th percentiles in different months and locations. This approach broad-

ens the range of possible outcomes compared to selecting a single GCM based on the spatially

and temporally averaged 25th and 75th percentiles of the distribution.

Sea-level rise was projected for the 2050s (2050–2059) time period. Twenty-four models

were used from Coupled Model Intercomparison Project 5 (CMIP5) to account for thermal

expansion of the ocean and dynamically-driven changes in relative ocean height, with other

data sources and methods accounting for land-based ice loss and changes in land water storage

[24,25]. Due to the lack of long-duration tide gauge data in Myanmar, local land subsidence or

uplift could not be accounted for in the sea level rise projections. The low estimate for sea level

rise was derived from the 25th percentile of the combined RCP 4.5 and 8.5 numerically ranked

model outcomes, and the high estimate was derived from the 75th percentile of the combined

numerically ranked RCP 4.5 and 8.5 outcomes. The spatial resolution of the sea level rise was

1.0 degree.

The low and high ends of the range of climate change estimates, along with baseline climate,

were translated into inputs for the InVEST models. See S1 Appendix for details. The SDR

model includes climate in the form of annual average rainfall erosivity, which we calculated

based on annual precipitation amount summed from the monthly projections. The SWY

model includes precipitation amount, number of rainfall events and reference evapotranspira-

tion all at the monthly time scale. Reference evapotranspiration was calculated from precipita-

tion amount and temperature using the Modified Hargreaves method [39]. Both precipitation

amount and number of rainfall events were obtained directly from the baseline or projected

climate data. We modeled SWY under the low and high ends of the climate range using either

all low or all high estimates of precipitation amount, number of rainfall events or temperature.

Sea-level rise projections were used in the CV model. All climate estimates were used at their

native resolution. To calculate ES supply and benefits under climate change, we again com-

pared the current landscape with a hypothetical alternate landscape (conversion to agriculture

for SDR and SWY models; complete loss of mangroves, seagrasses and marshes for the CV

model).

There are a few limitations that need to be considered when interpreting the climate infor-

mation and projections. First, the combination of limited historical climate data and a highly

spatially heterogeneous climate associated with complex topography and coastlines may in

turn affect the skill of the climate projections, which by necessity given the data shortages are

based upon a modeled representation of baseline climate (and therefore subject to any limita-

tions within the NEX-GDDP dataset). Second, while the projections presented here are

designed to capture a range of possible outcomes, as with all climate projections, deep uncer-

tainties render it impossible to develop truly probabilistic projections Finally, these climate

scenarios were not translated into climate change-induced projected changes in LULC; further

changes in ES provision are likely depending on future land use change, driven by the direct

response of vegetation to climate change or human responses to shifting rainfall and tempera-

ture increases, but were not modeled due to a lack of national-scale information at sufficient

resolution.

Beneficiaries and linking ecosystem service supply to benefits

We used data on the location and needs of people and infrastructure to assess the provision of

ES benefits. We considered two benefits from sediment retention: drinking water purification

and reservoir function. In the case of drinking water purification, the beneficiaries included

Ecosystem service provision under climate change in Myanmar
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households reliant on surface water for drinking. We determined the number of households

per township using surface water for drinking based on the 2014 Myanmar Population and

Housing Census [40]. Because some areas were not enumerated in the 2014 census, our results

underestimate the level of service provision in these parts of the country, particularly Kachin,

Rakhine and eastern Shan states. In the case of reservoir function, we considered reservoirs as

beneficiaries and used the GRanD database [41] to determine the location of these facilities.

While this database omits many smaller reservoirs in Myanmar, no additional information on

reservoir location was available at the time of analysis. Therefore, our results provide a conser-

vative estimate of sediment retention services for reservoir function.

For inland flood risk reduction, we focused on villages that were affected by flooding in

2015 [42], with the assumption that further loss of this ES benefit would increase flood risk to

these already-susceptible populations. In the case of dry-season water availability, we consid-

ered households relying on surface water for drinking as beneficiaries, using the same 2014

township-level census data as for drinking water quality.

We used a serviceshed-based approach to spatially link ES supply to beneficiaries [43,44]. A

serviceshed is the area that provides a specific ES to a particular beneficiary. We used the

InVEST tool DelineateIt [28] to map the watersheds contributing surface water to towns, vil-

lages and dams. These watersheds served as servicesheds for water purification and dry-season

water availability, based on the assumption that people relying on surface water use nearby

water bodies in the case of drinking water-related services. In the case of flood-affected villages,

we assumed these same watersheds constituted the servicesheds that influenced inland flood

risk. For coastal vulnerability, we considered the total population living within 3 km of a focal

shoreline segment as beneficiaries, calculated from population density data from WorldPop

[45].

We translated the biophysical metrics of ES supply from the InVEST models into impor-

tance for ES provision by weighting supply by the number of beneficiaries receiving a particu-

lar service from a particular place [7,44]. For drinking water quality and dry-season water

availability, we multiplied supply by the number of surface water-dependent households

located in all downstream watersheds. Because the SDR model outputs estimates of sediment

loads (in tons), whereas drinking water quality is generally more affected by sediment concen-

tration, the supply of sediment retention for drinking water quality was standardized by the

catchment size serving surface water-dependent households. We therefore use catchment area

as a proxy for runoff volume to compare sediment concentration across catchments, rather

than sediment loads. In the case of flood risk reduction, we weighted supply by the number of

downstream villages, as household counts were not available at this resolution. For coastal vul-

nerability, we weighted supply by the total population located within 3 km of the focal habitat.

To understand the susceptibility of townships to the loss of ES benefits, we calculated the

percent change in sediment loads, dry-season baseflows, inland flood risk index and coastal

vulnerability between the current landscape and the alternate land use scenario, for both base-

line climate conditions and under the range of climate change estimates.

Overlap between priority biodiversity conservation and ecosystem

service provision areas

To understand the degree to which areas important for providing the focal ES coincide with

biodiversity conservation priorities, we examined the overlap between Key Biodiversity Areas

(KBAs) [46], protected areas (PAs) [47], and hotspots of ES provision in Myanmar. KBAs are

sites contributing significantly to the global persistence of biodiversity [48]. Shapefiles for

KBAs in Myanmar were obtained from BirdLife International et al. [49]. We defined ES

Ecosystem service provision under climate change in Myanmar
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hotspots as the top 20% of service provision area for each of three freshwater services: sediment

retention for drinking water quality, dry-season baseflow for drinking water availability and

inland flood risk reduction for flood-prone villages. We combined these to identify which

areas were hotspots for one, two or all three of these services, and overlaid these with maps of

terrestrial KBAs (making up 16.3% of Myanmar’s area) and protected areas (PAs, making up

7.4% of Myanmar’s land area) and determined the amount of overlap. The observed area of

overlap was determined using ArcGIS. We compared observed overlap with the amount

expected by chance based on the joint probability distribution assuming independence, both

among hotspots for different services and between ES hotspots and biodiversity priority areas

(KBAs and PAs). The probability of multiple independent events co-occurring is the product

of the probabilities of each event occurring separately. Expected overlap by chance was calcu-

lated in this way using Excel, based on the fraction of Myanmar’s land area covered by each ES

hotspot (by definition, 0.2), as well as by KBAs (0.163) and PAs (0.074).

Results

National-scale ecosystem service supply and provision under current

conditions

The biophysical supply of ES, indicating the potential to provide ES benefits, varies within

Myanmar and along its coastline as a function of climate and topography, along with proper-

ties of the current vegetation and the assumed alternative land use (Fig 2, left column). For

example, natural vegetation contributes most to sediment retention in currently forested areas

situated on steep slopes, especially near to streams. Not only is soil loss higher in the areas con-

verted to agriculture, but it is also less likely to be retained by the degraded landscape down-

slope before reaching the stream. Natural vegetation increases dry-season baseflows in areas

with dense forest, where deep-rooted trees contribute to higher infiltration rate. Natural vege-

tation plays the greatest role in reducing inland flood risk in places with dense forest and high

precipitation, where peak flow is higher. Mangroves are very effective at reducing coastal vul-

nerability to storms, especially compared to seagrass beds [50], and so the presence of man-

groves (Fig 1) generally corresponded with the highest role of coastal habitat in reducing

exposure (Fig 2e).

Demand for service also varies spatially, depending on the nature of the service and the ben-

eficiaries considered (Fig 2, middle column). Demand for services linked to drinking water

quality (sediment retention, Fig 2a) and seasonal availability (dry-season baseflows, Fig 2c) is

concentrated in the watersheds that supply urban population centers towards the south. In

contrast, for the 15 reservoirs assessed, demand for sediment retention is restricted to the spe-

cific watersheds serving each dam. There is demand for inland flood risk reduction services

(Fig 2d) especially from watersheds in the north that regulate flows to villages that were

affected by flooding in 2015. Demand for reduced vulnerability to coastal storms (Fig 2e) var-

ies with the density of coastal populations.

Patterns of service provision, indicating the areas of natural vegetation that provide the

greatest biophysical amount of service to the greatest number of beneficiaries, depend on both

the location of supply and demand for each service and are unique for each service considered

(Fig 2, right column).

The degree to which people are susceptible to reductions in drinking water quality and dry-

season water availability, as well as to increases in inland flood risk and vulnerability to coastal

storms also varies spatially and by service (Fig 3). Townships in mountainous areas in the

north, west and south would experience the greatest increase in sediment loads in drinking

water sources with loss of natural vegetation. In contrast, loss of natural vegetation would lead
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Fig 2. Ecosystem service supply, demand and service provision under baseline climate conditions.

Biophysical supply, or potential for ES provision (left), demand for ES from beneficiaries (center) and service

provision (supply x demand, right) for: a) sediment retention for drinking water quality, b) sediment retention

for reservoir function, c) dry-season baseflows for drinking water availability, d) inland flood risk reduction for

flood-affected villages, and e) coastal protection for coastal populations. Sediment retention is expressed as

the benefit of maintaining the current vegetation over agricultural development, see Methods for details.

https://doi.org/10.1371/journal.pone.0184951.g002
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to the greatest reduction in dry-season baseflows for townships near Myanmar’s eastern bor-

der, and to the greatest increase in inland flood risk index in the west. Townships in the south-

ern portion of the Dawei peninsula and in southern Rakhine state to the north would

experience the greatest increases in coastal vulnerability with the loss of coastal habitats.

Fig 3. Susceptibility of townships to loss of ES from loss of natural vegetation under baseline climate

conditions. a) sediment retention for drinking water quality, b) dry-season baseflow regulation for water

availability, c) inland flood risk reduction, and d) coastal protection. For coastal protection, townships without

coastal areas are shown in gray.

https://doi.org/10.1371/journal.pone.0184951.g003
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Effect of climate change scenarios on ecosystem service provision

For all GCMs, calendar months and Myanmar regions, temperatures are projected to rise as

the century progresses, with the largest warming associated with RCP 8.5, which corresponds

to current global emissions trends. In general, slightly more warming is projected in interior

regions than in southerly and coastal areas. Precipitation is projected to increase in most, but

not all GCMs. In general, precipitation increases are projected to be largest in the monsoon

season. See Supporting information (S2–S4 Data) and Horton et al. [51]for more detail on the

range of projected changes in temperature and precipitation. Changes in average ocean height

are expected to be essentially homogenous across the entire Myanmar coast and by season. As

noted in the Methods, changes in the elevation of the land itself will be heterogeneous with del-

tas especially prone to land subsidence; however, land elevation changes were excluded from

this analysis due to the absence of tide gauge data.

Projected changes in climate are expected to alter ES provision in multiple ways. Under the

high estimate for changes in climate showing increasing precipitation, natural ecosystems are

expected to play even greater roles in retaining sediment, regulating dry-season water availabil-

ity and reducing inland flood risk (Fig 4, third column), making the populations who depend

on these services even more vulnerable to the loss of natural ecosystems (Fig 4, fourth column).

At the low end of the range of projected future rainfall, in which annual precipitation declines

slightly even as variability and intensity of the strongest rainfall events likely increases, supply

of some services may be reduced in certain areas. This is particularly the case for sediment

retention and for dry-season baseflow regulation (Fig 4, first and second columns). For sedi-

ment retention, reduced precipitation lessens expected erosion with loss of natural vegetation,

resulting in reduced service provision (median = -4% reduction in avoided sediment loss as

compared to baseline climate conditions), while increased precipitation under the high esti-

mate leads to increased erosion with loss of natural vegetation and therefore increases the ser-

vice provided by retaining natural vegetation (median = 23% increase in avoided sediment

loss).

Precipitation changes are likely to also alter both the amount of sediment reaching reser-

voirs and being retained by upstream vegetation. For the 15 reservoirs assessed in this study,

sediment export to reservoirs in the absence of any land use change was estimated to decrease

by an average of 3.4% (standard deviation (SD) = 1.2%) at the low end, but increase by 23.3%

(SD = 3.3%) at the high end of the range of likely climate change. In addition, the amount of

sediment retained upstream decreased an average of 3.4% (SD = 1.2%) under the low estimate

and increased 23.3% (SD = 3.4%) under the high estimate.

Because the CV model used to assess coastal protection services is a relative ranking model

and projected SLR was consistent along Myanmar’s coastline, the relative importance of

coastal habitats did not change between SLR scenarios relative to baseline climate conditions

(Fig 2e), and so these results are not shown separately here.

Regardless of climate change scenario, the parts of the landscape that currently provide the

greatest amounts of services under baseline climate conditions are likely to remain important

under the climate change scenarios considered here (Fig 5). We considered hotspots as the

area that fell within the top 20% of provision for a given service and climate scenario (baseline,

low estimate for climate change, high estimate for climate change). Hotspot areareas were con-

sistently classified as hotspots across all three climate scenarios in 95% of instances for sedi-

ment retention for drinking water quality, 79% of instances for dry-season baseflows for

drinking water availability, and 92% of instances for inland flood risk reduction.
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Fig 4. Change in ES supply and susceptibility of townships to ES losses from loss of natural vegetation in the 2040s with climate change

relative to baseline climate conditions. Change is shown across three freshwater services: a) sediment retention for drinking water quality, b)

regulation of dry-season baseflows for drinking water availability, and c) inland flood risk reduction for flood-prone villages. For each climate change

scenario, change in ES supply is shown in the left column and change in susceptibility to loss is shown in the right column. Susceptibility to loss is

measured as the percent change in service with loss of natural vegetation between the climate change scenario for the 2040s and historic climate

conditions.

https://doi.org/10.1371/journal.pone.0184951.g004
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Spatial overlap of conservation priority areas at a national scale

Hotspots of current service provision (Fig 6) vary by service, but their overlap was greater than

would be expected solely by chance. Across the three services considered, 1.9% of the country

fell in the top 20% for all three services (vs. 0.8% expected if random overlap), 13.9% in the top

20% for two services (vs. 9.6% if random). Concordance between the hotspots for dry-season

base flows for drinking water available and for inland flood risk reduction was the greatest,

with 42% overlap. There was 32% overlap between hotspots for inland flood risk reduction

and sediment retention for drinking water quality, and 25% overlap between dry season base-

flows and sediment retention.

The designated KBAs cover 16.3% and existing PAs cover 7.4% of Myanmar’s land area,

with over 99% of PAs also falling within a KBA. Overall, overlap between ES hotspots, KBAs

and existing PAs was also greater than expected simply from chance (Fig 6): the area falling

into the top 20% for at least one of the three services is 41.2% of Myanmar’s land area, but 50%

of KBAs and 62.3% of PAs, representing 20% and 51% greater congruence than random. How-

ever, areas in the top 20% for all three services fell outside of KBAs or PAs more often than

expected (8.1% vs 16.3% expected for KBAs, and 5.2% vs 7.4% expected for PAs). Twenty-nine

percent of the sediment retention hotspot fell within KBAs, along with 25% of the inland flood

risk reduction hotspot, but only 13% of the dry-season baseflow hotspot. PAs, which cover less

than half the area of KBAs, included 17% of the inland flood risk reduction hotspot, 14% of the

sediment retention hotspot and only 5% of the dry-season baseflow hotspot.

Fig 5. Concordance in areas providing the greatest levels of ES across historic climate conditions and the low and high ends of the

projected climate range in the 2040s. a) sediment retention for drinking water quality, b) regulation of dry-season baseflows for drinking water

availability, and c) inland flood risk reduction for flood-prone villages. The area is shaded according to whether it falls in the top 20% of service provision

areas for a given service under one, two or three of the climate scenarios considered.

https://doi.org/10.1371/journal.pone.0184951.g005
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Discussion

Ecosystem service provision and susceptibility of beneficiaries to loss

under baseline and future climate scenarios

Our results confirm that biophysical measures of ES supply alone are inadequate for determin-

ing the areas that deliver the greatest ES benefits to people or infrastructure (Fig 2, left column

vs. right column). Instead, priority ES provision areas are shaped by variation in the spatial dis-

tribution of ES supply and demand, including variation in demand between beneficiary types

(e.g., people dependent on surface water for drinking water vs. reservoirs). While the impor-

tance of considering both ES supply and demand has been widely acknowledged [52,53], con-

sideration of the demand side of ES provision remains less common, particularly for

regulating services like the ones we consider [10]. Given that a central objective of including

ES information in development planning is to avoid harm to human well-being through avoid-

ing harm to the environment, including the demand for ES in these processes is critical.

In addition, our results highlight two ways that climate change through the 2040s is likely

to affect the role of natural ecosystems and the ES they provide. First, even if existing vegeta-

tion and land use remain unchanged, climate change may negatively affect water resources

and increase flood risk. For example, under the high end of the climate change range, we

found an increase in soil loss and higher transport of sediment to streams due to increases in

the amount of precipitation. Although existing natural vegetation can buffer this process, it

cannot fully mitigate it, as suggested by the difference in sediment export to reservoirs between

the high end of the climate change range and baseline climate conditions, even in the absence

of vegetation change.

Fig 6. Overlap of ecosystem service provision hotspots (top 20% of service provision area) and their intersection with biodiversity

conservation priority areas. The congruence of hotspots across all three services (a) is overlaid with terrestrial Key Biodiversity Areas (KBAs, open

polygons) and protected areas (hatched polygons) (b); and zoomed into the highest-provisioning area to show detail (c). All maps are shown for

baseline climate conditions.

https://doi.org/10.1371/journal.pone.0184951.g006
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Second, we find that the higher level of ES provided by natural vegetation under the high

end of the climate change range is associated with increasing vulnerability of beneficiaries to

vegetation loss. This suggests that the effects of climate change may be two-fold: both worsen-

ing environmental conditions and worsening the consequences of losing natural capital. To

maintain baseline levels of water quality, water availability and flood risk likely requires more

than preserving existing stocks of natural capital. Nature-based solutions, such as habitat resto-

ration, can be considered alongside traditional, engineering-based approaches [54], and fur-

ther assessments could help identify the most effective places for these activities. At the same

time, it is important to recognize that necessary interventions to enhance ecosystems and their

resilience can be challenging to effectively complete, and do not replace the need to protect

existing natural capital [55]. Even with climate change likely to affect levels of ES provision, we

find that the places providing the greatest ES benefits under baseline climate conditions are

likely to remain important into the 2040s, under the range of climate change estimates we con-

sidered (Fig 5).

Our assessment therefore suggests that conservation of natural vegetation in these areas is

likely to secure valuable benefits for the people of Myanmar today and in coming decades. We

note that our analyses assume no major shifts in vegetation type or function occur over this

time scale. Accounting for the effects of climate change on ES through changes in vegetation

and ecological processes would be a valuable next step. Climate change effects could include

direct ecological responses to changes in climate conditions, as well as indirect effects through

human activities due to climate change, including land conversion and changes in agricultural

practices. Detailed national-scale information on the effects of climate change on vegetation in

Myanmar is lacking. However, global models suggest that Myanmar’s vulnerability to vegeta-

tion shifts from climate change is relatively low [56] and that the East Asian region is likely to

experience a less than 10 percent change in vegetation type through 2050, the time period con-

sidered in our study [57]. Climate feedbacks, shocks, surprises, and extreme climate events not

captured by the climate methods described here, which are much more difficult to model and

predict, could also compromise the ability of these systems to deliver services at their full

capacity.

Our results also highlight the importance of approaches to tackling uncertainty in planning

for climate change impacts. The differences in ES provision between the two ends of the cli-

mate change range demonstrate this. This said, greenhouse gas emissions scenarios have

proven to be historically conservative, with subsequent revisions toward expected higher emis-

sions. With current global emissions rates tracking RCP 8.5, planning for the change in provi-

sion under this scenario would be the most conservative means of reducing risk.

Spatial concordance across conservation objectives

Although we find that the most important areas for drinking water quality regulation, dry-sea-

son water availability and inland flood risk reduction overlap more than would be expected by

chance, there is substantial variation due to differences in both the biophysical processes

underlying service provision and the location of beneficiaries. Securing ample levels of these

services for the people who rely on them will likely require management that targets different

services separately. Our results mirror findings from elsewhere in the world [58–61] that sug-

gest that biodiversity and ES priorities cannot substitute for each other due to the complex and

varying relationships between them, but that there is great opportunity in directing conserva-

tion efforts to areas of synergy. In particular, ES priority areas that fall within KBAs but outside

established protected areas could be managed to secure benefits to people and contribute to

biodiversity conservation. Conservation of areas outside KBAs might also help secure
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connectivity among current conservation priority areas, as well as enhance the ability of spe-

cies and ecosystems to adapt to future climate regimes [30].

Implications for development planning in Myanmar

Our results provide a starting point for integrating ES information into national land use,

development and climate adaptation planning in Myanmar. A number of national policies and

strategies, including a Green Economy Strategy and Framework, Climate Change Strategy and

Action Plan, Biodiversity Strategy and Action Plan and Land Use Policy, are currently being

developed or have been already adopted. Information on ES will be key to ensure successful

implementation of these policies and guide decision-making when it comes to land use and

investments that can create economic, social and environmental benefits, including resilience

to the impacts of climate change. By highlighting areas where loss of natural ecosystems would

have outsized negative consequences for Myanmar’s people and existing infrastructure, the

national assessment can guide land use planning for agricultural expansion and resettlement

plans, as well as inform the location and design of infrastructure projects such as roads, trans-

mission lines, canals and hydropower and other energy projects.

We have shared our results with a range of ministries involved in land use planning and

other development and economic decision-making in Myanmar, and they are currently being

used to advance ecosystem and natural capital accounting, as part of the reform process of the

country’s national accounting systems. Natural capital and ecosystem services are now empha-

sized in the final draft National Environmental Policy of Myanmar, which is expected to

adopted by the end of 2017. In collaboration with Myanmar’s Ministry of Natural Resource

and Environmental Conservation (MoNREC), results are also available online to the public at

www.myanmarnaturalcapital.org.

Because regional- and state-level land use planning and climate change adaptation planning

will play an important role in Myanmar’s development trajectory, refining and updating this

national assessment to provide information relevant to decision-making at these levels will

also be important. This is especially critical given that national ES priorities based on total pop-

ulation are heavily influenced by the country’s largest urban centers and may not reflect

regional priorities or the needs of rural populations [62]. Achieving equitable, inclusive devel-

opment requires consideration of how the value or importance of ES from a given area varies

among beneficiary groups, even for the same set of biophysical processes [44,63]. Accounting

for specificities in regional demand will be an important addition. For example, for the dry-

season baseflow whose demand is driven by households relying on surface water, we did not

account for current or future regional water scarcity: in wet regions where dry-season baseflow

is sufficient for local needs, demand for the baseflow regulation service may be very low.

Finally, assessment of additional ES, and their response to land use change and climate

change, would be a valuable step for future work, at both the national and sub-national levels.

The services assessed here were particularly limited by the availability of spatial data, both eco-

logical and socio-economic. The societal and economic value of many other ES such as non-

timber forest products, nursery and breeding habitat contributing to fisheries, and wild insect

pollination contributing to crop production are likely quite high [64], but a lack of comprehen-

sive data prevents a detailed understanding of how production of services varies spatially,

where ES benefits flow to, and how the value might change with forest loss or climate change.

In interpreting the maps provided in this study, several points should be noted. First, the

outputs of the biophysical models are best used to assess relative spatial or temporal differ-

ences. Given that the uncertainties around future estimates of climate change have large effects

on biophysical predictions, a robust interpretation of results consists in identifying areas that
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are consistently identified as hotspots of services. Second, the weighting approach used to

combine ES supply and demand is subject to limitations of multi-criteria analyses [65,66].

Finally, we assess ES benefits by comparing existing LULC to a scenario in which natural vege-

tation was converted to agriculture. While the alternate scenario reflects national trends, refin-

ing these scenarios in order to explore likely or potential futures at the regional level would

provide an opportunity to increase the relevance of our results to decision making.

Future directions for integrating natural capital assessments and climate

change scenarios to inform development planning

The current decade has seen growing attention to the impacts of climate change on ES. How-

ever, existing studies are frequently disconnected from decision-making contexts and only

rarely assess the robustness of decision-making outcomes such as policies or management

strategies to sources of uncertainty, including climate change scenarios [11]. The integration

of ES assessments and climate change projections in decision-relevant ways is an important

frontier.

In the context of development planning, delivering assessments on policy-relevant temporal

and spatial scales that can guide decisions that will be robust to climate change is critical. This

is particularly important in rapidly developing countries where the stakes are highest both for

human well-being and biodiversity. Towards this goal and based on our experiences develop-

ing a national assessment for Myanmar, we suggest several directions for furthering the inte-

gration of natural capital assessments and climate change scenarios.

Advances in data and modeling would provide a more precise and nuanced understanding

of future changes in ES provision with climate change. In particular, future assessments would

benefit from: i) assessing the impacts of climate change on ES through changes in vegetation

and land management; ii) accounting for the impacts of extreme weather events on natural

capital and ES; iii) better baseline data to improve projections; and iv) improved accounting

for and communication of uncertainty. Integration of climate information into ES assessments

would be enhanced by the capacity to model a greater diversity of linkages between climate,

ecosystems and ES. The ability to assess impacts of climate change on ES through changes in

vegetation and land management, as previously discussed, as well as improved accounting for

the impacts of extreme weather events, rather than relying on annual or monthly climate data,

would be especially valuable. These efforts would benefit from more comprehensive observed

baseline climate and land use data, requiring investment, integration of local expert knowl-

edge, local capacity building, and collaboration across countries and sectors. Finally, in line

with recognized challenges for ES assessments in general [67], a more complete accounting for

uncertainty in ES outcomes would increase the robustness of assessment results. This includes

uncertainty inherent within the InVEST models as well as originating in the data used, includ-

ing both biophysical factors governing ES supply and the demographic, socio-economic, polit-

ical and institutional factors governing demand for and access to ES benefits.

Our assessment process also highlighted trade-offs among analysis complexity, knowledge

ownership by stakeholders and decision-making relevance. More sophisticated, dynamic mod-

els would provide a more precise characterization of the effects of climate change on natural

capital and ES provision. However, this inherently increases data requirements and analytical

complexity, resulting in proportionate difficulty in developing local capacity to replicate and

build on assessments, potentially affecting the impact of assessments on planning decisions.

Balancing this trade-off between complexity, feasibility and utility can be difficult, and requires

consideration of the ultimate aims of producing integrated ES and climate assessments: is it to

provide a foundation for locally-based knowledge production, shape stakeholder thinking,
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inform a specific policy or decision, or some combination? Different answers require different

approaches [68] and may be best achieved by focusing on different aspects of the knowledge

production process [69].

As our experiences here illustrate, however, even under conditions of limited data and

rapid timelines, it is possible to produce initial, policy-relevant assessments of natural capital

and ES benefits to people and infrastructure under future climate scenarios that can set the

stage for decision-making and more in-depth research.
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