
Oncotarget5993www.oncotarget.com

Targeting glutaminase1 and synergizing with clinical drugs 
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ABSTRACT

Multiple myeloma (MM) pathogenesis remains incompletely understood and 
biomarkers predicting treatment response still remain lacking. Here we describe 
the rational mechanisms of combining targeting glautaminase1 (GLS1) with other 
chemo-reagents for MM treatment. Gls1 is highly expressed cMYC/KRAS12V-drived 
plasmacytoma (PCT) cells. Down-regulation of Gls1 with miRNAi in cMYC/KRAS12V-
expressing BaF3 cells prevented them from growing independence of interleukin 
3 (IL3). By using our cMYC/KRAS12V-transduced adoptive plasmacytoma mouse 
model, we found that Gls1 is involved in PCT pathogenesis. Down-regulation of 
Gls1 significantly prolonged the survival of PCT recipients. Knockdown of Gls1 
increased the expression of Cdkn1a and Cdkn1b and decreased the expression of 
some critical oncogenes for cancer cell survival, such as c-Myc, Cdk4, and NfκB, as 
well as some genes which are essential for MM cell survival, such as Irf4, Prdm1, 
Csnk1α1, and Rassf5. Combination of Gls1 inhibition with LBH589, Bortezomib, or 
Lenalidomide significantly impaired tumor growth in a MM xenograft mouse model. 
Our data strongly suggest that Gls1 plays an important role for MM pathogenesis 
and that combination of GLS1 inhibitor with other MM therapy agents could benefit 
to MM patients.
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INTRODUCTION

MM is the second most common hematological 
malignancy affecting millions of people worldwide [1]. 
High dose chemotherapies, as well as immunotherapies, 
have significantly improved the response rates and survival 
outcomes in MM patients [2, 3]. However, MM still 
remains incurable, indicating a strong need for continuing 
investigation for developing innovative therapeutics. 
Altered cancer cell metabolism as a common event in 
cancer progression has been long recognized. A hallmark 

of metabolic reprogramming is the increased utilization 
of glucose and elevated lactate production even in the 
presence of oxygen and is known as the Warburg effect [4]. 
Targeting the Warburg effect is becoming a useful strategy 
for preventing or stopping the development of cancer  
[5, 6]. Previous studies have demonstrated that many genes 
are associated with the Warburg effect, including those 
involved in glycolysis and glutamine metabolism [7, 8]. 
As the essential enzyme for glutamine metabolism, GLS1 
is a potentially critical target for cancer therapy. GLS1 
is an amidohydrolase enzyme that catalyzes hydrolysis 
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of glutamine to glutamate and ammonia. The resulting 
glutamate is acted on by glutamate dehydrogenase (GDH) 
or transaminases to produce a-ketoglutarate (α-KG) for the 
citric acid cycle. Glutamine metabolism restriction with a 
specific inhibitor is effective in inhibiting tumor growth 
both in vitro and in vivo [9–11]. Generally, GLS1 is highly 
expressed in many types of cancers, including MM, and 
previous studies have shown that inhibition of glutamine 
metabolism impairs MM cell survival and overcomes drug 
resistance in vitro [12–14], but the detailed mechanism in 
vivo are still insufficient.

It is well known that several genes are critical 
for establishment and progression of MM including 
MYC, RAS, NFκB, IRF4, XBP1s, Csnk1α1, CCND1, 
and others [15–23]. MYC plays a critical role during 
MM pathogenesis. Ectopically expressing MYC alone 
in mature mouse B cells can produce malignancy [24]. 
Multiple rearrangements and activated of MYC also 
occurs in the transition of monoclonal gammopathy 
of undetermined significance (MGUS) to MM [19]. 
Mutations of RAS members are the most common 
oncogene mutations found in MM [17, 18]. NFκB 
pathway is also critical for MM survival and proliferation. 
Several signaling pathways, such as APRIL and BAFF 
ligands and their receptors, which are important for MM 
pathogenesis, directly activate NFκB pathway [25, 26]. 
Csnk1α1, participates in Wnt signaling, which is essential 
for malignant plasma cell survival in cMYC/KRAS12V-
transduced PCT mouse model [23].

GLS1 was upregulated in primary myeloma cells 
isolated from MM patients and played an important role in 
MM cell growth and survival [14]. However, the detailed 
mechanisms are still poorly understood and several critical 
issues remain unknown, for example, whether targeting 
GLS1 could prevent MM initiating and completely 
eliminate cancer cells in vivo.

Here, we demonstrated that downregulation of 
Gls1 with miRNAis could significantly prolong mice 
survival but not prevent cMYC/KRAS12V-transduced 
PCT initiation by using our mouse model. Combination of 
Gls1 inhibitor with current MM therapy drugs can achieve 
synergic cytotoxicity effects on MM cells both in vitro and 
in vivo. It provides the rationale for future clinical trials 
of targeting GLS1 to improve the outcome of multiple 
myeloma patients.

RESULTS

Gls1 was required for cMYC/KRAS12V 
transforming BaF3 cells independent of IL3.

Previous studies have demonstrated that inhibition 
of glutamine metabolism impaired MM cell growth and 
survival in vitro [14]. Compared to normal plasma cells 
isolated from syngeneic mouse spleen, Gls1 expression 
was elevated in cMYC/KRAS12V-transduced PCT cells 

(Figure 1A). To investigate whether Gls1 was involved in 
PCT pathogenesis, we employed the cMYC/KRAS12V-
transduced adopted PCT mouse model. Three vectors 
containing the miRNAis targeting both human and mouse 
Gls1 mRNA were constructed (Figure 1B). Gls1 was 
significantly knocked down by all miRNAis, as compared 
to scrambled sequence in transfected 293T cells (Figure 
1C–1D).

To examine whether all elements in these plasmids 
functioned as expected, protein of cMYC, KRAS, eGFP, 
and GLS1 were examined in transfected 293T cells. 
We found that cMYC, KRAS, and eGFP were equally 
expressed by these plasmids and Gls1 was significantly 
knocked down by miRNAis (Figure 1C and 1D). These 
results suggested that all elements in these constructs were 
functionally the same as in our previous results [23].

Consistent with in vivo results (Figure 1A), both 
of Gls1 mRNA and protein were significantly elevated 
in cMYC/KRAS12V-transformed BaF3 cells (Figure 
2A). To characterize the transformed cells, we selected 
15 biomarker genes including cMYC or KRAS targets, 
MM biomarkers, or genes critical for MM cell survival 
and examined their expression with RT-PCR. Among 
selected 5 cMYC target genes, the expression of Nop16, 
Ddx21, Mcm5, and Cdk4 was increased and only Srm was 
decreased (Figure 2B). Similar results were found within 
KRAS target genes; the expression of Araf, Raf1, Rassf15, 
and Flnb was elevated and Lima1 was decreased (Figure 
2C). Among selected MM biomarker genes, Csnk1α1, 
P65, Prdm1, and Xbp1 expression was significantly 
increased, and unexpectedly, Irf4 was downregulated in 
cMYC/KRAS12V-transformed BaF3 cells (Figure 2D).

To examine the biological sequelae resulting from 
Gls1 knockdown, MK-LAZR, MKGls1R1s, MKGls1R2s, 
and MKGls1R3s were retrovirally transfected into BaF3 
cells. GFP+ cells were sorted and continually cultured with 
IL-3 for another 2-3 days. As expected, both mRNA and 
protein levels of Gls1 were significantly knocked down by 
these miRNAis in BaF3 cells (Figure 2E). Furthermore, 
the Cyclin-dependent kinase inhibitor P21 and P27 were 
obviously elevated (Figure 2E). The mRNA levels of 
some biomarker genes were measured at 24h post IL-3 
withdrawn (Figure 2F). After IL-3 was withdrawn for 
another 5 days, only MK-LAZR drove BaF3 cell growth 
independent of IL3, but MKGls1Rs could not (Figure 2G). 
These data indicated that Gls1 was required for cMYC/
KRAS12V to make BaF3 cell growth independent of IL3.

Knockdown of Gls1 significantly delayed cMYC/
KRAS12V-induced PCT pathogenesis in mice

To determine whether Gls1 was involved in MM 
pathogenesis, cMYC/KRAS12V-transduced adoptive 
plasmacytoma model was employed. Most recipients 
(5/6) receiving MK-LAZR-transduced cells died of 
PCTs within 10 weeks post cell transplantation (Figure 
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3A). Recipients developed PCT identified by peritoneal 
tumors, ascites, and enlarged spleens with pathological 
characteristics and FACS findings (Figure 3B, 3C). In the 
control group, one recipient died of B-ALL, in which cells 
were typified by GFP+B220+ (data not shown). Although 
the median survival of Gls1 knockdown groups is over 6 
weeks longer (Figure 3A), most recipients in MKGls1R1s 
and R2s groups died of PCT with the same pathological 
characteristics as LAZR recipients (Figure 3B, and data 
not shown). While most (6/8) recipients still remained 
healthy at day 120 post transplantation in MKGls1R3s 
group (Figure 3A). To monitor disease progression, at day 
42, three recipients from each group were sacrificed for 
histology and FACS analysis. Overall, there were fewer 
and lower percentages of PCT cells in the SPL and BM 
sections from Gls1 knockdown recipients (Figure 3C and 
3D). All recipients who were left were sacrificed at day 

120; BM and SPL cells were isolated and analyzed with 
FACS for GFP and Cd138. No tumor cells (GFP+CD138+) 
were detected in these recipients (Figure 3E).

Consistent with in vitro results, both mRNA and 
protein levels of Gls1 were significantly knocked down by 
these miRNAis in cMYC/KRAS12V-transduced PCT cells 
isolated from diseased recipients’ ascites (Figure 4A). We 
found that the expression level of Csnk1α1, P65, Prdm1, 
and Irf4 was significantly down-regulated; whereas Xbp1 
was increased (Figure 4B) in Gls1 down-regulated cells. 
All examined MYC targets, Nop16, Ddx21, Mcm5, Srm, 
and Cdk4 were decreased (Figure 4C). Among KRAS 
targets, only Rassf15 was down-regulated in all Gls1 
knockdown cells. The expression of Lima1 and Flnb was 
decreased in Gls1R2s and Gls1R3s cells, but not Gls1R1s 
cells; Araf and Raf1 were only down-regulated in Gls1R3s 
cells (Figure 4D). We also examined several important 

Figure 1: GLS1 was required for cMYC/kRAS12V transforming BaF3 cells independent of IL3. (A) Gls1 expression 
is increased in cMYC/KRAS12V-transduced PCT cells when compared to normal plasma cells (CD138+) with RT-PCR, P < 0.05* 

(n =  3, t test). Data presented are from three independent experiments and presented as mean ± SE. (B) Schematic diagram of MSCV-based 
retroviral vectors: cMYC/KRAS12V with miRNAs targeting lacZ and Gls1, GIs1Rs means miRNA targeting GIs1 sequence repeats. (C) 
MIG, MK-LAZR, and MK-Gls1Rs vectors as indicated were transfected into 293T cells and total protein was analyzed for GLS1, cMYC-
2A-eGFP, KRAS12V, and GFP expression. β-actin served as loading controls. (D) Relative density of GFP, KRAS, cMYC and GLS1 
protein in (C), P < 0.0001***(n = 3, t test).
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genes for cell cycles or apoptosis, overall, Cdkn1a and 
Cdkn1b were up-regulated, and Tp53 was down-regulated 
in these Gls1 knockdown cells.

Knockdown of Gls1 altered multiple signaling 
pathways in PCT cells

To further reveal the functions of Gls1 in PCT 
pathogenesis, transcriptome RNA-Seq was performed 

with PCT cells isolated from diseased recipients in 
MK-LAZR and MK-Gls1R2s groups. Genes were 
considered significantly altered, based on a 2-fold or 
greater change in mean expression (p < 0.01). Totally, 
414 genes were determined to be significantly altered 
in expression (Figure 5A). In tumor cells, glutamine can 
be metabolized to enter the citric acid cycle to satisfy 
bioenergetic demands and macromolecular synthesis [27]. 
KEGG analysis showed that genes involved in metabolic 

Figure 2: GLS1 was required for cMYC/kRAS12V transforming BaF3 cells independent of IL3. (A) RT-PCR and 
immunoblotting analysis shows expression of Gls1 in cMYC/KRAS12V-expressing BaF3 cells. (B–D) The expression of cMYC targets, 
RAS targets, and biomarker genes of MM in cMYC/KRAS12V-expressing BaF3 cells (E) Gls1 mRNA (left), GLS1, P21 and P27 protein 
levels (right) in MK-LAZR-, MK-Gls1R1s-, MK-Gls1R2s-, and MK-Gls1R3s-transduced BaF3 cells. (F) The expression of indicated 
genes in MK-LAZR-, and MK-Gls1R3s-transduced BaF3 cells. Data presented are from three independent experiments and presented as 
mean ± SE. P < 0.05*, P < 0.01** and P < 0.001*** considered significant. (G) Down-regulation of Gls1 in BaF3 cells, cMYC/KRAS12V 
failed to drive transfected cells to grow independently of IL3. Representative cells from three independent experiments are shown.
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Figure 3: Down-regulation of Gls1 impeded cMYC/KRAS12V-transduced PCTs in Balb/c mice. (A) Kaplan-Meier-style 
survival curves for recipients received MK-LAZR- (grey line, n = 6), MK-Gls1R1s- (blue line, n = 7), MK-Gls1R2s- (black line, n = 
7) and MK-Gls1R3s (red line, n = 8) transduced splenic IgM+ cells. Most diseased mice developed PCT excluding two recipients which 
developed B-ALL in MK-LAZR and MK-Gls1R1s groups, respectively (indicated with*). Two independent experiments were carried out 
with different viral stocks and all viral titers were equalized before ex vivo cell transfection. The difference in survival between MK-LAZR 
and MK-Gls1Rs is significant (P < 0.0001, Mantel-Cox test). (B) Tumors in the peritoneal cavity were pathologically observed in all mice 
groups Scale bars, 100 μm (top panel, magnification 200×) and 50 μm (bottom panel, magnification 400×). (C) FASC analysis is to track 
tumor cells in femur and tibia BM, and SPL. Numbers represent tumor cell percentages in respective gates. (D) Photomicrographs of BM 
and SPL sections (n = 3) from all group mice were stained with H&E. Scale bars, 100 μm (top panel, magnification 200×) and 50 μm 
(bottom panel, magnification 400×). (E) All the left recipients were sacrificed at day 120, BM and SPL cells were isolated and analyzed 
with FACS for GFP and CD138.
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pathways and biosynthesis were significantly enriched 
and down-regulated in Gls1 knockdown cells (Figure 5B). 
For example, TCA cycle, amino acids metabolism and 
biosynthesis, Carbohydrate metabolism were obviously 
restricted. Similar results were achieved by using GSEA 
analysis. For example, genes involved in “Oxidative 
phosphorylation” and “Glycolysis” were enriched as 
down-regulated (Figure 5C and Supplementary Table 1).

Whole transcriptome comparisons using GSEA 
analysis showed that MYC target genes were enriched 

as down-regulated in Gls1 knockdown cells (Figure 5D, 
Supplementary Figure 1B). MYC signaling pathway 
is essential for cancer stem cell self-renewal and cell 
survival. In addition, E2F targets were enriched and 
down-regulated (Supplementary Table 1), and mTORC1 
signaling (Supplementary Figure 1C), an important 
pathway for cell survival, was also enriched as down-
regulated. As an outcome of these impeded pathways, 
genes involved in the G2M checkpoint were enriched as 
down-regulated (Figure 5E). Genes involved in interferon 

Figure 4: Down-regulation of Gls1 in PCT cells impaired signaling pathways important for MM survival. (A) Gls1 
mRNA or protein level in MK-LAZR-, MK-Gls1R1s-, MK-Gls1R2s-, and MK-Gls1R3s-transduced PCT cells. (B–E) RT-PCR analysis 
shows expression of biomarker genes of MM, cMYC targets, RAS targets and key genes regulating cell cycle and apoptosis as indicated 
in MK-LAZR-, MK-Gls1R1s-, MK-Gls1R2s-, and MK-Gls1R3s-transduced PCT cells. Data presented are from three independent 
experiments and presented as mean ± SE. P < 0.05*, P < 0.01** and P < 0.001*** considered significant.
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Figure 5: Gene expression signatures of MK-Gls1R2s-transduced PCT cells. (A) Heat map showing the expression changes 
of 414 genes and hierarchical clustering of the genes in MK-Gls1R2s-transduced PCT cells from two biological replicates. (B) KEGG 
pathway analysis of genes differentially expressed between MK-LAZR- and MK-Gls1R2s-transduced PCT cells. (C–F) Enriched gene sets 
with down- or up- regulation in MK-Gls1R2s-transduced PCT cells.
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or TNFα response were enriched as up-regulated (Figure 
5F and Supplementary Figure 1D, 1E). As hall markers 
of antitumor activity, genes involved in viral infection 
and inflammation response, such as “viral myocarditis”, 
“HTLV-I infection”, “NF-kappa B signaling pathway”, and 
“Rheumatoid arthritis”, were significantly enriched as up-
regulated (Supplementary Figure 1A and Supplementary 
Table 2).

Combination of GLS1 inhibitor with other 
therapeutics achieved synergistic cytotoxic 
effects on MM cells

Based on the above results, we concluded that 
it was impossible to target Gls1 alone for MM cure. 
An alternative was to combine GLS1 inhibitor (s) with 
other drugs for potential MM treatment (s). According 
to previous results achieved in our laboratory, we found 
that the widely used therapeutics, such as LBH589 
(Panobinostat), a potent and broad spectrum of HDACi, 
Bortezomib (Velcade), a proteasome inhibitor, and 
Lenalidomide (Revlimid), an immunomodulatory drug, 
increased GLS1 protein in tumor lines. We also found 
similar phenomes in MM lines (Figure 6A, 6F, and 
Supplementary Figure 3B). To investigate the syngeneic 
effects of combinations of GLS1 inhibitor (BPTES) 
with other therapeutics, MM1s and RPMI8226 cells 
were treated with BPTES combined with LBH, Bort, or 
Len, respectively. Consistent with previous reports, all 
compounds alone significantly impaired the survival of 
MM1s or RPMI8226 cells (Supplementary Figure 2A, 
2B). Combinations of BPTES with any of these drugs 
achieved synergistic effects (Figure 6B, Supplementary 
Figure 2C, 2E and 2F). Moreover, Down-regulation of 
Gls1 with miRNAi combined with LBH or Bort also 
increased significantly more cell apoptosis compared with 
scramble (Figure 6C and Supplementary Figure 2D). To 
eliminate the possibility that the synergistic effects of 
BPTES came from off target effects, alpha-Ketoglutaric 
acid (α-KG), which is produced by deamination of 
glutamate and is used to represent the activity of GLS1, 
was added in the culture medium during treatment. α-KG 
can partially restore the cytotoxic effects triggered by 
the combination of BPTES and LBH (Figure 6D). These 
results indicated that the synergistic effects of BPTES with 
the therapeutics were contributed by specifically targeting 
GLS1.

In consideration of the therapeutic effects derived 
from combining BPTES with LBH in in vivo, we 
established xenografts with MM1s cells. Xenografts were 
treated with LBH, BPTES, or BPTES combined with 
LBH, respectively. Tumors grew more slowly in LBH- and 
BPTES-treated groups compared to vehicle-treated group, 
while the combination of BPTES and LBH achieved 
the greatest therapeutic effects (Figure 6E). To monitor 
the activity of BPTES, the concentration of α-KG was 

measured in in vivo tumors and α-KG was dramatically 
decreased in BPTES treated tumors, but was increased in 
LBH-treated tumors. BPTES could significantly reduce its 
level in LBH-treated tumors (Figure 6G). Similar results 
were achieved in Len and BPTES treated xenografts 
(Supplementary Figure 3A–3C).

DISCUSSION

In this study, we showed that Gls1 played an 
important role for MM cell metabolism and survival and 
also was involved in PCT pathogenesis. We revealed 
that targeting Gls1 alone is not sufficient to prevent 
PCT develop or eliminate MM cells in vivo; however, 
a combination of BPTES with LBH, Bort, or Len can 
achieve synergic antitumor effects on MM both in vitro 
and in vivo.

Previous studies about GLS1’s biologic function 
were based on data from established tumor cells [6, 
10, 14, 28–30]. Taking advantage of the PCT mouse 
model, we demonstrated that targeting Gls1 impeded 
pathogenesis of cMYC/KRAS12V-transduced PCT, 
but did not prevent mice from developing diseases 
(Figure 3A). Our results indicated that during cancer 
re-programming, inhibiting GLS1 activity or reducing 
glutamine intake could partially prevent cancer 
development. This conclusion was based on results from 
the effects of Gls1 mRNA knockdown or its inhibitor. It 
may be possible that completely inhibiting GLS1 activity 
can prevent cancer cell reprograming or get rid of cancer 
cells in vivo. However, considering the fact that mice 
lacking Gls1 died shortly after birth [31]. Treatments 
involving inhibition of GLS1 activity must be highly 
targeted to cancer cells to avoid side effects.

IRF4 is an essential transcription factor for plasma 
cell terminal differentiation [32], but its expression was 
not further increased in cMYC/KRAS12V-transformed 
BaF3 cells. One possible explanation is that IRF4 targets 
already were up-regulated in transformed cells, such as 
MYC and its targets, which was a primary target of IRF4 
in myeloma cells [15]. The changed pattern of examined 
genes in cMYC/KRAS12V-transformed BaF3 cells with 
Gls1 knockdown is not the same as it is in PCT cells 
(Figure 2F and Figure 4B–4D). The difference may be 
partially due to cell types and growth conditions. The 
expression of Xbp1s was increased under all conditions 
(Figure 2D, F and Figure 4B). This may be because both 
of endoplasmic reticulum (ER) stress and plasma cell 
maturation contribute to the expression of Xbp1.

GLS1 protein level dramatically increased in 
LBH or Len monotherapy treated cells in vivo, than in 
vitro (Figure 6A, 6F, and Supplementary Figure 3B). 
We postulate that long-term ongoing stress increases the 
Warburg effect in vivo, suggesting that it is worthy to 
additionally target GLS1 when patients are treated with 
LBH or Len. If this phenomenon is found to be universal, 
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Figure 6: Combination of targeting GLS1 and current MM therapy drugs results in synergistic cytotoxic effects in 
MM cells. (A) Expression of GLS1 in MM1s and RPMI8226 cells exposed to LBH, Bort, and Len for 24 h at indicated concentrations. 
(B) The synergistic cytotoxic effect of BPTES and LBH on MM1s and RPMI8226 cells after 24h treatment, EOB>10 connotes synergy. (C) 
MM1S and RPMI8226 cells infection with miRNA-LacZ or miRNAi-Gls1R3s virus, then treated with 5 nM LBH, after 48 h, using APC-
Annexin-V/PI kit analysis cell apoptosis. (D) Viability of cells treated with BPTES and LBH/or α-KG was measured with ATP activity. 
Each treatment was performed in triplicate in three independent experiments and presented as mean ± SE. (E) Xenografts were treated with 
vehicle (black line, n =  6), BPTES (10 mg/kg i. p., purple line, n =  6), LBH (10 mg/kg i. p., blue line, n = 6), or BPTES/LBH (i. p., red line, 
n =  6) for 10 days, and tumor volume was calculated. Data are represented as the relative change in tumor volume (RTV) (T0) ± SEM of 6 
mice per group. The difference in RTV is highly significant as labeled. (F) Western-blot of GLS1 for cells isolated from vehicle or LBH589 
treated tumors. Tumor numbers are indicated. GAPDH served as the western-blot loading control. (G) The concentration of α-KG in treated 
tumors (n = 3, in each groups) was measured with MS, and data were presented with the relative to that in Vehicle treated tumors. With P 
< 0.05*, P < 0.01** and P < 0.001*** considered significant.
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targeting Warburg effect may broadly benefit cancer 
patients receiving chemotherapy.

Although our data did not support targeting GLS1 
as a monotherapy for MM, GLS1 is still an attractive 
therapeutic target as part of a combinatorial treatment. 
From gene profiling analysis, we showed that the most 
important signal molecules which are critical for most 
cancer cell or MM survival, such as MYC, E2F, RAS, 
NFκB, IRF4, mTORC1, and others were significantly 
down-regulated when Gls1 level was reduced or its 
activity inhibited.

One striking finding was that a few recipients died 
of B cell leukemia, both in the MK group and MKGlsR1 
group (Figure 3A). The recipients with B-ALL could have 
died because transduced donor cells contained some pro/
pre-B cells which were transformed into leukemia cells by 
cMYC/KRAS12V. Interestingly, the progression of B-ALL 
in MKGlsR1 group was also slower. It appeared that Gls1 
knockdown may also impede cMYC/KRAS12V-transduce 
B-ALL progression. Thus far, the biological effects of 
targeting Gls1 have not yet been evaluated in B-ALL.

During GSEA analysis, there was no any specific 
gene set associated with plasma cells or critical for MM 
survival that were significantly enriched, indicating that 
targeting Gls1 is not specific for MM. This is consistent 
with the observation that the Warburg effect is a hallmark 
of cancer cell metabolism in general and not restricted to 
a specific cell type [30].

MATERIALS AND METHODS

DNA constructs

The oligo sequences targeting human and mouse Gls1 
mRNA (miGls1R1: 5′-GTCTGTTACCTAGCTTGGAAG-3′, 
miGls1R2 5′-AGATGGTGTCATGCTAGACAA-3′, and 
miGls1R3 5′-ATGGTGGTTTCTGCCCAATTA-3′) were 
cloned into the vector containing cMYC-2a-eGFP-IRES-
KRAS12V, miGIs1Rs means miRNA targeting GIs1 
sequence repeats. Knockdown efficiency was assessed 
following retroviral transduction into BaF3 cells as 
previously described [23].

Cell lines and reagents

MM1s and RPMI8226 were cultured in RPMI1640 
medium with 10% FBS (Gibco, ThermoFisher Scientific) 
and 100 units/ml penicillin/streptomycin (Gibco). Mouse 
cell line BaF3 was cultured in RPMI1640 medium (Gibco) 
with 10% FBS, 100 units/ml penicillin/streptomycin, 
50 µM β-mercaptoethanol (Sigma-Aldrich), and 10% 
WEHI3 cell culture supernatant. GLS1 inhibitor BPTES 
(MB2348) and the chemotherapeutic reagents including 
LBH589 (LBH, MB5709), Bortezomib (Bort, MB1040), 
and Lenalidomide (Len, MB1136) were purchased from 
Meilubio (Dalian, China)

Mouse models

All animal studies were performed in accordance 
with guidelines approved by the Institutional Animal 
Care and Use Committees of Sichuan University. PCT 
mouse model was made as previously described [16]. For 
the xenografts, 8–10-week-old female NOD/SCID mice 
were subcutaneously inoculated with 5 × 106 MM1s cells. 
Treatment was initiated when mean tumor volumes reached 
150 mm3. Mice were dosed via IP injection at 10 mg/kg 
of BPTES (10% DMSO in PBS) with LBH (dissolved in 
PBS), or 15 mg/kg of Len (dissolved in PBS) every other 
day and dosing was carried out for 12 days. Mice were 
euthanized when tumors reached 15 mm in diameter. Data 
were represented as the ratio of the final tumor volume 
relative to the initial tumor volume [(T/T0) × 100].

Flow cytometry

Cells were obtained from peripheral blood 
(PB), spleen (SPL), bone marrow (BM), peritoneal 
tumor, and ascites from recipient mice and stained 
for the combination of the following antibodies: 
IgM-PE, B220-PECy7, CD138-APC, and CD38-PE 
(ThermoFisher Scientific). Samples were analyzed with 
FACS on a Fortesa machine (Becton Dickinson, NJ, U. 
S. A.) using Cell Quest software (Becton Dickinson). 
FACS data were analyzed and represented with 
Flowjo10.

Histopathology and immunohistochemistry

Tissues were fixed, processed, sectioned, and stained 
with hematoxylin-eosin (H&E) by routine methods.

Immunoblotting

Western blot was performed as a routine way. 
GLS1 antibody was purchased from Abcam (ab93434). 
P21(sc-6246) and P27(sc-1641) were purchased from 
Santa Cruz. Antibodies against MYC (RT1149), KRAS 
(ER40115), GFP (ET1604-26), β-actin (M1210-2), and 
GAPDH (EM1101) were purchased from Hangzhou 
Huaan Biotechnology (Hangzhou, China).

Cell viability and apoptosis assays

BPTES, LBH, Bort, and Len were dissolved in 
DMSO and stored at –20° C. MM cells were seeded in a 
96-well plate and compounds were added at indicated 
concentrations. Cell viability was measured with MTT 
at indicted time points with Biotek Cytation 3 at 570 nm. 
Synergy was computed using the Excess over Bliss (EOB) 
method. Bliss independence was determined using the 
formula C= A+B-A*B; where C designates the combined 
response for the 2 single compounds with effects A and 
B. An EOB>10 connotes synergy [33]. Apoptosis analysis 
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using Annexin-V/PI detection kit APC purchased from 
Thermofisher (88800772).

Gene expression profiling

PCT cells were isolated from diseased recipient 
ascites. RNA-seq was performed with Illumina MiSeq 
system. Gene set enrichment analysis (GSEA) was 
performed in Molecular Signatures Database (MSigDB, 
Broad Institute, Cambridge, MA, USA) [34, 35].

Statistics

All experiments were performed in triplicate and 
repeated 2-3 times. Groups were compared using the t-test 
(GraphPad Prism software version 6.0), with P < 0.05*, P 
< 0.01** and P < 0.001*** considered significant.
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