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Abstract: Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell
types implicated in atherosclerosis development, and unlike other mature cell types, both retain
a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and
the blood pressure. In response to vascular injury and modifications of the local environment
(inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and
also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunc-
tion promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium
and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2
(anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived
macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to
formation of “foam cells” within atherosclerotic plaques. Variations in the levels of nitric oxide (NO)
can affect several of the molecular pathways implicated in the described phenomena. Elucidation
of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date
much remains to be explored. The present article is an overview of the different factors and signalling
pathways implicated in plaque formation and of the effects of NO on the molecular steps of the
phenotypic switch of macrophages and vSMCs.

Keywords: atherosclerosis; macrophages; vascular smooth muscle cells; differentiation/de-differentiation;
signalling pathways; nitric oxide

1. Introduction

Cardiovascular diseases are the major cause of death worldwide, being responsible
for 17.9 million deaths (31% of the global death rate) in 2016 [1]. From these deaths, 85%
were caused by heart attacks and strokes, which can be the consequence of atherosclerosis
progression and plaque rupture. Atherosclerosis—the leading coronary arteries disease—is
a chronic, silent and slowly developing pathology, mainly affecting arteries of medium–
large diameter and characterised by the formation of atheroma plaques as a result of
excess plasmatic low-density lipoprotein (LDL) concentrations. The accumulation of LDLs
in the blood stream results in their infiltration and oxidation in the sub-endothelium,
leading to vascular wall inflammation and oxidative stress. This deleterious environment
induces endothelial dysfunction, in turn leading to decreased bioavailability of nitric
oxide (NO) due to both decreased synthesis and increased catabolism. NO is a gaseous,
lipophilic, free radical mediator with a short half-life (<5 s), synthesised by endothelial NO
synthases (eNOS) and involved in the maintenance of vascular homeostasis. Endothelial
dysfunction and decreased NO bioavailability induce adhesion/infiltration in the sub-
endothelium of circulating monocytes, as well as migration/proliferation of vascular
smooth muscle cells (vSMCs) from the arterial tunica media (Figure 1). Oxidised low-
density lipoproteins (oxLDLs) are then phagocytised by macrophages or internalised by
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vSMCs, thus originating the typical “foam cells” participating in the development of the
plaque necrotic core (Figure 1).
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Figure 1. Summary of the mains steps in formation of foam cells in atherosclerotic plaques. vSMCs: vascular smooth
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Mox: Mox macrophages; HO-1: heme oxygenase 1.

NO displays antiaggregant and vasorelaxant properties, concurring to maintain the
anti-inflammatory phenotype of endothelial cells as well as the non-proliferative and non-
migratory phenotype of vSMCs. The classical NO mechanism of action is mediated by the
nitrosylation (coordination of NO to a metal) of haemoproteins, such as soluble guanylyl
cyclase (sGC) producing cyclic guanosine monophosphate (cGMP), which is mostly respon-
sible for the antiaggregant and vasorelaxant properties of NO. However, NO signalling
is also mediated through protein S-nitrosation, a post-translational modification of high
or low molecular weight proteins or peptides involving the formation of a covalent bond
between NO and a reduced thiol of a cysteine residue. S-Nitrosated proteins and peptides
are also storage and transport forms of NO: indeed, despite its short half-life, in this way
NO is able to act at a distance from its sites of synthesis. The S-nitrosation process extends
the NO half-life from 45 min up to several hours and limits the oxidative/nitrosative
stress caused by NO oxidation into peroxynitrite ions (ONOO−). In vivo, S-nitrosothiols,
such as S-nitrosoalbumin, S-nitrosohemoglobin and S-nitrosoglutathione (GSNO), are the
main physiological forms of NO storage and transport. Finally, NO action can also be
mediated through protein or lipid nitration, a marker of nitrosative stress characterized by
the addition of a nitro group to a tyrosine residue or a fatty acid chain.

NO has anti-inflammatory and anti-proliferative actions, and its depletion during
atherosclerosis will favour monocyte adhesion and infiltration in the sub-endothelium,
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as well as vSMCs migration/proliferation and their switch from a contractile to a se-
creting phenotype. Monocytes infiltrating the sub-endothelium are exposed to oxLDLs,
and differentiate into macrophages of different subtypes depending on the prevalent
microenvironment. At first monocytes differentiate into naïve M0 macrophages, which
can then become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox
macrophages (oxidative stress phenotype). Indeed, macrophages show a high plasticity,
and a dynamic switch between the mentioned phenotypes. M1 and M2 macrophages
express specific phenotypic markers, e.g., LDL surface receptors CD80, CD68 and CD14 for
the M1 phenotype [2]; the CD206 mannose receptor for the M2 phenotype [3]; or heme oxy-
genase 1 (HO-1) for Mox phenotype [4] (Figure 1). The balance of the M1/M2 population
is modified along the atherosclerotic plaque development, varying from a M2 prevalence
in stable plaques to a M1 prevalence in vulnerable ones [5–7]. Phagocytosis of oxLDLs
by macrophages leads to the formation of foam cells, composing the lipidic necrotic core
of plaques (Figure 1). M2 macrophages internalise more lipids than M1 macrophages,
due to a lower expression of cholesterol efflux proteins [7]. The higher oxLDLs loading
of M2 causes eventually a shift towards an M1 phenotype [8,9]. However, other studies
found an increased oxLDLs uptake in M1-like macrophages, even when cholesterol efflux
proteins are upregulated [10]. Mox macrophages, a distinct phenotype from M1 and M2
macrophages, derived from M0 macrophages, phagocyted oxLDLs and protect from oxida-
tive stress. Treatment of M1 or M2 macrophages with oxLDLs causes also a further switch
to the a specific Mox phenotype [11].

In healthy arteries, vSMCs are located in the tunica media of the vessel wall where
they are responsible of vasoactivity (contraction/relaxation), vascular diameter and blood
pressure. Differentiated contractile vSMCs have low migration and proliferation abilities.
They express specific contractile markers like α-smooth muscle actin (α-SMA), smooth
muscle myosin heavy chain (SM-MHC), transgelin, H1-calponin and smoothelin (Figure 1).
However, unlike other muscle cells, vSMCs do not terminally differentiate and retain a
high level of plasticity while remaining in a quiescent phenotype. In response to vascular
injury and inflammatory stimuli, such as during atherosclerosis, contractile vSMCs are
able to undergo de-differentiation to a secretory/proliferative (“pro-atherosclerotic”) phe-
notype, which is implicated in vascular wall hyperplasia occurring during progression of
atherosclerotic plaques [12]. Indeed, such de-differentiation has a physiological function in
helping vascular repair after injury and is the same mechanism as observed in embryonic
angiogenesis, neovascularisation and vascular remodelling [13]. De-differentiated vSMCs
are characterised by a decreased expression of contractile markers and increased prolifera-
tion, migration and secretory abilities, and can even express markers of macrophagic as
well as skeletal muscle phenotypes. De-differentiated vSMCs act in all steps of atheroscle-
rosis development, until the formation of advanced plaques presenting a necrotic core and
varying degrees of calcification. The vSMCs’ phenotypic switch allows their migration and
infiltration from the media to intima due to secretion of matrix metalloproteinases (MMP-2,
MMP-9) [14], as well as their capacity to internalise oxLDLs through the expression of the
pro-low density lipoprotein receptor-related protein 1 (LRP-1) (Figure 1). During this pro-
cess, the nuclear localisation of NF-κB is increased, leading to secretion of pro-inflammatory
cytokines and promotion of vSMCs dedifferentiation.

During their phenotypic switch, vSMCs acquire macrophagic properties and express
macrophage markers, such as CD68 [15], as well as mesenchymal stem cells markers
(e.g., Sca1 and CD105) [16,17], suggesting the presence of a vSMC progenitor population
within the vessel wall that proliferates and accumulates along with the development of
atherosclerosis (Figure 1). The switch to a macrophage-like phenotype is likely driven by
lipids accumulation and is the main step in the formation of foam cells and the necrotic
core of plaques [16]. Foam cells encountered in plaques have been shown in fact to derive
from both macrophages and vSMCs, through oxLDLs accumulation [18–20]. Allahverdian
et al. previously demonstrated that, of the foam cells present in human plaques, 40% are of
vSMC origin vs. 60% of a macrophagic one [21].
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Many signalling pathways triggered by inflammatory and/or oxidative stimuli are
implicated in the phenotypic switch of vSMCs, as well as in the differentiation of monocytes
and the polarisation of macrophages. Activation of these signalling pathways occurs in
parallel to a decrease in NO bioavailability. NO is known to promote M1 polarisation
toward the M2 phenotype [22,23], and has been held responsible for the maintenance of
the non-proliferative/non-migratory phenotype of vSMCs. However, no direct proof was
provided for the alleged ability of NO to counteract the vSMCs’ phenotypic switch. The
present review is an overview and an appraisal of the current knowledge on the signalling
pathways involved in vSMC and monocyte/macrophage differentiation/polarisation, with
particular reference to NO-dependent signalling.

2. Modulation of Key Determinants of Cell Phenotype by
Redox/Inflammatory Signalling

Under physiological conditions, reactive oxygen species (ROS) produced at low con-
centration are key redox regulators of cell functions in response to extracellular and in-
tracellular stimuli. At first, cell cycle phases as well as assembly of the mitotic spindle
were associated with variations in concentration of soluble thiols [24,25]. In particular,
glutathione was shown to accumulate during the G2 phase and the mitotic phase [26], in
which the ROS concentration was shown to be 3-fold higher than in the G1 phase [27]. The
redox environment as well as inflammatory stimuli appear thus to control the cell cycle,
especially transitions between phases [28–31].

The implications of ROS generating as well as antioxidant systems along the different
steps of atherosclerosis progression (endothelial dysfunction, LDLs oxidation and accumu-
lation, plaque formation) have been recently reviewed [32]. Paracrine signalling by growth
factors, cytokines and hormones, such as platelet-derived growth factor (PDGF) [33,34],
epithelial growth factor (EGF), transforming growth factor β (TGF-β), tumour necrosis
factor-α (TNF-α) [35] and angiotensin II [36], activates specific cell membrane receptors
and induce ROS production. ROS can then reversibly oxidise thiol groups on regulatory
proteins to disulfides, mixed disulfides or sulfoxides, as well as zinc-fingers to disulfides,
or methionine residues to methionine [37].

2.1. Platelet-Derived Growth Factor (PDGF)

PDGF is one of the most robust phenotype-modulating agents, and a primary regulator
of vSMCs proliferation in response to a multitude of stimuli like hypoxia, thrombin,
growth factors (including PDGF itself) or cytokines. PDGF is produced as a dimer of four
polypeptide chains, linked by disulphide bonds and encoded by four different genes. Five
possible dimeric forms of PDGF have been identified: PDGF-AA, PDGF-AB, PDGF-BB,
PDGF-CC and PDGF-DD. PDGF-A and PDGF-B monomers undergo activation (N-terminal
pro-domain removed) during their intracellular transport for secretion [38]. PDGF-C and
PDGF-D monomers are secreted as latent factors, requiring an activation by extracellular
proteases [39,40].

Among the PDGF isoforms, PDGF-BB dimer is known to drive the Raf/Ras/MEK/ERK
signalling pathway. Vascular injury and chronic arterial diseases result in PDGF-BB pro-
duction as a signal for vSMCs de-differentiation, helping the remodelling of blood vessels.
Indeed, PDGF-BB decreases the expression of contractile phenotype markers (calponin and
α-smooth muscle actin) and upregulates the expression of synthetic markers osteopontin
and vimentin. Furthermore, PDGF-BB prevents oxidative stress-induced protein damage
and cell death by promoting vSMC autophagy, essential for cell survival [41]. PDGF-BB
is central for vSMC proliferation and migration regulation linked with ROS signalling
and JAK/STAT signalling. NADPH oxidase (NOX), producing superoxide anions, in fact
participates in signalling cascades regulating PDGF-BB-induced proliferation, while JAK
inhibition abolishes PDGF-stimulated vSMCs growth [42].

PDGF-BB is also implicated in the modification of the extracellular matrix surrounding
vSMCs. Contractile vSMCs are surrounded by type I and IV collagens and proteoglycans.
However, along atherosclerosis development, vSMCs secrete type I, VI and VIII collagens,
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as well as MMPs promoting their migration, followed by upregulation of synthesis of
interstitial matrix components such as elastin, fibronectin, osteopontin or tenascin. Collagen
deposits account for 60% of the total protein in atherosclerotic plaques, and drive vSMC
migration [43]. PDGF-BB promotes the synthesis of type VI collagen α1 chain, increasing
vSMCs viability and migration capacity, as well as fibronectin and MMPs through the
activation of Akt/mTOR signalling [44].

Addition of PDGF-BB to vSMCs suppresses SM-MHC mRNA/protein expression,
but treatment with NO donors (FK409 or S-nitroso-N-acetylpenicillamine (SNAP)) can
reverse this effect [45]. A study with short- (SNAP) and long-term (DETA/NO) NO
donors showed that both compounds could inhibit PDGF-induced vSMCs migration in
a dose-dependent manner, via blockade of the RhoA pathway [46,47]. De Oliveira et al.
also showed that cyclamNO, a NO donor, can inhibit PDGF-BB-induced cell proliferation
and migration [48]. CyclamNO prevents vSMCs’ phenotypic switch by reducing (≈60%)
the expression of α-SMA induced by PDGF-BB. After a long exposure to SNAP, NO
contributed to decrease vSMC proliferation by the attenuation of PDGF-BB-induced PKB-α
activation [49]. Moreover, the loss of eNOS activity (eNOS−/− mice) is associated with the
activation of the PDGF signalling pathway and with the induction of survivin, an apoptosis
inhibitor. eNOS negatively regulates the PDGF-survivin axis, so that proportional flow-
dependent luminal remodelling and vascular quiescence are maintained [50].

2.2. Transforming Growth Factor-B (TGF-B) Superfamily
2.2.1. TGF-β

TGF-β is important in the maintenance of vascular homeostasis and integrity and
is produced by all cell types in the arterial wall following a vascular lesion [51]. TGF-β
was initially recognised as a de-activating factor for macrophages, with the ability to sup-
press iNOS expression and to inhibit the production of pro-inflammatory mediators [52],
resulting in the suppression of differentiation of monocytes to macrophages [53]. Three
isoforms are comprised in the TGF-β family, TGF-β1, -β2 and -β3, secreted as precursors
whose biological function is activated by enzymatic cleavage. TGF-β1 and TGF-β3 are
expressed in vSMCs, macrophages and foam cells of early human vascular lesions [54].
Indeed, TGF-β contributes to the progression of lipid-rich atherosclerotic lesions by stimu-
lating the production of lipoprotein-trapping proteoglycans, inhibiting vSMCs proliferation
and activating proteolytic mechanisms in macrophages [54]. TGF-β regulates CD36 or
apolipoprotein E (ApoE) genes implicated in oxLDLs uptake and in cholesterol efflux from
foam cells [55]. In addition, TGF-β inhibits foam cells formation and controls cholesterol
homeostasis in macrophages via Smad-2 and Smad-3 phosphorylation in macrophages.

Regarding inflammation, TGF-β1 exerts a protective role by inhibiting vSMC pro-
liferation and migration by inhibiting signal transducer and activator of transcription 3
(STAT3) and NF-κB pathways, while at the same time inducing expression of contractile
genes and actin re-organisation through an increased p38 MAPK activity [56–60]. Such
TGF-β1-driven effects are blocked by inhibitors of RhoA kinase and its target PKN (also
known as protein kinase C-related kinase 1 or PRK-1). The TGF-β1/RhoA/PKN triad
in fact is the key component of an important intracellular signalling pathway promoting
vSMC differentiation. The antiproliferative effects of NO on vSMCs are explained by its
interactions with RhoA: S-nitrosation of the cysteine residues present in RhoA GTP-binding
domain decreases its affinity for GTP, thus suppressing RhoA activity [61,62]. RhoA inhibi-
tion by S-nitrosation modulates the phosphorylation of myosin light chain, suggesting an
implication of cGMP-independent effects of NO on vascular tone as well.

2.2.2. Bone Morphogenetic Proteins (BMPs) and Gremlin-1

BMPs are inflammatory mediators produced by the endothelium in response to shear
stress, pro-inflammatory cytokines and oxidative stress [63]. They are members of the TGF-
β superfamily, and participate in bone formation, haematopoiesis and cell differentiation
during embryogenesis.
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In 1993, BMP-2 was first implicated in calcification of human atherosclerotic le-
sions [64]. Nakaoka et al. demonstrated then that BMP-2 can inhibit vSMC prolifera-
tion, and suggested the therapeutic application of BMP-2 to prevent vascular proliferative
disorders [65]. On the other hand, BMP-2, BMP-4 and BMP-6 have also been shown to in-
crease plaque formation, oxidative stress, inflammation and endothelial dysfunction [66,67],
through the activation of their specific BMP type I and type II (serine/threonine kinase)
receptors. BMP receptor signalling has been involved in endothelial dysfunction via inhibi-
tion of the Akt-eNOS pathway after induction of phosphatase and tensin homolog (PTEN),
as well as in vSMC osteogenic differentiation [68].

BMPs modulate the vSMCs’ phenotype via cross-talk with RhoA/MRTFs pathways,
which may contribute to the development of pathological features. Indeed, BMPs promote
the nuclear localisation and recruitment of myocardin-related transcription factors (MRTF-
A and MRTF-B) to the promoter of the smooth muscle α-actin gene [69]. In particular, BMP-
4 decreases SM22-α and α-actin gene expression, indicating vSMC de-differentiation [70].

The inhibition of BMP-2, BMP-4 and BMP-7 binding to BMP type II receptors by
Gremlin-1, the physiological antagonist of BMP receptors, reduces Smad activation in the
cytoplasm and induces VEGFR-2 expression of VEGFR-2. Gremlin-1 also prevents the
recruitment and the activation of macrophages in atherosclerotic plaques by inhibiting the
inflammatory mediator MIF [71]. Within vSMC de-differentiation, Gremlin-1 appears to act
also independently of the BMP pathway, by reducing the expression of SM22-α, α-actin and
calponin genes, as well as by efficiently promoting VEGFR-2-dependent angiogenesis [72].

2.3. Fibroblast Growth Factors (FGFs)

The FGFs family comprises 22 members divided into 7 subgroups. FGFs act as
signal molecules that bind and activate FGF receptors (FGFRs), a family of tyrosine kinase
receptors including four members.

In 1996, Hughes documented FGF/FGFR involvement in atherogenesis and atheroscle-
rotic plaque progression [73]. Indeed, FGF is one of the growth factors released by vSMCs,
implicated in their proliferation and phenotypic switch by inducing the secretion of
chemokines (e.g., CCL2), a mechanism that could explain the infiltration of leukocytes dur-
ing atherosclerosis development [74]. In vSMCs, FGF activation of FGFR-1 signalling also
upregulates via Src/MEK/MAP kinases the expression of osteopontin, which is implicated
in the migration of adventitial fibroblasts [75]. The FGF-2/FGFR-1 interaction increases
atherosclerotic plaque instability through NF-κB potentiation and the consequent increase
in MMP-9 and iNOS expression in vSMCs [76].

Low concentrations of NO were found to inhibit FGF-2-mediated vSMC migration [77].
On the other hand, high levels of NO induce vSMCs death, resulting in the release of
FGF-2, in turn stimulating the proliferation of adjacent endothelial cells. Thus, vSMC
damages induced by a high NO concentration may be a trigger of neovascularisation in
atherosclerotic plaques [78]. The FGF-2 binding affinity for FGFR-1 is increased by H2O2,
and thus oxidative stress can stimulate vSMC proliferation [79]. FGF-21 in particular has
been shown to regulate lipid metabolism, foam cell formation, macrophage migration and
inflammatory response by repressing NF-κB signalling [80]. FGF-21 could thus exert a
cardioprotective action by inhibiting the initial steps in atherosclerosis.

Finally, a crosstalk between FGF and TGF-β has been observed both in vitro and
in vivo, likely contributing to the modulation of the vSMCs’ phenotypic switch. In vitro,
the inhibition of FGF signalling increases TGF-β activity, promoting vSMCs differentiation
and decreasing their proliferation. In vivo, FGF receptor knock-out mice crossed with
ApoE−/− mice present a significant inhibition of atherosclerotic plaque growth [81].

2.4. Angiotensin II (AngII)

AngII is the main player in the renin–angiotensin system, regulating renal and vascu-
lar homeostasis. The main AngII effects are mediated by the angiotensin II type 1 receptor
(AT1R) expressed on monocytes, endothelial cells, vSMCs and fibroblasts. Preclinical stud-
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ies demonstrated that the administration of the AT1R antagonist telmisartan for 20 weeks
to ApoE−/− mice reduces atherosclerosis progression, with decreased lipid deposition and
accumulation of macrophages [82]. In parallel, the plaque collagen content was increased,
indicating plaque stabilisation and an overall protective effect of telmisartan [82]. It seems,
therefore, that the AngII/AT1R signalling can promote progression of atherosclerosis.

Interestingly, NO may counteract AT1R function. AT1R S-nitrosation was in fact
shown to decrease its affinity for AngII [83], and to inhibit both AngII-dependent and
-independent activation of AT1R [84]. AngII also plays a role in atherosclerosis progression
by enhancing inflammation, endothelial dysfunction and vSMCs proliferation, thus favour-
ing plaque vulnerability and rupture [85,86]. Decreased NO bioavailability and increased
ROS levels can explain the pro-atherogenic effects of AngII [87]. Indeed, AngII activates en-
dothelial NOX and p22phox, leading to the production of superoxide/H2O2, which, in turn,
activates H2O2-sensitive signalling pathways, leading to vSMC proliferation [88,89]. AngII-
induced hypertension in rats was associated with increased NOX-derived O2

•–, endothelial
dysfunction and upregulation of AngII receptors [90]. All these effects were blocked by the
AT1R antagonist losartan, and, in particular, NO can suppress NOX-dependent superox-
ide production through S-nitrosation of the p47phox subunit, resulting in suppression of
vascular oxidative stress [91]. Similarly, the knockdown of p22phox, a subunit of the NOX
complex, essential for its stability and activity, was shown to inhibit AngII-induced vSMC
de-differentiation, proliferation and migration through the inhibition of H2O2 production,
Krüppel-like factor 4 (KLF-4) expression as well as phosphorylation of Akt and activation
of ERK1/2 signalling [92]. Indeed, KLF-4 is one of the main transcriptional regulators of
vSMCs’ phenotypic switch, and is the end effector of the Akt/ERK1/2 signalling pathway
(see Section 4.5).

2.5. Oxidized Low Density Lipoproteins (oxLDLs)

Increased levels of circulating oxLDLs are known to promote monocytes adhesion to
the endothelium. However, their effects are not limited to the luminal surface, as oxLDLs
can penetrate the vascular wall and enhance oxidative stress and inflammation [93]. The
latter is responsible for monocytes infiltration in the sub-endothelium and their differen-
tiation into macrophages, expressing the scavenger receptors CD36 as well as lectin-like
oxLDL receptor-1 (Lox-1) responsible for oxLDLs binding and uptake. Moreover, oxLDLs
induce the phenotypic switch of M1 and M2 macrophages towards the Mox phenotype,
i.e., macrophages with a decreased phagocytic activity expressing a panel of antioxi-
dant enzymes under the control of the KLF-2 transcription factor [4]. Mox macrophages
represent around 30% of all macrophages found in advanced atherosclerotic lesions of
LDLR−/− mice [4].

The majority of foam cells found in plaques are derived from macrophages; however,
oxLDLs also promote the vSMCs’ phenotypic switch up to a final metaplasia into typical
foam cells. Indeed, oxLDLs, such as oxPAPC (oxidized 1-palmitoyl-2- arachidonoyl-sn-
glycero-3-phosphocholine), cause a dose-dependent downregulation of mRNA transcrip-
tion for α-actin and SM-MHC, two vSMCs phenotypic markers [93]. Moreover, POPVC
(1-palmytoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine) induces pro-inflammatory
gene expression, such as chemokine ligand-2 (CCL2), MCP3 and the TNF superfamily,
and induces the nuclear translocation of the KLF-4 transcription factor implicated in the
repression of vSMC differentiation [93]. De-differentiated vSMCs acquire macrophage-like
markers, such as CD68, as well as antigen presentation capacity. On the other hand, such de-
differentiated vSMCs cannot perform phagocytosis (only internalisation, lacking digestion
steps) and maintain low expression levels of SM-specific markers, such as SM-α-actin [12].

With respect to NO homeostasis, oxLDLs produce a modification of the eNOS/iNOS
balance with downregulation of eNOS and sur-expression of iNOS, leading to sur-activation
of Lox-1 receptor and NF-kB. The latter originates high concentrations of NO (>1 µM)
capable of promoting atherosclerosis progression by increasing LDL oxidation and in-
flammation, decreasing protective autophagic responses and accelerating the apoptosis
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of endothelial cells [94]. iNOS inhibition results in the decreased of NO and peroxynitrite
ions concentrations after oxLDL treatment, while generation of superoxide is increased,
reversing the oxLDL-induced migratory arrest of foam cells [95]. Moreover, high NO
concentrations (100 µM) were shown to decrease cholesterol efflux from macrophages
through the downregulation of ATP-binding cassette transporter A-1 (ABCA-1), thus in-
creasing the oxLDLs and cholesterol accumulation [96]. The concentration and the type
of NO donor used in these experiments is of importance: indeed, SNAP—a S-nitrosothiol
NO donor—is unable to oxidize LDLs, whereas NO donors sodium nitroprusside and
3-morpholinosydnonimine (SIN-1) induce a strong LDLs oxidation [97]

Overall, the restoration of NO bioavailability at physiological concentrations might
be protective against atherosclerosis progression, and pharmacological treatments are ob-
taining the first results in this perspective. Indeed, treatment of LDLR−/− mice with
0.51 µmol/kg/day with S-nitroso-N-acetylcysteine allowed a decreased extent of atheroscle-
rotic plaques, of oxidative stress as well as of free circulating cholesterol [98]. Furthermore,
NCX6560, a NO-releasing derivative of atorvastatin (a lipid-lowering drug), presented
better anti-thrombotic and anti-inflammatory effects than atorvastatin alone [99].

3. Signalling Pathways Implicated in Phenotypic Modulation
3.1. PI3K/Akt/mTOR Signalling

The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signalling path-
way, as well as the downstream targets of Akt, play a central role in several cellular
processes, such as growth, proliferation, death and differentiation [100,101], and are also
implicated in the regulation of vSMC proliferation and contractility. Insulin as well as
insulin-like growth factor (IGF) signalling suppress the de-differentiation programme in
vSMCs and maintain their contractile phenotype via the classical PI3K/Akt pathway [102].
Active nuclear Akt phosphorylates FOXO-4, a co-repressor protein that interacts with
the CarG/SRF/myocardin complex and blocks the expression of differentiation genes
FOXO-4 is then exported from the nucleus, allowing the re-establishment of a functional
CarG/SRF/myocardin complex and the expression of differentiation genes [103].

In spontaneously hypertensive (SHR) rats, aerobic exercise suppresses the vSMCs’
phenotypic switch via Akt and mitogen-activated protein kinase (MAPK) signalling. Aero-
bic exercise decreases blood pressure and reverses the decreased expression of the vSMC
protein markers (calponin, SM α-actin and osteopontin) induced by hypertension. Thus,
hypertension, sedentary habits and a lack of exercise in the general population might
promote atherogenesis due to an inhibition of Akt/MAPK signalling pathways. Akt inhi-
bition in fact significantly inhibits the expression of contractile proteins, which is instead
increased by p38 MAPK and ERK inhibition. The latter in addition downregulates the
expression of the synthetic phenotype marker, osteopontin [104]. The effects of aerobic exer-
cise suggest the implication of redox signalling in the maintenance of the vSMC contractile
phenotype as well as in the hyperplastic response associated with vascular injury. Kinases
are downstream targets of ROS produced by enzymes, such as the NOX complex, and
NOX-4 was in fact shown to contribute to the activation of MAPK-14 and the suppression
of the vSMCs contractile phenotype [105].

The important role of PI3K/Akt signalling in survival, proliferation, polarisation
and migration of macrophages has been previously reviewed [106]. The activity of Akt
signalling determines monocyte/macrophage viability and their resistance to pro-apoptotic
stimuli in atherosclerotic lesions. A selective inhibition of Akt and mTOR was indeed
shown to increase plaque stability through the promotion of macrophage autophagy in a
rabbit model of atherosclerosis [107].

The PI3K/Akt/mTOR pathway is implicated in vSMC autophagy as well. In ApoE−/−

mice, the inhibition of P2Y12 purinergic receptor promotes vSMC autophagy through
the PI3K/Akt/mTOR pathway. Conversely, the P2RY12 receptor activation can block
cholesterol efflux and macrophage autophagy, thus promoting the formation of vSMC-
derived foam cells [108]. The activation of the PI3K/Akt/mTOR pathway induced by
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homocysteinaemia was also prevented by miR-145, thus inhibiting vSMC proliferation,
migration and phenotypic switch [109].

NO signalling is intimately linked to the PI3K/Akt/mTOR pathway. Liu et al. demon-
strated that a NO donor, PABA/NO (O2-{2,4-dinitro-5-[4-(N-methylamino) benzoyloxy]
phenyl}1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) induces apoptosis in hepatocarci-
noma cells through the inhibition of the PI3K/Akt/mTOR and MEK/ERK pathways. Data
suggest that PABA/NO could be used as a potential therapeutic through the regulation
of this pathway also in other pathologies, such as atherosclerosis [110]. Moreover, it was
shown both in vivo and in vitro that the specific inhibition of PI3K effected by high levels
of luteinizing hormone (LH) results in the suppression of eNOS-dependent production of
NO, which is accompanied by promotion of atherosclerosis progression [111].

3.2. Raf/Ras/MEK/ERK Signalling

The Raf/Ras/MEK/ERK pathway—driven by the MAPK cascade as well as by ubiqui-
tous growth factors such as PDGF-BB, epidermal growth factor (EGF) or fibroblast growth
factor (FGF)—is considered as the master inducer of de-differentiation. It in fact promotes
Elk-1 phosphorylation, leading to the expression of genes implicated in vSMC growth
and proliferation and to the repression of genes coding for vSMC markers [112]. The
Raf/Ras/MEK/ERK pathway has an important role in the maintenance of lipid balance
and foam cells formation. Hu et al. investigated the activity, abundance and localisation
of ERK1/2 in atherosclerotic lesions of cholesterol-fed rabbits [113]. Immunofluorescent
analysis revealed an abundant and heterogeneous distribution of ERK1/2 in the cap and
basal regions of atheromas. ERK1/2 was heavily phosphorylated on tyrosyl residues and
co-expressed with proliferating cell nuclear antigen in atherosclerotic lesions. Furthermore,
vSMCs derived from atherosclerotic lesions showed increased migratory/proliferative
ability and higher ERK activity in response to LDL stimulation, compared to cells extracted
from non-atherosclerotic vessels. These results suggest that a persistent activation and
overexpression of ERK1/2 could be an initiator of cell proliferation during atherosclerosis
progression and perpetuate the process in time [113]. The inhibition of ERK1/2 is a promis-
ing treatment because it reduces lipid deposition, upregulates the expression of ABCA1/G1
lipid efflux transporters and suppresses the expression of CD36 in oxLDL-stimulated
macrophages [114].

4. Transcriptional Regulation of Phenotypes
4.1. Activator Protein-1 (AP-1)

AP-1 is the main physiological inhibitor of tissue-type plasminogen activator (t-PA),
and therefore an important inhibitor of fibrinolysis. AP-1 controls several cellular events
including cell proliferation, differentiation and apoptosis [115]. Previous studies showed
that AP-1 activity is negatively affected by S-nitrosation and increased by antioxidants.
AP-1 activity is in fact related with thioredoxin levels, suggesting a redox regulation of
AP-1 [116]. Another study showed that the downregulation of NF-κB and AP-1 in vSMCs
allows the inhibition of MMP-9 expression and induces G1-cell cycle arrest via PTEN [117].
PTEN is an inhibitor of the PI3K/Akt pathway and an inositol phosphatase, known to
inhibit PDGF-mediated vSMC proliferation and migration [118]. Overexpression of PTEN
inhibits growth factor-induced activation of Akt and p70 and proliferation, migration and
survival of vSMCs. Furthermore, a critical role of AP-1 was shown in the atherosclerosis-
associated process termed called arteriogenesis. The latter consists of wall remodelling and
proliferation of collateral arterioles and is promoted by monocytes recruited from blood
by the monocyte chemoattractant protein-1 (MCP-1). AP-1 in fact mediates an increased
MCP-1 expression in vSMCs under stretch stress [119].
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4.2. Nuclear Factor Erythroid 2-Related Factor (Nrf-2)

Nrf-2 is a transcription factor, member of the cap’n’collar (CNC) subfamily, mediating
the induction by antioxidants and electrophiles of detoxifying enzymes such as glutathione
S-transferases or NAD(P)H:quinone oxidoreductase-1 (NQO-1) [120,121].

During atherogenesis, Nrf-2 can play a twofold role. On the one hand, it is pro-
atherogenic, since Nrf-2 is the second transcription factor—after PPAR-γ—involved in
oxLDL-induced expression of CD36 and antioxidant stress proteins (A170, heme oxygenase-
1, peroxiredoxin I) in macrophages [122]. Furthermore, Nrf-2 is a key regulator of Mox
macrophages developed in response to oxidative tissue damage [4]. Treatment of M1 and
M2 macrophages with oxidized phospholipids in fact induces their phenotypic switch to
Mox macrophages through a marked Nrf-2-mediated expression of redox-regulatory genes.

On the other hand, there are anti-atherosclerotic mechanisms. Both Nrf-2 and Keap-
1 are key components of the oxidative stress response for the maintenance of vascular
homeostasis, through the induction of vSMC apoptosis and inhibition of neointimal hyper-
plasia [123]. Nrf-2 also participates in anti-atherosclerotic adaptive defence mechanisms,
by inducing heme oxygenase-1 (HO-1) expression [124]. Monocyte-derived macrophages
of healthy subjects in fact exhibit a lower oxidative stress status as compared to coro-
nary artery disease patients, along with lower levels of Nrf-2 and HO-1. The latter are
instead highly expressed in macrophages of active plaques. Thus, the HO-1 levels may
reflect plaque vulnerability and allow the identification of patients with rupture-prone
plaques [124].

As far as NO connections are concerned, earlier studies documented that NO itself
is a potent inducer of HO-1 in vSMCs [125,126], and the effect was indeed shown to
be mediated through activation of the Nrf-2/ARE axis [127]. It was suggested that the
phenomenon may represent a critical adaptive response to maintain cell viability at sites of
vascular inflammation during atherosclerosis.

4.3. Nuclear Factor-κB (NF-κB)

NF-κB is a key regulator of the inflammatory response. It is usually sequestered in the
cytoplasm in complexes with IkBs, a family of inhibitory proteins. NF-κB translocation to
the nucleus is thus prevented, avoiding the expression of genes encoding inflammatory and
immuno-modulatory proteins, as well as of genes regulating cell differentiation, survival
and proliferation [128]. The NF-κB family, encoded by the Rel gene family, is composed of
five members—p50, p52, p65 (RelA), c-Rel and RelB—as well as six IkB members, which
emphasizes its complex regulation. c-Rel allows macrophages to scale the inflammatory
response after a transient or persistent stimulation of toll like receptor 4 (TLR-4), which
also depends on macrophages localisation in tissue vs. blood [129,130]. p65 signalling
was shown to directly upregulate the promoter activity of miR-17, an inducer of cell cycle
G1/S transition and vSMCs proliferation. As NF-κB is both activated by inflammation and
regulates inflammation, p65-dependent miR-17 upregulation could represent a mechanism
explaining the excessive proliferation of vSMCs [131].

Chylomicron remnants and oxLDLs, both inducing foam cells formation, have been
implicated in the suppression of NF-κB activity in macrophages [132]. Indeed, oxLDLs
mediate oxidative modifications of NF-κB, such as carbonylation of the p65 subunit [133].
The uptake of oxLDLs is highly reduced in activated p50-deficient macrophages, along
with a prolonged production of TNF-α in response to lipopolysaccharides (LPS) [134].

The effects of NO on NF-κB functions are biphasic. In the first place, high NO
concentrations can be pro-apoptotic and pro-atherosclerotic, by inhibiting NF-κB activation
in macrophages, monocytes and neutrophils. NF-κB DNA-binding is in fact inhibited
by S-nitrosation of the p50 subunit (Figure 2). NO also inhibits NF-κB activation in rat
vSMCs via a cGMP-independent inhibition of IκB phosphorylation. NF-κB activity is also
stimulated through the nitration of IκB.strα following activation of NO synthase [135]. On
the other hand, NO can also have anti-apoptotic effects, through modulation of several
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proteins of the Bcl-2 family via sGC activation or inhibition by S-nitrosation of a large
number of apoptotic proteins (e.g., caspases) [136].
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Figure 2. Involvement of NO and oxLDLs in the differentiation of monocytes to different subtypes of macrophages and
formation of foam cells. NO: nitric oxide; iNOS: inducible NO synthase; FGF: fibroblast growth factor; NF-κB: nuclear factor-
κB; TNF-α: tumour necrosis factor alpha; IL-6: interleukin-6; TLR4: toll-like receptor 4; MCP-1: monocyte chemoattractant
protein 1; KLF-4: Krüppel-like factor 4; LPS: lipopolysaccharide, IFN-γ: interferon-γ; IL-4: interleukin-4; HO-1: heme
oxygenase 1; KLF-2: Krüppel-like factor 2; LDLs: low-density lipoproteins; oxLDLs: oxidized low-density lipoproteins;
PPAR-γ: proliferator-activated receptor γ.

4.4. Myocardin/Serum Response Factor (SRF)

Myocardin is a powerful myogenic transcriptional regulator and co-activator, specif-
ically expressed during adulthood in smooth muscle and myocardium. It negatively
regulates vSMC inflammatory activation and reduces monocytes infiltration [137]. My-
ocardin is closely associated with SRF, considered as a docking platform for its activity.
SRF is a ubiquitous DNA-binding transcription factor binding to a 10-base-pair CarG-box
sequence (CC(A/T-rich)6CC), and activate the transcription of genes implicated in muscle
differentiation and proliferation [138,139]. The myocardin/SRF/CarG complex is disrupted
during the vSMC de-differentiation process. KLF-4, Elk-1 or FOXO-4 transcription factors
act as co-repressor proteins, which compete with the myocardin/SRF/CarG complex and
prevent the expression of differentiation genes [103] (Figure 3). Phosphorylated Elk-1
displaces myocardin from its SRF docking site and replaces it to form a nuclear factor
activating the transcription of growth and proliferation genes.
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Figure 3. Impact of the myocardin–SRF–CarG complex and its cofactors in the maintenance vs. de-differentiation of the
vSMCs’ phenotype. CARG: CarG-box sequence; MYOCD: myocardin; MRTFs: myocardin-related transcription factors; SRF:
serum response factor; KLF-4: Krüppel-like factor 4; PDGF-BB: platelet-derived growth factor-BB; FGF: fibroblast growth
factor; TCF: ternary complex factor.

Myocardin levels are associated with the vSMCs’ phenotypic switch and are de-
creased during progression of atherosclerosis. In ApoE−/− mice, myocardin deficiency
was shown to accelerate atherogenesis. On the contrary, increased myocardin levels can
prevent the expression of inflammatory cytokines, chemokines and adhesion molecules
in vSMCs [137]. Thus, endogenous levels of myocardin are an important regulator of
vessel inflammation, which identifies this transcriptional regulator as “the guardian” of
the vSMCs’ contractile phenotype.

NO can participate in the modulation of myocardin functions, with important bearings
on vSMCs phenotypic switch and neo-angiogenesis. Vascular endothelial growth factor
A (VEGF-A) was in fact shown to promote myocardin S-nitrosation, resulting in STAT-
3 activation and vSMC proliferation, along with the inhibition of the vSMC markers’
expression, such as ACTA-2, SM-22 and Myh-11. In addition, in experiments using GSNO
as a NO donor, it was shown that myocardin can dose-dependently enhance the expression
of GSNO reductase (GSNOR, also known as alcohol dehydrogenase class III), the enzyme
effecting the catabolism GSNO into GSNHOH, thus downregulating NO bioavailability
within the cell [140].

4.5. Krüppel-Like Factor 4 (KLF-4)

KLF-4 is a pluripotent transcription factor, physiologically absent from contractile
vSMCs but rapidly upregulated in response to vascular injury [141]. KLF-4 is a transcrip-
tional target of BMPs 2, 4 and 6 as well as TGF-β1, resulting in the modulation of vSMC
differentiation. Under vascular injury, KLF-4 is upregulated and mediates the vSMCs’
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phenotypic switch in response to TGF-β1 through the activation of Smad2/3 and p38
MAPK signalling. KLF-4-promoted vSMC de-differentiation proceeds through the inhi-
bition of SM-α-actin, SM22α and SM-MHC expression, inducing vascular remodelling
and plaque progression [142,143]. Furthermore, KLF-4 represses vSMC genes through the
downregulation of myocardin and prevents the association of the SRF/myocardin complex
with gene promoters of phenotypic vSMC markers (SM22α, SM-MHC). Vendrov et al.
demonstrated in mice that KLF-4 activates pro-inflammatory genes and allows vSMCs to
acquire a pro-inflammatory, macrophage-like phenotype [144]. They also studied the effect
of NOX activator A (NOXA1) deletion on the vSMCs’ phenotype. NOXA1 is a functional
homolog of p67-phox in activation of NADPH oxidase, and its deletion therefore decreases
vascular levels of ROS and the size of the atherosclerotic lesions. The SMC-specific deletion
of NOXA1 in mice produced a marked decrease in ROS generation, in TNF-α-induced
vSMCs proliferation and migration, as well as in CD68+ cells, myosin expression and levels
of KLF-4 with its downstream targets (VCAM, MMP2). These results support an important
role of NOXA1-dependent NAPDH oxidase activity in vSMC plasticity, acting by increas-
ing vSMC proliferation and migration, KLF-4-mediated transition to a macrophage-like
phenotype and plaque inflammation. The stimulating protein-1 (Sp-1) transcription factor
was shown to be essential for KLF-4 activation by PDGF-BB [145]. Indeed, Sp-1 overex-
pression can itself increase KLF-4 promotor activity and vSMCs phenotype modulation. In
addition, following activation by oxidized phospholipids, KLF-4 mediates the upregulation
of several extracellular matrix genes, such as type VIII collagen, and promotes vSMCs
migration, contributing to progression of atherosclerosis [146].

During the differentiation of monocytes into macrophages, KLF-4 is regulated through
demethylation of its promoter by a cytidine deaminase [147]. KLF-4 upregulates ApoE,
an important anti-atherosclerotic factor [148], and is a critical regulator of macrophage
polarisation [149], being highly expressed in M2 macrophages and downregulated in M1
macrophages (Figure 2). It has been recently shown in endothelial cells that KLF-4 can
undergo S-nitrosation in response to a nitrosative stress, which impairs its activity [150].
Indeed, after a treatment with the physiological NO-donor S-nitrosoglutathione (GSNO),
the KLF-4-dependent vasodilatory response in pulmonary arteries is impaired.

5. Conclusions

vSMCs and macrophages are the main cells implicated in atherosclerosis development,
and their phenotypes are modified/switched upon various stimuli. Differentiation or de-
differentiation processes implicate a large number of mechanisms and signalling pathways.
In the last decade, several studies attempted to better understand these processes and to
explore their possible utilisation in therapeutics. From this perspective, studies have high-
lighted the importance of NO in the progression of atherosclerosis, with a biphasic effect
on cells depending on its concentration. NO can act through S-nitrosation to modulate the
pathways discussed above (Figure 4). The differentiation of monocytes/macrophages and
their phenotypic switch are sufficiently well characterised, while the signalling pathways
driving the de-differentiation of the vSMCs remain partly unclear. While the implica-
tion of NO in atherosclerosis progression is indubitable, the interconnections between
NO signalling and other relevant signalling pathways remain poorly understood. The
identification of these interconnections could help to identify novel specific therapeutic
targets, to be possibly exploited in synergy with other current anti-atherosclerotic strategies
(hypolipidemic agents or antiplatelet drugs).
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