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Effect of chronic administration and withdrawal of caffeine 
on motor function, cognitive functions, anxiety, and the 
social behavior of BLC57 mice

Introduction

The most widely consumed psychostimulant substance is 
caffeine which is found in many drinks and products. Caffeine 
is regularly consumed all over the world.[1] Interestingly, 
caffeine has been reported to enhance memory in animal 
models as well as humans.[2,3] However, heavy caffeine 
consumption has been associated with many side effects.[4]

Memory consolidation occurs mainly during sleep. Sleep 
disorders were shown to affect memory storage through its 
effects on neuronal circuits.[5]

When administrated acutely, caffeine improved learning and 
memory. Furthermore, caffeine was used to prevent memory 
defects and treat other cognitive malfunctions.[6] On the other 
hand, one of the caffeine side effects is sleep disturbances 
which were shown to be associated with deterioration of 
memory.[7]

Caffeine has the potency to modulate behavioral activity 
including locomotor activity by affecting both central and 
peripheral nervous systems’ neuronal pathways. Caffeine is 
recognized as a non-selective adenosine receptor antagonist, 
especially for A1 and A2A receptors, which is reflected by 
an increase in locomotor behavior in rodents.[7] It exerts a 
stimulating effect on locomotor activity at low-to-moderate 
doses (MD), but weaker stimulatory or even depressive 
effects at higher doses. In addition, chronic caffeine 
administration has been shown to impair locomotor activity 
in rats.[8]

Anxiety disorder is an exaggerated fear and anxiety feelings 
compared to normal response. This mental disorder affects 
18.1% of adults in the United States.[9] Interestingly, low 
caffeine dose can be anxiolytic, while high dose (HDs) may 
cause anxiety.[10] The suggested mechanisms for the anxiogenic 
effect of caffeine may be through adenosine and/or GABAA 
receptors antagonism.[11]
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Social behavior defined as the collection of mannerisms 
and actions made by two or more organisms from the same 
species.[12] There is a popular belief that some people’s behavior 
or mood is not normal or positive without the first sip of caffeine-
containing beverages. In fact, the negative mood is increased 
following the withdrawal (WD) of caffeine, but this effect could 
not be recorded properly due to the failure to conduct “blind” 
studies and the expectancies of the volunteers.[13]

In this study, we conducted several tests to evaluate the brain 
cognitive function as learning and memory, motor coordination, 
anxiety levels, and sociability and social novelty parameters. 
To achieve this goal, the following tests were used: Morris 
water maze (MWM), rotarod (RR) test, elevated plus maze 
(EPM), and the three-chamber social apparatus, respectively.

Materials and Methods

Animals
Caffeine was mixed with water (the MD is 0.1 g/L/day 
(20 mg/kg/day), and the HD is 1 g/L/day, i.e., 200 mg/kg/day) 
and administered to BLC57 mice.[14] To be sure that animals 
consume the given dose of caffeine, the daily water intake 
of each animal was calculated, and the caffeine dose was 
dissolved in half of the measured water intake and given to 
the animals at the beginning of the day. When they drank that 
amount, they were provided with water ad libitum afterword 
and during the rest of the day. In this case, all the animals were 
given the desired dose of caffeine in the first half of the day. The 
animals were obtained from Arabian Gulf University Animal 
Facility Department. The mice (average weight 20–30 gm) 
were divided into 4 groups with 8 animals per group: Control 
group (n=8), chronic (Ch) MD of caffeine (n = 8, administered 
for 4 weeks duration, Ch MD), Ch high caffeine dose (n = 8, 
administered for 4 weeks duration, Ch HD), and WD (n = 8, 
HD caffeine was administered for 4 weeks, and it was stopped 
3 days before testing, WD). The animals were tested when 
they reached adulthood (8 weeks of age). Animal care and 
experimental ethics of the Arabian Gulf University/Bahrain 
were followed during this study.

Tests
RR
This test is aiming to estimate the motor power and motor 
coordination of the animals. Caffeine as a CNS stimulant 
may modulate these parameters. The accelerating RR assesses 
motor coordination and balance. The time the animals can 
stay on a rotating rod with a fixed velocity (4.5 m/min) before 
falling was measured. The average latency before falling was 
calculated from three trials (each of 2 min) per animal. All the 
animals of the six groups were tested in the same day.

EPM test
The EPM tests anxiety-like behavior.[15] The maze is composed 
of a central area (6 cm × 6 cm) where the mice were placed at 

the beginning of each experiment. The central area has access 
to two open and two enclosed arms (surrounded by 17 cm high 
walls) of same length and size. In each experiment, the number 
of entries to and the total time spent in each arm was measured 
during 10 min. The setup was cleaned by 70% alcohol before 
the start of any new experiment with a new mouse. Anxiety 
is indicated if the mouse spent little time in the open arms.

MWM test
Spatial learning and memory were tested by MWM.[16] The 
maze is a circular swimming pool of 140 cm diameter and 
60 cm height, filled with water which was maintained at 
26°C–28°C. The set up was placed in a dark room illuminated 
by sparse red light and provided with visual cues. The maze 
program divided the pool by imaginary diagonal lines into 
four quadrants.

The test composed of two sessions: The first session (training 
day) trained the mouse to locate a hidden platform placed 
underwater level by 2 cm so that to escape swimming. Each 
animal had five training trials, each one composed of four 
tests with different predetermined departure points along the 
pools boundary. Each test consisted of 120 s to find the hidden 
platform and reside on it. Mice that fail to find the platform 
within the 120 s were placed on it and left there for 20 s.

The test was performed using a video camera to capture and 
analyze the animal position every 0.2 s (ANY - maze-video-
tacking; Stoelting Co., Wood Dale, IL, USA). The parameters 
measured included the latency needed and the distance swum 
by the animal to reach the platform. The speed of swimming of 
the animals was also measured and used as a control between 
the groups. Data from the four tests in each trial were averaged 
to give one data point.

Social behavior: Sociability and social novelty[17]

This test has two sessions. In session 1, it tests the sociability 
of the animal or its preference to stay in a chamber containing 
other animal than in an empty chamber. The three-chamber 
test is composed of a test box (20 cm × 40 cm × 20 cm) made 
up of three Plexiglas interconnected chambers. Within each 
chamber was a circular wire cage of 11 cm height and 9 cm 
diameter. Each test started by 5 min habituation followed by 
two sessions, each one lasted 10 min. In session 1, the subject 
mouse was placed in the middle chamber and left to move 
freely between the chambers. The time spent by this mouse 
to stay in the side chamber containing unfamiliar mouse 
(stranger 1) in the wire cage as well as the number of entries 
to this chamber were measured and compared to the time spent 
and number of entries to the other empty chamber. Session 1 
determines the level of sociability of the subject (tested) mouse.

Session 2 measures the social novelty of the animal which is 
the preference of the animal to spend more time in a chamber 
containing new animals than in a chamber containing an 
already explored animal. In this session, another unfamiliar 
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mouse (Stranger 2) was placed in the wire cage of the 
previously empty chamber in session 1. The subject mouse 
was left to move freely between the chamber that contained 
the mouse of session 1 (stranger 1) and the chamber that 
contained the new, unfamiliar mouse (stranger 2). Stranger 1 
and 2 mice were of same species, gender, and age. The time 
spent in each chamber, as well as number of entries, was 
recorded. In the beginning of every experiment, the apparatus 
was cleaned with 70% alcohol. When a mouse spent more 
times and entered more frequently the chamber that housed 
(stranger 2), it was considered as having a preference for 
social novelty.

Statistical analysis
Each point in the data was expressed as the average ± standard 
error of means. Statistical significance between the groups in 
the water maze, RR, EPM, and the three-chamber tests was 
measured by analysis of variance post hoc test (ANOVA). 
Statistical analysis between individual groups was done 
using the t-test. All tests were done using Microsoft Excel 
ITM 2010.

Results

RR
Generalized decrease in the latency to fall in 
caffeine-treated groups
The groups treated with caffeine performed poorly in 
comparison to the control group where their latency to fall 
was significantly less [Cont = 33.2 ± 3.4 s, Ch MD = 20.5 ± 
1.4 s, Ch HD = 23.4 ± 1.9 s, WD = 23.5 ± 2.7 s, ANOVA test, 
P < 0.005, F = 5.069079, F crit = 2.636391, Figure 1].

MWM

Latency to reach the platform of Ch MD group (41.6 ± 8.1 s) 
was significantly better [ANOVA test, P < 0.0005, F = 7.37491, 
F crit = 2.67218, Figure 2a] compared to the other groups 
(Cont = 54.3 ± 9.1 s, Ch HD = 74.6 ± 8.4 s). WD group showed 
the worst performance when compared to the treated groups 
and control (92.5 ± 7.3 s). This significant difference in the 
latency to reach the hidden platform was not due to a difference 
in the animal’s speed of swimming in the pool [Figure 2c]. 
There were no significant outcomes between the groups in 
regard to velocity (P = 0.3348; F = 1.1538, Fcrit = 2.9466; 
ANOVA test). Similar to the latency results, measurement 
of the distance swum by the animals to reach the platform 
confirms that the Ch MD were performing significantly better 
than the other groups. The control (9.1 ± 1.5 dm) and Ch MD 
(10.7 ± 2.7 dm) had a significantly less crossing distance when 
compared to both Ch HD (18.6 ± 1.5 dm) and WD (18.2 ± 
1.9 dm) [Figure 2b]. In the probe experiment, the platform was 
removed and the animals were allowed to swim for 2 min. The 
percentage of time the animal spent in each quadrant of the 
swimming pool was calculated. Spending >25% of the time 
in the quadrant contained the hidden platform is considered 
significant, and the mouse is considered as learned the test. 
The Ch MD (50.5 ± 7.3 s) spent significantly higher percentage 
of time in the disk zone when compared to the other groups 
[Cont = 42.9 ± 3.0 s, Ch HD = 18.8 ± 3.5 s, WD= 17.1 ± 3.1 s, 
ANOVA test, P < 0.0001, F = 14.91209, F crit = 2.682809; 
Figure 2d].

EPM
The results showed that the Ch HD and WD groups (time in 
the open arms of the test was 18.9 ± 18.8 and 59 ± 15.24 s, 
respectively) were showing significantly more anxiety than 
the control group (time spend in the open arm was 118 ± 
18.1, P ˂ 0.05, t-test). The Ch HD treated mice were the most 
anxious group, represented by spending the last time in the 
open arm. There was a slight difference between the Ch MD 
(74.3 ± 24.3 s) and WD groups. However, the Ch MD group 
showed less anxious behavior than the other caffeinated groups. 
Although the Ch MD animals stayed less time in the open 
arms, they were not significantly different from the control 
group [t-test P > 0.05, Figure 3].

Three-chamber social apparatus (Crawley’s sociability 
and preference for social novelty test)
In the three-chamber test, Cont group stayed significantly 
more time (315.4 ± 18 s) in the chamber with mouse than in 
the empty chamber (217 ± 22.4 s). This session represents 
sociability of the animal (S1) (t-test, P < 0.05, t critical two-
tail = 2.364). Furthermore, this group showed a preference for 
social novelty behavior (stayed 184.8 ± 29.5 s in the chamber 
with the old mouse and 347 ± 78.1 s in the chamber with the 
new mouse) in session 2 (S2) (P < 0.05, paired t-test, t critical 
two-tail = 2.364) [Figure 4].

Figure 1: Latency to fall (Mean ± Standard error of means seconds) 
in the rotarod test for the control, moderate dose (MD), and HD group. 
The time spent by the caffeine-treated groups was significantly less 
than the control group (ANOVA test, P < 0.005, F = 5.069079, F crit 
= 2.636391). Significant differences were recorded when comparing 
the control group to chronic (Ch) HD (P ˂  0.01), Ch MD (P ˂  0.001), 
WD (P ˂  0.01) groups. No significant difference was obtained between 
Ch MD, Ch HD, and WD groups (ANOVA, P = 0.49, F = 0.7069, 
Fcrit = 3.038)
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Ch MD group showed an increase in sociability (session 1) by 
preferring to be in the chamber containing another mouse (387.9 
± 28.8 s) rather than staying in the empty chamber (86.5 ± 42.4 s) 

S1 (t-test, P < 0.005, t critical two-tail = 2.364). They also showed 
a normal preference for social novelty (session 2) by spending 
more time in the chamber which contained a new mouse (330.3 
± 45.5 s) than the chamber containing the old (102.7 ± 52.8 s). 
ChMD S2 (t-test, P < 0.05, t critical two-tail=2.364).

On the other hand, Ch HD (chamber with mouse: 189 ± 39.2 s, 
chamber without mouse: 332.5 ± 38.3 s) (t-test, P < 0.05, 
t critical two-tail = 2.364) and WD (chamber with mouse: 
176.7 ± 13.1 s, chamber without mouse: 360.1 ± 19.2 s) 
(t-test, P < 0.0005, t critical two-tail = 2.364) displayed a 
lack in sociability (session 1). Furthermore, in session 2, 
Ch HD (chamber with old mouse: 298.4 ± 29.6 s, chamber 
with new mouse: 200.3 ± 26.8 s) (t-test, P > 0.05, t critical 
two-tail = 2.364) and WD (chamber with old mouse: 316.6 ± 
19.2 s, chamber with new mouse: 240.8 ± 24.4 s) illustrated 
a deficit in preference for social novelty with no significant 
differences (t-test, P ˃ 0.05, t critical two-tail = 2.364).

Discussion and Conclusion

This study demonstrates the long-term stimulating effects 
of caffeine given in two different doses to different groups 

Figure 3: The effect of different doses and withdrawal of caffeine on 
anxiety, assessed by elevated plus Maze test. ANOVA test showed a 
significant difference between the groups (P ˂ 0.05) in the total time 
the animals spent in the open arm of the maze. Two trials t-test showed 
that the control animals stayed significantly more time in the open 
arm of the elevated plus maze (less anxiety) when compared to the 
chronic high dose (Ch HD) (P ˂ 0.005) and WD (P ˂ 0.05) groups. 
No significant difference was recorded between the control and the 
Ch MD groups (P = 0.279)

Figure 2: (a-d) Effect of the administration of caffeine on a mouse model in Morris water maze test to assess spatial memory and learning. 
The results displayed different levels of cognitive effects based on the chronic doses and withdrawal (WD) of caffeine. Statistical analysis for 
the latency required by the animals to reach the platform (a) revealed that a significant difference was recorded between the groups (ANOVA 
P ˂ 0.0005). Two trial t-test calculated a significant difference between the control group and Ch HD (P ˂ 0.05) and WD (P ˂ 0.001) groups. 
No significant difference was recorded between the Cont group and the Ch MD group (P = 0.15). Figure 2c shows that there are no significant 
differences between the groups concerning their speed of swimming the pool during testing (ANOVA = 0.3448). In the probe trial (D) ANOVA 
test between the groups showed a significant difference (P ˂ 0.005). Two trial t-test showed that the control group stayed significantly more 
time in the platform quadrant than the Ch HD (P ˂ 0.0001) and WD (P ˂ 0.0005) groups. No significant differences between the Cont and the 
Ch MD groups (P = 0.169). The Ch MD group of animals stayed significantly more time in the platform quadrant than the Ch HD (P ˂  0.0001) 
and WD (P ˂ 0.005) groups

a

c

b

d
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of mice in regard to four parameters. The parameters that 
were investigated are motor function, cognitive function, 
anxiety, and social behavior. There is a lack of researches 
investigating all of the aforementioned parameters under the 
effect of different doses for long durations as well as the WD 
of caffeine in one study. There was a variation in the response 
of mice to different doses of caffeine which was illustrated 
by Ch MD showing the best performance in both cognitive 
function and sociability. Overall, the treated groups displayed 
better performance than the WD group.

Most of the biological effects of caffeine are secondary to its 
antagonizing effects on all types of adenosine receptors.[11] 
Some evidence suggests that adenosine inhibits the release 
of excitatory neurotransmitters more strongly than that 
of inhibitory neurotransmitters.[18] It has been shown that 
adenosine acts on A1 receptors and it decreases the central 
neurons firing rate.[19,20] This is due to an activation of 
potassium channels through adenosine A1 receptors.[21]

In addition, it has been shown that adenosine decrease 
calcium entry through N-type channels in hippocampal CA1 
and CA3 neurons.[19,20] A1 receptors influence the binding of 
dopamine D1 agonists.[22] Interestingly, a study[23] presented 

strong evidence on that the release of adenosine is increased 
by combined D1 and NMDA receptor stimulation.

Data from different researches stated that caffeine has a 
dose-dependent effect on cognitive function,[24-26] delivering 
significantly different effects when taken at low doses than 
at high ones. The beneficial effect of caffeine on cognitive 
function is seen with low doses, while HDs of caffeine 
intake show deterioration in function. This study presented 
similar results in terms of cognitive function, as the latency 
of the group treated with moderated doses of caffeine in 
MWM test (Ch MD = 41.6 ± 8.1 s) was significantly better 
(ANOVA test, P < 0.0005) than the group treated with HDs 
(Cont = 54.3 ± 9.1 s, Ch HD = 74.6 ± 8.4 s, WD = 92.5 ± 7.3 s).

It has been illustrated that caffeine increases the firing rate 
of mesocortical cholinergic neurons by inhibiting its tonic 
inhibitor, adenosine.[27] This effect is what causes arousal 
following caffeine ingestion. Furthermore, the effect of 
benzodiazepines on behavior is modified by administration 
of caffeine in animals as well as humans.[28] The proposed 
mechanism for this process is by blocking the benzodiazepine 
receptors which requires very high concentrations of caffeine.[29]

Caffeine having an anxiogenic effect is a well-known fact 
according to many studies.[30,31] The outcomes of our study 
were in favor of the aforementioned thesis in that a significant 
increase in anxiety was detected in the treated groups. In regard 
to the anxiogenic effect, not many researches addressed the 
correlation between the dose and effect. In our study, we were 
able to assort the anxiogenic effect according to the dosing 
profile. The results conveyed a directly proportional relation 
between the caffeine dose and the anxiogenic effect. Ch MD 
(74.3 ± 24.5 s) were the least anxious among the treated groups 
whereas Ch HD (18.9 ± 18.8 s) showed the highest levels of 
anxiety compared to the other groups.

Although no significant difference was observed between the 
Ch HD and WD groups, the data show some tendency of the 
Ch HD group for anxiety more than the WD group [Figure 3].

Based on many conducted researches, it showed that caffeine’s 
effect on motor and cognitive functions are dose-dependent. 
In fact a biphasic effect, hence on low to moderate it causes 
an increase in motor and cognitive functions and vice 
versa.[12,17,24,25] The early mechanism proposes mobilization 
of intracellular calcium. High concentrations (1–10 mM) of 
caffeine were found to interfere with the uptake and storage 
of calcium in the sarcoplasmic reticulum of striated muscle 
and to increase the translocation of Ca++ through the plasma 
membrane.[32] Furthermore, its binding to ryanodine receptors 
in calcium channels of muscle and brain; caffeine increases 
myofilament sensitivity to Ca++.[33]

Caffeine selectively targets the striatopallidal neurons in the 
striatum and their counterparts in the nucleus accumbens 

Figure 4: Three-chamber test to assess sociability and preference 
for social novelty. (a) Sociability (Session 1: Time spent in chamber 
with a mouse vs. chamber without mouse). (b) Preference for social 
novelty (Session 2: Time spent in chamber with the old mouse 
vs. chamber with new mouse). Control animals showed normal 
sociability and preference for social novelty. Within the caffeine-
treated groups, only the chronic moderate dose group performed 
similarly to the control by showing a significant increase in 
sociability and preference for social novelty (see the text for statistical 
significances and P values)

a

b



Mahdi, et al.: Psychomotor effects of chronic caffeine intake

15 International Journal of Health Sciences 
Vol. 13, Issue 2 (March - April 2019)

causing a decrease in its activity when given in low doses. 
The basal expression of mRNA for NGFI-A[34] and NGFI-B[35] 
is relatively high in the striatum. A number of recent studies 
which tested the expression of NGFI-A and NGFI-B 
mRNA.[36] Showed that lower doses of caffeine (7.5–25 mg/kg) 
decrease the expression of NGFI-A and NGFI-B mRNA levels 
in the striatum, suggesting that caffeine in low doses works 
as a stimulant. The blockade of adenosine receptors present 
in the striatum is the reason behind it. This is also supported 
by the fact that caffeine-induced changes are located in 
the striatopallidal neuron, which expresses adenosine A2 
receptor.

According to different studies, there is a variation in 
the outcomes of locomotor performance in chronically 
caffeine-treated mice. Some researches support that chronic 
administration of caffeine enhances locomotor[13,30,37] activity, 
while other studies presented the opposite.[26,30] The results of 
our study demonstrated a significant deterioration in locomotor 
function in all treated groups with the Ch MD (20.5 ± 1.4 s) 
showing the highest reduction in performance.

Our study supports the conclusion obtained by other studies 
regarding sociability and preference to social novelty. Studies 
suggest that Ch MD of caffeine improve both behaviors while 
HD administration showed a regression.[30,38] In this study, 
the chronically treated groups of mice with MD (chamber 
with mouse = 387.9 ± 28.8 s, empty chamber = 86.5 ± 42.4 s) 
were found to have significantly higher levels of sociability in 
comparison to the control, Ch HD, and WD groups. The results 
obtained for WD and Ch HD groups were quite similar to each 
other. Both aforementioned groups displayed a drastically 
decreased sociability and social novelty in comparison to the 
other groups.

In the previous study, we demonstrated the acute effects of 
caffeine on mice.[39] In comparison to the present study, mice 
treated with MD of caffeine displayed similar results in terms 
of cognitive function as well as anxiety levels, whereas both 
high and MDs of caffeine displayed lack of sociability and 
social novelty.

Overall this study documents the diverse effects of caffeine 
on different parameters. Ch MD group showed better results 
in sociability, memory, and cognitive function; however, 
Ch MD group was more anxious than the control group 
and surprisingly exhibited the lowest results in motor 
function. The Ch HD group was the most anxious group 
and presented deterioration in all the other parameters. The 
most striking result was that sociability increased in Ch MD 
group exceeding the results obtained from the control group. 
However, further investigations and more experiments are 
needed to clarify a link between caffeine dose and level of 
sociability.
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