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Sarcopenia, which is characterized by the loss of skeletal muscle, has been reported

to contribute to development of physical disabilities, various illnesses, and increasing

mortality. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit translation of

target messenger RNAs. Previous studies have shown that miRNAs play pivotal roles

in the development of sarcopenia. Therefore, this systematic review focuses on miRNAs

that regulate sarcopenia.

Keywords: sarcopenia, microRNA, myotube, myocyte, myoblast, systematic review

INTRODUCTION

Sarcopenia, defined by the loss of skeletal muscle loss, contributes to developing physical
disabilities, various illnesses, and increasing mortality (1, 2). MicroRNAs (miRNAs) have attracted
attention as potential biomarkers and targets for specific therapies. MiRNAs are small non-coding
RNAs (21–25 bases) that are not translated into proteins but inhibit the function of their target
messenger RNAs (mRNAs) by destabilizing them and inhibiting their translation (3, 4). Previous
studies have shown that miRNAs play pivotal roles in the development of sarcopenia (1–82).
Therefore, this systematic review focuses on miRNAs that regulate sarcopenia.

MECHANISM OF THE DEVELOPMENT OF SARCOPENIA

Several factors, including chronic inflammation, increased reactive oxidative species, increased
fibrosis of muscle, and increased loss of motor neurons, have been reported to contribute
to development of sarcopenia by progressing muscle atrophy that results in lower muscle
mass (26, 46). These factors have been reported to be tightly controlled by many signaling
pathways and effector proteins, including some crosstalk with the protein synthesis pathway
(32). Among these signaling pathways, transforming growth factor-β1 (TGF-β1) is considered
as the main signaling molecule in the development of sarcopenia (47). TGF-β1 activates many
downstream profibrotic signaling molecules, including mothers against decapentaplegic (Smad),
extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), c-Jun
N-terminal kinase (JNK), and p38, which contribute to increasing transdifferentiation of myoblasts
into myofibroblasts, resulting in development of muscle atrophy and fibrosis (47). Chronic
inflammation has also been considered to contribute to the development of sarcopenia through the
production of numerous proinflammatory cytokines, including tumor necrosis factor-α (TNF-α),
interleukin (IL)-6, and IL-1β, which promote muscle catabolism (64).
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FIGURE 1 | Flow diagram of this study.

SEARCH METHOD

We searched for basic and clinical studies published in English
in the PubMed database from 2007 to 2019. The literature
search was conducted between August 3 and 13, 2019. The
following medical subject headings were used: (“microrna
AND sarcopenia” [Title/Abstract]), (“mirna AND sarcopenia”
[Title/Abstract]), (“microrna AND frail” [Title/Abstract]),
(“mirna AND frail” [Title/Abstract]), (“microrna AND frailty”
[Title/Abstract]), and (“mirna AND frailty” [Title/Abstract]).
The words “frailty” and “frail” were used for this review because
they are involved in the condition of sarcopenia. Studies
whose titles and abstracts did not meet selection criteria were
excluded from this review. The remaining studies were carefully
checked for eligibility for inclusion in accordance with Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [Figure 1; (83)]. The studies were included
if (1) they reported the utility of miRNAs as potential biomarkers
or targets for specific therapies of sarcopenia; and (2) they
were published as full-text journal articles in English. Exclusion
criteria were as follows: (1) they did not discuss specific miRNAs
in sarcopenia; and (2) they included no description of sample
settings. We could not perform a meta-analysis because the
number of studies reporting miRNAs for sarcopenia was small,
so statistical power would have been low.

RESULTS

Search Results
A flow diagram of this study is shown in Figure 1 and
Supplemental Table 1. Computer and manual searches

identified 254 potentially suitable publications. After the
removal of duplicates, the titles and abstracts of 98 remaining
papers were screened. Of these, 15 publications were excluded
because they did not describe specific miRNAs in sarcopenia,
and one publication was excluded because it lacked a description
of the sample setting; 82 studies were included in the final
systematic review (1–82), and 12 studies were included for
extracting data (1, 5, 6, 16, 28, 38, 40, 42, 60, 64, 71, 82).

MicroRNAs in Sarcopenia
Many studies investigated expression changes of miRNAs in
muscles and/or blood (serum or plasma) of patients with
sarcopenia (Table 1) and/or animal models of sarcopenia
[Table 2; (1, 5, 16, 28, 38, 40, 42, 60, 64, 71, 82)]. Several studies
investigated the effects of modulating miRNA expression on
phenotypic changes using cultured muscle cells in vitro and
rodent models of sarcopenia in vivo [Table 3; (1, 6, 42, 60, 71)].

Changes of the Expression Levels of
microRNAs in Sarcopenia
Expression of 13 miRNAs (miRNA-10a-3p,−19a,−21, 34a,−92a-
3p, 185-3p, 194-3p,−203a-3p,−326,−424-5p,−532-5p,−576-5p,
and−760) was found to be changed in the muscles and/or
blood (serum or plasma) of patients with sarcopenia [Table 1;
(1, 16, 40, 64, 82)]. Among them, expression of three miRNAs
in muscle (miRNA-19a,−34a, and−424-5p,) (16, 82), eight
miRNAs in plasma (miRNA-10a-3p,−92a-3p,−185-3p,−194-
3p,−326,−532-5p,−576-5p, and−760) (40), and two miRNAs
in serum (miRNA-21 and−203a-3p) (1, 64) was changed
and associated with physical functions including shrinking,
weakness, poor endurance and energy, slowness, and low
physical activity levels and expression of many signaling
molecules, such as protein kinase AMP-activated catalytic
subunit alpha 1 (PRKAA1), 6-phosphofructo-2-kinase/fructose-
2-,6-biphosphatase 3 (PFKFB3), transforming growth factor-β
receptor 2 (TGF-βR2), vascular endothelial growth factor A
(VEGFA), polymerase I receptor 1A (Pol I R1A), and upstream
binding transcription factor (UBTF), which were shown to
contribute to sarcopenia development [Table 1; (16, 64, 82)].

Expression of 10 miRNAs (miRNA-1-3p,−29,−29a-3p,−29b-
3p,−98-5p,−133a-3p,−133b-3p,−181a,−434-3p, and−455-3p)
was changed in muscles of rodent models of sarcopenia [Table 2;
(5, 28, 38, 42, 60, 71)]. These miRNAs were associated with
the expression levels of many signaling molecules, including
tripartite motif containing 63 protein (TRIM63), F-box protein
32 (FBXO32), myeloblastosis-related protein B (B-myb), insulin-
like growth factor-1 (IGF-1), p85, nerve growth factor (NGF),
sirtuin 1 (Sirt1), eukaryotic translation initiation factor 5A1
(Elf5A1), paired-like homeodomain transcription factor 1
(PITX1), and retinoid X receptor-β (RXRB), which were shown
to contribute to sarcopenia development [Table 2; (5, 28, 38, 42,
60, 71)].

Effects of microRNA Modulation on
Sarcopenia
Several studies have reported that modulation of miRNAs has
significant effects on sarcopenia in cultured myocytes in vitro
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TABLE 1 | Associations between miRNA expression levels and sarcopenia in patients.

MiRNA Samples Expression change Details Target mRNA References

MiRNA-10a-3p Plasma ↑ The expression level was associated with muscle weight

loss, grip strength, self-reported exhaustion, time to walk

15 feet, and kilocalories expended per week

No mention (40)

MiRNA-19a Muscle ↑ No mention PRKAA1 and PFKFB3 (82)

MiRNA-21 Serum ↑ The expression level was associated with self-reported

exhaustion, time to walk 15 feet, and muscle weight loss

TGF-βR2 (64)

MiRNA-34a Muscle ↑ No mention VEGFA (82)

MiRNA-92a-3p Plasma ↑ The expression level was associated with muscle weight

loss, grip strength, self-reported exhaustion, time to walk

15 feet, and kilocalories expended per week

No mention (40)

MiRNA-185-3p Plasma ↑ The expression level was associated with muscle weight

loss, grip strength, self-reported exhaustion, time to walk

15 feet, and kilocalories expended per week

No mention (40)

MiRNA-194-3p Plasma ↑ The expression level was associated with muscle weight

loss, grip strength, self-reported exhaustion, time to walk

15 feet, and kilocalories expended per week

No mention (40)

MiRNA-203a-3p Serum ↑ The expression level was associated with the psoas

muscle mass index and intramuscular adipose tissue

content

No mention (1)

MiRNA-326 Plasma ↑ The expression level was associated with muscle weight

loss, grip strength, self-reported exhaustion, time to walk

15 feet, and kilocalories expended per week

No mention (40)

MiRNA-424-5p Muscle ↑ The expression level was associated with the result of

3-m gait speed and 6-m timed up and go test

Pol I R1A and UBTF (16)

MiRNA-532-5p Plasma ↑ The expression level was associated with muscle weight

loss, grip strength, self-reported exhaustion, time to walk

15 feet, and kilocalories expended per week

No mention (40)

MiRNA-576-5p Plasma ↑ The expression level was associated with muscle weight

loss, grip strength, self-reported exhaustion, time to walk

15 feet, and kilocalories expended per week

No mention (40)

MiRNA-760 Plasma ↑ The expression level was associated with muscle weight

loss, grip strength, self-reported exhaustion, time to walk

15 feet, and kilocalories expended per week

No mention (40)

miRNA, microRNA; mRNA, messenger RNA; PFKFB3, 6-phosphofructo-2-kinase/fructose-2-,6-bisphosphatase 3; Pol I R1A, polymerase I receptor 1A; PRKAA1, protein kinase AMP-

activated catalytic subunit alpha 1; Smad, mothers against decapentaplegic; TGF-βR2, transforming growth factor-β receptor 2; UBTF, upstream binding transcription factor; VEGFA,

vascular endothelial growth factor A; ↑ means miRNA’s upregulation in each samples.

(Table 3, Figures 2A,B). The specific miRNAs that have been
reported to affect sarcopenia are described below.

MiRNA-181a
MiRNA-181a binds to the 3′-untranslated region of Sirt1 that
is implicated in influencing aging, apoptosis, and inflammation
(71). Overexpression of miRNA-181a using an miRNA-181a
mimic by lipofection was shown to significantly decrease
the myotube diameter, which was mediated by inhibiting its
target Sirt1 in cultured myotubes of differentiated C2C12
cells, a subclone of mouse myoblasts. However, miRNA-181a
knockdown using a miRNA-181a inhibitor led to an increase
in the myotube diameter of cultured myotubes of differentiated
C2C12 cells (71).

MiRNA-203a-3p
MiRNA-203a-3p binds to the 3′-untranslated region of
baculoviral inhibitors of apoptosis repeat containing 5 (BIRC5), a
member of the apoptosis inhibitor protein family that suppresses

apoptosis via inhibition of the initiator caspase 9 and executers
caspase 3 and 7 (84). MiRNA-203a-3p was upregulated in
serum of colorectal cancer patients with sarcopenia as evaluated
by a lower psoas muscle mass index compared with than in
colorectal cancer patients without sarcopenia (1). Knockdown of
miRNA-203a-3p using an miRNA-203-3p mimic by lipofection
inhibited cell proliferation and induced apoptosis via increasing
the expression level of the target BIRC5 in cultured human
skeletal muscle cells (1).

MiRNA-434-3p
MiRNA-434-3p binds to the 3′-untranslated region of EIf5A1
that is involved in many cellular processes including cell division,
apoptosis, and inflammation (60). Overexpression of miRNA-
434-3p using an miRNA-434-3p mimic by lipofection inhibited
the expression levels of EIf5A1, which prevented apoptosis of
apoptosis-stimulated primary myocytes purified from hind limb
muscles of C57BL/6J mice (60).
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TABLE 2 | Associations between miRNA expression levels and sarcopenia in rodent models.

MiRNA Sample Expression change Details Target mRNA References

MiRNA-1-3p Muscle ↑ The expression level was associated with the soleus

muscle weight/tibia length index, time to peak twitch

tension, maximum tetanic contraction and half relaxation

time of twitch, maximum tetanic relaxation rate, and

fatigue index

TRIM63 and FBXO32 (28)

MiRNA-29 Muscle ↑ The expression level was associated with extensor

digitorum longus and soleus muscle weight losses

B-myb, IGF-1, and p85 (38)

MiRNA-29a-3p Muscle ↑ The expression level was associated with the soleus

muscle weight/tibia length index, time to peak twitch

tension, maximum tetanic contraction and half relaxation

time of twitch, maximum tetanic relaxation rate, and

fatigue index

TRIM63 and FBXO32 (28)

MiRNA-29b-3p Muscle ↓ The expression level was associated with the soleus

muscle weight/tibia length index, time to peak twitch

tension, maximum tetanic contraction and half relaxation

time of twitch, maximum tetanic relaxation rate, and

fatigue index

TRIM63 and FBXO32 (28)

MiRNA-98-5p Muscle ↑ The expression level was associated with the size of

muscle fibers

NGF (5)

MiRNA-133a-3p Muscle ↑ The expression level was associated with the soleus

muscle weight/tibia length index, time to peak twitch

tension, maximum tetanic contraction and half relaxation

time of twitch, maximum tetanic relaxation rate, and

fatigue index

TRIM63 and FBXO32 (28)

MiRNA-133b-3p Muscle ↑ The expression level was associated with the soleus

muscle weight/tibia length index, time to peak twitch

tension, maximum tetanic contraction and half relaxation

time of twitch, maximum tetanic relaxation rate, and

fatigue index

TRIM63 and FBXO32 (28)

MiRNA-181a Muscle ↓ The expression level was associated with the size of

myotubes

Sirt1 (71)

MiRNA-434-3p Muscle ↓ No mention Elf5A1 (60)

MiRNA-455-3p Muscle ↓ The expression level was associated with the size of

myotubes

PITX1 and RXRB (42)

miRNA, microRNA; mRNA, messenger RNA; B-myb, myeloblastosis-related protein B; Elf5A1, eukaryotic translation initiation factor 5A1; Fbxo32, F-box protein 32; IGF-1, insulin-like

growth factor-1; NGF, nerve growth factor; PITX1, paired-like homeodomain transcription factor 1; RXRB, retinoid X receptor-β; Sirt1, sirtuin 1; Trim63, tripartite motif containing 63 protein;

↓ means miRNA’s downregulation in each samples; ↑ means miRNA’s upregulation in each samples.

TABLE 3 | Effects of modulation of miRNA expression on frailty and sarcopenia in cells in vitro and rodent frailty and sarcopenia models in vivo.

MiRNA Tx Rodent model and/or

cells

Effects Target mRNA References

MiRNA-181a OE Mouse cultured myotubes

of differentiated myoblasts

(C2C12 cells)

Inhibition of Sirt1 induced a decrease in the myotube

diameter

Sirt1 (71)

MiRNA-203a-3p OE Human skeletal muscle cells Inhibition of BIRC5 induced a decrease in the number of

skeletal muscle cells

BIRC5 (1)

MiRNA-434-3p OE Mice myocytes Inhibition of Elf5A1 protected myocytes from apoptosis EIF5A1 (60)

MiRNA-455-3p OE Mouse cultured myotubes

of differentiated myoblasts

(C2C12 cells)

Inhibition of PITX1 and RXRB induced larger diameters of

C2C12 myotubes

PITX1 and RXRB (42)

MiRNA-672-5p OE Ovariectomy-induced

sarcopenia mouse

gastrocnemius muscle

Inhibition of Atrogin-1 and MuRF1 induced a decrease in

lean muscle mass and Feret’s diameter of muscle fibers

and increase in the serum creatinine kinase level

Atrogin-1 and MuRF1 (6)

miRNA, microRNA; mRNA, messenger RNA BIRC, baculoviral inhibitors of apoptosis repeat containing; Elf5A1, eukaryotic translation initiation factor 5A1; MuRF1, muscle ring-finger

protein-1; OE, overexpression; PITX1, paired-like homeodomain transcription factor 1; RXRB, retinoid X receptor-β; Sirt1, sirtuin 1; Tx, treatment.
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FIGURE 2 | (A) Roles of miRNAs in cultured myotubes, myoblasts, and myocytes in vitro. (B) Roles of miRNAs in rodent sarcopenia models in vivo. EIf5A1, eukaryotic

translation initiation factor 5A1; miRNA, microRNA; PITX1, paired-like homeodomain transcription factor 1; RXRB, retinoid X receptor-β; Sirt1, sirtuin 1; MuRF1,

muscle ring-finger protein-1.

MiRNA-455-3p
Overexpression of miRNA-455-3p using an miRNA-455-3p
mimic by lipofection inhibited the expression levels of PITX1
and RXRB, which are involved in muscle dystrophy and
aging, resulting in a significant increase of the diameter of
cultured myotubes differentiated from cultured mouse C2C12
myoblasts (42).

MiRNA-672-5p
Overexpression of miRNA-672-5p via tail vein injection of an
miRNA-672-5p mimic in liposomes alleviated ovariectomy-
induced sarcopenia in female BALB/c mice (6). Overexpression
of miRNA-672-5p in ovariectomy-induced sarcopenia mice
increased lean muscle mass but decreased the serum creatinine
kinase level and increased Feret’s diameter of muscle fibers
with inhibited muscle atrogenes (Atrogin-1 and Murif1)
that stimulate protein catabolism and negatively affect
muscular health (6). Overexpression of miRNA-672-5p
in ovariectomy-induced sarcopenia mice also increased
osteoblastogenesis and mineralization, thereby reversing
bone loss (6).

DISCUSSION

Many miRNAs increase or decrease in muscles and blood
of patients with sarcopenia and rodent models of sarcopenia.
These expression changes are associated with the phenotypes
of sarcopenia, such as lower physical functions and expression
levels of many signaling molecules that mediate progression
of sarcopenia. These lines of evidence suggest that miRNA
levels in muscles and/or blood are potential biomarkers for
sarcopenia. However, no study has reported the relationship

between the expression changes of plasma/serum and muscle
miRNAs in sarcopenia. It is necessary to investigate this
relationship to clarify the mechanisms of miRNAs in each
organ including muscles and their circulation form in blood
for the development of sarcopenia as well as the utility of
miRNAs in blood as biomarkers of sarcopenia. Additionally,
several miRNAs have been demonstrated to affect sarcopenia
in myocytes in vitro or rodent sarcopenia models in vivo.
All studies reported the effects of miRNAs on sarcopenia
in the setting of overexpression of these miRNAs as shown
in Table 3. These results suggest that miRNAs are potential
targets of gene therapy for sarcopenia. However, further studies
are needed to investigate the mechanisms, target cells, and
adverse effects of modulating these miRNAs. Additionally, so
far, there is no clinical study that has directly investigated
the functions of miRNAs in sarcopenia by modulation of
their expression using a mimic and/or inhibitor. Future
clinical studies will be necessary to confirm the effects
of miRNAs on sarcopenia and their potential targets for
gene therapy of sarcopenia. Our review has a number of
limitations. First, we only searched for studies published
in English. Second, we only used the PubMed database
to identify publications. Third, meta-analysis could not be
performed because the number of studies reporting miRNAs
for sarcopenia was small, so statistical power would have
been low. Therefore, further research is warranted to verify
our conclusions.

CONCLUSION

Many miRNAs increase or decrease in muscles and
blood of patients with sarcopenia and rodent models
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of sarcopenia. Additionally, several miRNAs have been
demonstrated to affect sarcopenia in myocytes in vitro or
rodent sarcopenia models in vivo. These results suggest
that miRNAs are potential biomarkers and targets of
gene therapy for sarcopenia. Further studies including
clinical studies will be necessary to confirm the utility
of miRNAs as biomarkers and targets for gene therapy
of sarcopenia.
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