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Abstract

Literature mentions two types of models describing cyclic movement—theory and data

driven. Theory driven models include anatomical and physiological aspects. They are princi-

pally suitable for answering questions about the reasons for movement characteristics, but

they are complicated and substantial simplifications do not allow generally valid results.

Data driven models allow answering specific questions, but lack the understanding of the

general movement characteristic. With this paper we try a compromise without having to

rely on anatomy, neurology and muscle function. We hypothesize a general kinematic

description of cyclic human motion is possible without having to specify the movement gen-

erating processes, and still get the kinematics right. The model proposed consists of a

superposition of six contributions–subject’s attractor, morphing, short time fluctuation, tran-

sient effect, control mechanism and sensor noise, while characterizing numbers and ran-

dom contributions. We test the model with data from treadmill running and stationary biking.

Applying the model in a simulation results in good agreement between measured data and

simulation values. We find in all our cases the similarity analysis between measurement and

simulation is best for the same subjects—d
same sub
run > 55% and d

same sub
bike > 64%. All compari-

sons between different subjects are 51% > d
different sub
run and 52% > d

different sub
bike . This uniquely

allows for the identification of each measurement for the associated simulation. However,

even different subject comparisons show good agreement between measurement and sim-

ulation results of differences δrun = 6.7±4.7% and δbike = 5.1±4.5%.

Introduction

Bipedal gait, especially walking, has been the most decisive development of homo sapiens to

surpass their ancestors and relatives [1]. In the past centuries further cyclic motions like swim-

ming, cycling, rowing or skiing came along, to overcome natural obstacles, to facilitate travel-

ing and then as leisure activities. Recently, cyclic motion descriptions have served as biological

templates for developments in robotics together with developments in artificial intelligence

[2]. Although cyclic movements are performed a thousand-fold each day in everyday life, their

underlying composition and structure is not fully understood.

The kinematics of human cyclic motion seems rather simple at first glance. Detailed obser-

vations display a repeating structure and some fluctuation producing similar but not identical

repetitive cycles of movements [3, 4]. These changes often describe a transient effect at the
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start of the movement [4–6], as generally observed in dynamical systems [7, 8]. Moreover, vari-

ous perturbations alter the regularity of the ongoing movement and stride time dynamics [9–

12]. Dingwell and Kang [13] describe these findings as 0inherent biological noise0, being local

instabilities [14] during movements like walking, without causing falls or stumbles, meaning

that the subjects move 0orbitally stable0. Nashner [15] pointed out, that the described continu-

ity after perturbations is retained by adjusting parameters of the present walking motion rather

than recruiting a new motor pattern (p. 650).

Modern quantitative scientific endeavors to understand the mechanism behind the central

movement trait already began as early as in the nineteenth century [16]. Describing cyclic

motion most often is realized by selected specific body markers and their coordinate portrayal

as function of time [17]. The classical gait parameters such as step length, step frequency,

velocity as well as marker tracking from digitizing systems carry most of the information con-

sidered. With the advent of direct acceleration measurement further and subtler information,

which coordinate explanation cannot deliver, can serve to describe cyclic motion. Coordinate

data, however, can at least in principle, be generated from acceleration data by two consecutive

integrations with respect to time. However, integration is a smoothing process, which makes it

evident, that important information gets lost.

For this reason, we propose a mathematical model of the kinematic of the human cyclic
motion based on acceleration data. It allows simulation of cyclic movement and comparison

with measured data. We illustrate this model as a superposition of six mathematical terms cov-

ering the motion as a (1) limit-cycle attractor, (2) individual attractor morphing, (3) short time

random fluctuation in form of “random walk”, (4) the transient effect describing initial oscilla-

tions around the attractor at the onset of the activity subsiding with increasing time, (5) a con-

trol process being activated when stride variations tend to exceed the morphed attractors’

boundaries, and (6) the influence of noise generated by the measurement device—accelerome-

ters. Thus, this model allows extension of earlier findings specifically about the variability of

subjects’ cyclic movement with its fixed and random components.

There exist two types of models describing human cyclic motion—theory driven and

data driven [18]–both with its own strong and weak aspects. For example, a theory driven

model as described by Gerritsen et al. [19] gives insight into the working of seven muscle

groups within the lower extremities. The necessity of keeping the model manageable, in the

mentioned paper by using a 2-dimensional rigid body model, leads to deviations from the

actual movement. On the other hand the data driven model of Janssen et al. [18] was able to

detect the influence of emotions onto the movement pattern. They applied deep machine

learning by using artificial neural nets, allowing identification of subtle effects. While here

the detection movement characteristics caused by emotions is nicely achieved, the specifics

of the gait changes remained undetected. With the present paper we attempt a compromise,

by not having to rely on anatomy and muscle function, but still trying to understand kine-

matic processes and the movement pattern quantitatively. A study on cycling at two differ-

ent power outputs (150 W and 300 W) at a cadence of 90 rpm [20] found differences in the

muscle activities detected via EMG, while kinematic data stayed almost unchanged. This

result together with the stability of the individual’s attractor over time and after rehabilita-

tion [21, 22] is motivation to examine the possibility to quantitatively describe movement

without the knowledge of muscle activity.

The purpose of this paper is to precisely outline the kinematics of cyclic motion by estab-

lishing the necessary mathematical equations, which allow simulation. The method pre-

sented permits identifying subject specific movement constants. The testing of model and

method is done on two classical cyclic motions: running (on a treadmill) and (stationary)

biking.
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Method

The first section “Model” of this paragraph is devoted to the details of our model. The six con-

tributing terms are specified with their deterministic and probabilistic components. Following

in the section “Model’s characteristic constants” we show how δM, the mean distance between

two attractors, is calculated and how this parameter allows determination of the model’s char-

acteristic constants. To see how measurements are fitted into to model the section “Data han-

dling” makes the connection between the raw acceleration data and the specific input format

to the model. One of our objectives is to quantify the similarity/dissimilarity of an attractor

compared to another attractor, which is not influenced by the transient effect and by morph-

ing, changing one attractor into another. Such an attractor we call a super attractor. Its con-

struct is given in the section “Super attractor” and used in the section “Similarity analysis” to

quantify how similar the super attractor is compared to a tested one. In the section “Separating

the transient effect form morphing” the super attractor is used again to achieve the separation.

In the section “Simulation” some settings are specified and a link on the internet to the used

computer apps is given. Finally, the necessary information on the “Subjects”, the “Equipment”,

the “Running data” and the “Cycling data” is presented.

Model

We construct the full acceleration K!ðtÞ as a superposition of the six terms

K!ðtÞ ¼ A
!
ðtÞ þM!ðtÞ þ F!ðtÞ þ T

!
ðtÞ þ C

!
ðtÞ þ N!ðtÞ ð1Þ

1. A
!
ðtÞ the Limit-Cycle-Attractor, a constant acceleration pattern being repeated with every

cycle.

2. M!ðtÞ attractor Morphing, which allows minor deviations from the actual attractor values.

3. F!ðtÞ short time Fluctuation in form of a “random walk”.

4. T
!
ðtÞ Transient effect, which can be present at the start and decreases rapidly.

5. C
!
ðtÞ Control mechanism, kicking in when actual accelerations deviate too much from the

morphed attractor.

6. N!ðtÞNoise caused by the accelerometers.

1. Limit-Cycle-Attractor A
!
ðtÞ can be regarded as the average of all cycles. This however, is

an idealized definition, which cannot fully be met, since this would call for averaging of an infi-

nite number of cycles. Instead, we approximate the attractor by a finite number of cycles,

which for later examples we chose the number of complete cycles within a specified minute of

the data collection.

A
!

tj

h i
tð Þ ¼

1

n

Xn

i¼1

a! i � tj
� �

ð2Þ

is a closed line in 3D acceleration space with a! the measured acceleration and j being the

number of consecutive data points within an attractor. Such an approximated attractor is
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characteristic for each individual [21, 22]. The actual calculation starts with dividing each data

set into one-minute sections and calculation of the attractors [23]. There is one important

methodological difference however. Instead of adding the cycles, which have different num-

bers of data points in temporal order, we describe each cycle as consisting of a fixed data point

number n. This is achieved through spline approximation. The number n stands for the mean

number of data points of all complete cycles within a one-minute interval. So, we treat each

cycle as lasting an identical time interval equal to the mean cycle duration. Afterwards we add

up all cycle values for each of the n points and divide them by the number of cycles. The results

represent mean values of the one-minute data sets preserving the original sampling frequency,

while still containing the influence of morphing, random walk, transient effect and the control

mechanism. The data set least influenced serves as attractor to compare all others with. Appro-

priate attractors are those for which time t�tT (transient time, explained below).

2. A time-dependent individual attractor morphing M!ðtÞ is described as the attractor

change from start tS to end tE minute by minute. The equation is of heuristic nature. It must be

capable of describing the changes of a given attractor and its development to the final attractor

as a function of time. We take care of this process by taking attractor approximations at begin-

ning A
!
ðtSÞ and end A

!
ðtEÞ and describe the morphing of the two attractor approximations,

introducing the three dimensionless constants a0, a1, a2, by

M! tð Þ ¼ ðA
!
ðtSÞ � A

!
ðtEÞÞ � a0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtE � tÞ

tE

s

þ a1 � sin a2 � 2p
ðtE � tÞ

tE

� �( )

ð3Þ

Important to mention: The morphing is small compared to attractor differences between

individuals.

3. Fluctuation F!ðtÞ in the form of a “random walk”. These are changes around a morphed

attractor described with the iteration

F! tð Þ ¼ F!
l
fS

� �

¼ F!
l � 1

fS

� �

þ RN 0; sRW½ � �

sinðWðlÞÞ � cosðφðlÞÞ

sinðWðlÞÞ � sinðφðlÞÞ

cosðWðlÞÞ

0

B
@

1

C
A ð4Þ

Here, l is the data number. An aberration from the attractor can happen in any direction.

We describe this using the angles ϑ and φ. Their actual values are random having a uniform

distribution on the sphere with the polar and azimuthal angles:

WðlÞ ¼ RU½0; p�

φðlÞ ¼ RU½0; 2p�
ð5Þ

RU[α,β] represents random generation with a uniform characteristic within the interval [α,

β]. With this definition the standard deviation of the random walk depends on the sampling

frequency fS. Since the random walk must not be dependent on the specifics of a measure-

ment–the sampling frequency fS -, we introduce a parameter ϕ (random walk’s strength),

which does not change with the sampling frequency.

sRW ¼
fS

106
� � ð6Þ

The factor 106 was introduced for convenience. For simulating the movement ϕ together

with C
!
ðtÞ (see below) must be chosen to reproduce the statistical spread of the data around

the attractor.
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4. The Controlling mechanism C
!
ðtÞ, respectively the vector component Ck(t), is kicking in

when the distance to the morphed attractor’s coordinates passes the border bk

bk jð Þ ¼ b �
skðjÞ
hski

ð7Þ

at attractor point j. Here b is the controlling constant and σk(j) the attractor’s standard devia-

tion, which is divided by the average of the attractor’s deviation hσki. This takes care of the

changing width of the acceleration bundle. The correction term, being activated at time tb, is

modeled as

Ck t; tbð Þ ¼ �

Z t

tb

RN½1; sM�ðt
0Þ � Ak �

ðt0 � tbÞ
t

� e�
ðt0 � tbÞ

t � signðFkðtbÞÞ �YðtM þ tb � t0Þ � dt0 ð8Þ

With sign(. . .)being the signum and Θ(. . .)the step function. We set the maximal accelera-

tion change to τ = 80 ms analogous to the style of a muscle’s timely response [24] with accelera-

tion effectively lasting tM = 4�τ = 320 ms, to obtain

bk ¼
ZtMþtb

tb

Ak �
t � tb
t
� e�

t� tb
t dt ð9Þ

bk is the acceleration necessary to get back precisely onto the morphed attractor values. This

holds true for

Ak ¼
bk

t � ðtþ tMÞ � e
� tM
t

ð10Þ

RN[1,σM](t) represents a normally distributed random element introducing some deviation

from a perfect working controlling mechanism.

5. The transient effect T
!
ðtÞ is a temporary oscillation around the attractor at the beginning

of a cyclic movement. The starting value of the oscillation might be very individual, specific to

the subject, and having a part of the starting value occurring by sheer chance. We model the

deviation as the solution of a damped harmonic oscillator, where the transient term can be

viewed as the departure from the morphed attractor

T
!

tð Þ ¼
Xm

h¼1

T
!

h � cosðho t þ dhÞ

" #

� e
� t
tT ð11Þ

with o ¼ 2p

tA
; tA being the average time of one cycle within the one-minute interval Δt. δh is the

phase, which within a simulation is chosen randomly being any number between zero and 2π.

h specifies the number of harmonics contributing, with m being the highest one. The maximal

harmonic is identified from the Fourier transform of a subject’s movement. tT denotes the

time for the transient effect decreasing to e−1. The transient effect averaged over the nth minute
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is

hT
!
ðn � DtÞi ¼

1

Dt
�

Zn�Dt

ðn� 1Þ�Dt

Xm

h¼1

T
!

h � cosðh � o � t þ dhÞ

" #

� e�
t
tT

( )

dt

¼ T
!
k þ T
!
?

� �
� e�

n�Dt
tT ð12Þ

Here and below k stands for the part of the vector pointing in the direction of the combined

vectors of T
!
ðtÞ and M!ðtÞ:? indicates the vector parts perpendicular to the mutual direction.

6. When simulating the kinematics and comparing it with real life data, we need to include

the measurement error–noise N!ðtÞ—caused by the sensor characteristics. It can be obtained

directly from measuring the output signals of the sensors at rest. The signal of an accelerome-

ter is, subtracting the values caused by the earth’s gravitational field, modeled as white noise.

N!ðtÞ ¼ RN½0; sSensor� �

sinðWsðtÞÞsinðφsðtÞÞ

sinðWsðtÞÞcosðφsðtÞÞ

cosðWsðtÞÞ

0

B
@

1

C
A ð13Þ

Here RN stands for a random normally distributed contribution with a mean value of

0m
�

s2 and a standard deviation σSensor, which is the characteristic of the specific sensor. ϑs and

φs are randomly chosen to get a uniform distribution on the unique sphere. σSensor is calculated

using Eq (13) and taking N!ðtÞ from the data recording of the sensors at rest.

Model’s characteristic constants

The main parameter for checking the model’s validity is δM. It is the average distance between

two data sets [23] and is calculated using Eq (1) by

dM ¼
1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðK!ðtÞ � K!ðtEÞÞ
2
i

q

¼
1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðA
!
ðtÞ þM!ðtÞ þ F!ðtÞ þ T

!
ðtÞ þ C

!
ðtÞ þ N!ðtÞ

q

� A
!
ðtEÞ � M!ðtEÞ � F!ðtEÞ � T

!
ðtEÞ � C

!
ðtEÞ � N!ðtEÞÞ

2
i

�
1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðT
!
ðtÞ þM!ðtÞ � T

!
ðtEÞÞ

2
i

q

¼
1

v
hTkðtÞ þMkðtÞ � TkðtEÞi
h i

¼
1

v
� hTk � e

� t
tT � e

� tE
tT

" #

þ a0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtE � tÞ

tE

s

þ a1 � sin a2 � 2p
ðtE � tÞ

tE

� �
8
<

:

9
=

;i ð14Þ

Here A
!
ðtÞ � A

!
ðtEÞ by definition of an attractor as being identical at any cycle. The fluctua-

tion together with the correction term do have almost identical averaged contributions close to

zero at the different one-minute time intervals. The noise has contributions almost completely

cancelling out within one minute because of its normal distributed character having a mean of

zero. Therefore, the remaining input comes from the transient effect and the attractor morph-

ing. We can calculate the length of the three lasting vectors. The remaining terms are the paral-

lel contributions, all lying in the same direction at a given time, which can be written as a sum
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of scalars. The subsequent equation allows us to write δM depending on 5 constants Tk,tT,a0,

a1,a2, which are specified by curve fitting of the measurements. We use the software CurveEx-

pert Professional 2.6.5, which uses the Levenberg-Marquardt algorithm providing the non-lin-

ear curve-fitting. While the three constants on the right describe the highly individual subject

and task dependent morphing, the two constants on the left approximate the transient oscilla-

tion contributing to δM at the beginning of a cyclic movement. tT depicts the time until the

oscillation decreases to 1
�

e of its original value T. The oscillation is negligible if tT�tE (measur-

ing time) since than the two exponential functions are almost equal to 1 resulting in these

terms cancelling out. The values of the morphing and the transient effect do mix, which does

not allow these two effects to be separated in all cases. Fortunately, there is a method to sepa-

rate these two effects, which will be explained below. Altogether, we now have the nine con-

stants � tE tT tA ¼ 2p

o
Tk b a0 a1 a2 determining our model. All definitions and the respective

calculations/approximations are given to allow simulation of cyclic motion with the help of the

attractors and the constants gained from the measured data. These simulations are naturally

not identical to the original data, since the algorithm contains contributions of random

processes.

Data handling

Since further analysis required the collected 60-minute data block to be divided into 60-second

intervals, a file splitter was applied to produce suitable single datasets. A raw data text-file con-

tained thirteen columns: time and the acceleration as well as the gyro meter data in x, y and z

direction for the left and the right foot, respectively. Afterwards an app called “Attractor”, pro-

grammed with MATLAB was used to calculate the attractor data of every one-minute data

set. Each attractor dataset contained 25 x n velocity/cadence-normalized data points: t, xleft foot,

yleft foot, zleft foot, xright foot, yright foot, zright foot, their standard deviations, standard errors, and

gyroscope data. The functionality of the Attractor App is based on the attractor method devel-

oped by Vieten et al. [23] with the alteration of the attractor building process described above.

The attractors were normalized for velocity in running and cadence (normalization factor

v = cadence/10) for biking.

Super attractor

A super attractor is by definition the average of all attractors of one subject, with the exclusion

of any attractors that are to be compared to the super attractor. Also, no attractor influenced

by the transient effect (usually those calculated from the data of the first 10 minutes of a mea-

surement) is included. Specifically, for this study the super attractor was calculated for each

participant from the collection of the final 50 minutes of each run independent of the data to

be analyzed.

Similarity analysis

For this procedure each attractor is recalculated having 500 data points by adjusting the sam-

pling frequency using spline approximation. To find out how similar two movements are, we

calculated the recognition horizon around each single attractor point, which is defined as the

surface area at a distance equal to five standard deviations away from the attractor point. A test

attractor is checked point to point if lying in- or outside the recognition horizon of the first

attractor using another MATLAB procedure (Fig 1).
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Each measured or simulated minute over all running or cycling sessions (5 x 60 minutes)

was checked against the respective super attractor. The similarity rate is defined the as percent-

age of data points lying within the recognition horizons.

Separating the transient effect from morphing

To exclude the influence of the morphing as much as possible, we calculated a super
attractor from 5 independent 1-hour-runs of each individual taken about 5 months before

the actual measurements for running. For biking, as we did not have the data from months

before,a super attractor was created out of four datasets to compare with the fifth one.

Since our hypothesis was that an attractor is stable only within a given interval, the super
attractor represents just one possible attractor configuration. It is important to note that

these super attractors are independent of the 60 minutes data sets to be examined. There-

fore, with the exception of the first minutes being influenced by the transient effect, the

comparison should display results not varying much. And finally, the δM can be approxi-

mated by

dMwithout morphing ¼ c0 þ c1 � t þ c2 � exp
� t
tT

� �

ð15Þ

As before, the constants are approximated applying the Levenberg-Marquardt algorithm

through the software CurveExpert Professional 2.6.5. Here c0 represents the strength of

morphing. c1 is the linear variation and is expected to be very small, since the distance between

a super attractor and the attractors of a measurement should have very little variation with the

exception of when the transient effect is active. Last c2 denotes the strength of the transient

effect.

Fig 1. Schematic two-dimensional depiction of the three-dimensional recognition horizon (red) and compared attractor (blue).

https://doi.org/10.1371/journal.pone.0225157.g001
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Simulation

For the simulation we created an app called “TrackSimulator” (accessible at http://www.uni-

konstanz.de/FuF/SportWiss/vieten/CyclicMove/), available as Windows and macOS versions.

It was created within MATLAB and is available as stand-alone solution without the need to

install the MATLAB program. The app includes all the algorithms described above. To obtain

the simulation the attractors of the tested subjects and their individual nine constants ϕ tE tT tA
Tk b a0 a1 a2 serve as input for the app. We set the number of harmonics = 2 within the Eq

(11), because those harmonics the majority of the signal’s strength. Using the phase of the mea-

surement within the simulation would give a good conformity between measurement and sim-

ulation. However, our first priority is about finding out about the variability of the cyclic

motions. Therefore, the phase of the transient effect was chosen randomly.

Subjects

A total of ten athletes, six female and four males, were tested in summer 2019. The running

data (n = 5) were collected in Kreuzlingen, Switzerland (Nationale Elitesportschule Thurgau)

whereas the cycling measurements (n = 5) took place at the University of Konstanz, Germany.

All runners were active experienced recreational athletes. None had suffered any present

injury, which could have impeded their performance. The cyclists were recruited from the

local pool of university students. The only prerequisites were to be aged 18 years or older and

able to run 60 minutes without reducing their initial pace or cycling at a moderate wattage

over 60 minutes as regulated by their age, weight and training level [25], respectively. All par-

ticipants were requested to fill out and sign an informed consent. The study was approved by

the local Ethical Committee of the University of Konstanz, Germany under the RefNo:

IRB19KN10-005.

Equipment

To collect the necessary raw accelerometer data, two inertial sensors (RehaWatch by Hasomed,

Magdeburg, Germany) were attached to both ankles by a hook-and-loop fastener during the

runs; and on the proximal frontal part of the tibia (facies medialis) during the cycling tests.

The sensors, MEMS—micro-electro-mechanical-system, have a size of 60x35x15 mm and

weigh 35 g each. They function as a triaxial accelerometer, which we set up to a measurement

interval of ±8 g, and a triaxial Gyroscope with up to 2000˚/s. The sampling rate was set to 500

Hz. Acceleration of the feet was measured in three dimensions (x, y, z) with data saved to a

smartphone (Samsung Galaxy J5) using the app RehaGait Version 1.3.9 programmed by

Hasomed (Magdeburg, Germany). All runs were performed on a treadmill (9500HR by Life

Fitness, Unterschleißheim, Germany). The cycling measurements were undertaken on a cycle

ergometer (ergoselect200, Ergoline, Bitz, Germany).

Running data

The first session started with a short 5-minute warm up phase to get familiar with the treadmill

and to determine an easy running pace associated with a BORG-scale of 3 [26] (Table 1).

Table 1. Running speed of the subjects.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Running speed 10 km/h 11 km/h 10 km/h 8.5 km/h 8.7 km/h

https://doi.org/10.1371/journal.pone.0225157.t001
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The chosen running speed remained stable throughout all following test sessions each last-

ing 60 minutes. The participating athletes repeated the testing protocol in a time frame of

approximately four weeks consisting of five testing days separated by at least 24 hours. The

measurements were received from tri-axial accelerometers by a smartphone placed on a desk

beside the treadmill to ensure undisturbed reception. Before the actual run, the participants set

up the treadmill at 1% inclination (to simulate wind resistance) and their individual speed

while waiting on the collateral standing area close to the treadmill belt. Once the chosen speed

of the belt was reached the tester counted down from three to one before starting the data col-

lection on the smartphone. At the same time, the runner jumped onto the treadmill belt and

started immediately with running at the chosen pace over 60 minutes. This jumping move-

ment, lasting approximately one second, was cut out of the data during the data management

process, as it was a nonrunning-specific movement.

Cycling data

Within four weeks, all cyclists repeated the testing protocol five times. Before the initial test

day, the research group calculated the power and selected an appropriate seat position. All par-

ticipants were tested at their preferred cadence (rpm = repetitions per minute), which the par-

ticipants were able to hold within the interval of ±3 rpm over 60 minutes. Their power output

conformed with an easy endurance workout and was defined using the athletes’ age, weight

and training level [25] (Table 2).

On each test day, the cyclists adjusted the seat and the handlebars as determined. The

research assistant advised the athlete to hold the seating position and the cadence as stable as

possible. The data collection was started by the tester immediately after the start signal caused

the participant to pedal.

Results

All input, measured data, and simulation results, had a sampling frequency of 500 Hz. Further

procedures, including generating graphs, were done after filtering with a ‘triple F low pass fil-

ter’ [27] with a cutoff frequency of 10 Hz. � tE tT tA ¼ 2p

o
Tk b a0 a1 a2.

For the simulation, we used the constants tT tA ¼ 2p

o
Tk a0 a1 a2 taken from the measure-

ments displayed below. The duration of simulation tE = 60 min was identical to the measure-

ment’s time. The random walk’s strength was set ϕ = 100 and the controlling constant at b = 5.

A graphic comparison between measurement and simulation gives a first impression of the

model’s power (Fig 2).

From δM of the measurement we get the five constants Tk,tT,a0,a1,a2. They are depending

on the subject and on the specific movement. For our measurements we find the intervals of

Table 3.

Similarity rates between measurements and simulation do show differences. This is

expected since our model, in addition to containing deterministic parts, has random compo-

nents as well. Important here is that the similarity analysis for running yields a gap between 50

and 56%, clearly separating same from different subject comparisons (Fig 3). All comparisons,

Table 2. Power output of subjects in biking.

Subject 6 Subject 7 Subject 8 Subject 9 Subject 10

Cadence 90 rpm 60 rpm 65 rpm 60 rpm 60 rpm

Power output 130 W 60 W 80 W 50 W 80 W

https://doi.org/10.1371/journal.pone.0225157.t002
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of measurements or simulations, between same subjects lie above the gap, comparisons

between different subjects lie below.

For biking there is the same situation with a gap of 52 to 64 (Fig 4) clearly separating same

from different subject comparisons. As before, all same subject comparisons lie above the gap,

different subject comparisons below.

Values of δM –Eq (14)–are influenced by morphing and the transient effect. A typical pro-

gression with both factors influencing δM(t) is shown in Fig 5. In the first few minutes, the

transient effect causes an increase/decrease, while morphing with its more moderate decline is

visible afterwards. The differences between the measurement (blue) and the simulation (red)

are caused by the transient effect and the “short time fluctuation”. Here the starting conditions

are largely random, causing differences at the beginning.

The difference between measurement and the simulation are caused by the transient effect

and the “short time fluctuation”. Here the starting conditions are largely random, causing dif-

ferences at the beginning. The morphing of a specific measurement is imprinted into the simu-

lation values via the Eq (3). A morphing effect is visible, if the analyzed minutes are from one

uninterrupted measurement. The comparisons with the super attractor calculated from data

independent of the actual numbers display random changes and the transient effect, but no

morphing (Fig 6). Those data can be approximated using Eq (15), which allows calculation of

the transient effect largely without the influence of morphing. δM does not vary much with the

only remarkable deviation at the beginning and up to about the 10th minute.

Fig 6 shows δM(t) for the five runs of subject 3, a representative where a substantial tran-

sient effect is prominently visible. Other subjects, especially the cyclists, show fewer or no

exponential behavior at the beginning. Table 4 provides the time tT in minutes until the tran-

sient effect (TE) settles down to e−1 of its initial value. This takes 4.3 minutes on average,

where the cases without the transient effect are excluded.

The absolute height of δM depends on the attractor’s similarity compared with the indepen-

dent super attractor. The following graphs, runs (Fig 7) and bike trials (Fig 8), show the mean

Fig 2. Measured data (blue) and simulation results (red) of the first run of subject three.

https://doi.org/10.1371/journal.pone.0225157.g002

Table 3. Overview of characteristic constants.

Constant Tk: Transient effect’s

strength

tT: time for the transient effect

decreasing to T�e−1
a0: morphing’s

strength

a1: morphing’s modulation

strength

a2: morphing’s nonlinearity

multiplier

Running -3–10 Individually given in 1–8 -0.4–0.5 -0.3–1.8

Biking 0–10 Table 4 0.5–13 -0.3–0.3 0.3–4.2

https://doi.org/10.1371/journal.pone.0225157.t003
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and the standard deviation of δM for all subjects. The calculations are based on minutes 11 to

60, excluding the data influenced by the transient effect. Therefore, these values are a direct

measure for morphing. For running δM is in a range 2 to 5 m/s2. Cycling displays values

between 7 and 14 m/s2 with one exception of a striking low δM of about 1–1.4 m/s2 for subject

10.

Discussion

The purpose of this paper was to find a quantitative description of cyclic motion with the

capacity to simulate individuals’ characteristic movement. A model was proposed consisting

of six contributing parts. Individual attractor, morphing, short time fluctuation, transient

effect, control mechanism and sensor noise. Simulations based on this model showed the same

distinctive variations as the measured data. In all cases the similarity analysis of same subjects

produced higher results—d
same sub
run > 55% and d

same sub
bike > 64%—compared with different sub-

ject combinations—51% > d
different sub
run and 52% > d

different sub
bike . Measurements of the respective

simulations are clearly identifiable, confirming the model’s suitability for describing cyclic

motion. The nine constants together with the subject’s attractor approximations are character-

istic for a person’s movement and the influence of the recording sensors.

As known from previous studies [21, 22] the influence of morphing and transient effect is

small compared with the differences between individuals. While morphing is present in all tri-

als, the transient effect is not observable in all cases (20 of 25 cases for running, 8 of 25 cases

for biking). For biking, the transient effect is less prominent compared to running. We suspect

the fixation of the legs with the foot connected to the pedal and the hip very much fixed onto

Fig 3. Similarity rate of running measurements (triangle pointing right) and simulations (triangle pointing left).

https://doi.org/10.1371/journal.pone.0225157.g003
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the saddle, there is limited freedom in movement variation. The tibia position and its associ-

ated acceleration is often settled onto the attractor from the start onwards. A different situation

is seen in running, where the kinematic chain is unfixed near the location of the accelerometer

at the distal end of the tibia. Here the probability to start a movement close to the subject’s

attractor, resulting in no visible transient effect, is small. Interestingly, the most experienced

runners show the least transient effect.

The comparison of a subject’s attractors of a 1-hour measurement to an independent super
attractor allows approximation of the magnitude of morphing. The maximal difference

between attractors from independent measurements of one subject is restricted by the maxi-

mal possible morphing. Morphing can deform an attractor in many different ways, which

most probably results in δM’s of comparable values. Therefore, results as shown in Figs 7 and

8 might represent good approximations of typical morphing magnitudes. Still, the determina-

tion of the attractor remains a challenging issue. In mathematical systems, like the famous

“Lorenz map”, the attractor is reached after the transient effect subsided. There, either a stable

regular attractor is reached or a strange one is seen. Here, although data of the cyclic motion

never completely reaches regularity, neither is the behavior completely chaotic. The regularity

is, as mentioned before, good enough to discriminate between individuals.

Still the question remains, how to rate the attractors’ differences, when attractor approxima-

tions are calculated by averaging the cycles of different time intervals. Does it simply mean

that when doing the averaging over longer time periods these differences will almost

completely vanish? Or, does it mean that attractors are changing with time, even if these

changes are small? So far, we do not have enough data to answer this question with certainty.

Fig 4. Similarity rate of biking measurements (triangle pointing right) and simulations (triangle pointing left).

https://doi.org/10.1371/journal.pone.0225157.g004
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However, from the results above we suggest that the second statement is more likely. There is a

theoretical argument for this statement as well. While developing the mathematical description

of cyclic motion, our first approach was without morphing. The idea was to have an attractor

not dependent on time and the fluctuation based on a “random walk” characteristic only. This

construct, however, did not allow describe the full data variability.

From a sport scientific view, the underlying components of the model are of particular

interest in cyclic sports like running, cycling, swimming or rowing. Earlier work reports differ-

ences in subject-specific alternations in running patterns throughout prolonged activities like

marathon running [28]. The latter authors state that competitive runners show a greater con-

sistency of their subject-specific movement pattern compared to their recreational opponents,

whose gait characteristics become significantly atypical halfway through the race. Further Cler-

mont et al. [29] have demonstrated with their approach the ability to differentiate sex-and

training level-specific subgroups based on acceleration data. An athlete with a extensive run-

ning experience combined with an increased mileage performs necessarily a higher number of

strides leading to a more implanted and efficient movement pattern [30]. Thus, it can be

assumed that the duration of the transient effect ends sooner combined with less deviations of

the actual attractor contributed by the morphing effect. Should momentary accelerations still

deviate from the morphed attractor, it can be expected that the control mechanism kicks in

much sooner in athletes with a long-term training history. To check the mentioned expecta-

tions further application studies have to be conducted.

Altogether our model is capable describing cyclic motion quantitatively. Given the individ-

ual’s attractor approximations and the subject specific constants, the output resulting from the

Fig 5. δM(t) for the measurement (blue) of one run and the respective simulation (red).

https://doi.org/10.1371/journal.pone.0225157.g005
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simulation is specific for the subject’s particular movement. In addition, there are other aspects

needing further attention. One is establishing a threshold for the similarity analysis to define

the percentage when recognition is achieved. Many more measurements of a specific cyclic

movement should allow determination of a suitable number by using the median method

described by Vieten et al. [23]. Another limitation of the current approach is the focus on cal-

culating δM, which depends on T
!
kðtÞ þM!kðtÞ, the parallel components only. Analyzing the

full expression T
!
ðtÞ þM!ðtÞmight allow further insight.

Conclusion

This paper is a “proof of concept” showing cyclic motion can be described with the mathemati-

cal model introduced. Moreover, the simulation based on the developed model is capable of

generating numbers displaying the same structure and behavior as the measurement.

Fig 6. Five runs of subject 3 compared to the subject’s independent super attractor. The lines represent the approximation as of Eq (15).

https://doi.org/10.1371/journal.pone.0225157.g006

Table 4. The time tT [min] by which the transient effect (TE) reduces to e−1 of its start value.

Sub Run 1 Run 2 Run 3 Run 4 Run 5 Sub Bike 1 Bike 2 Bike 3 Bike 4 Bike 5

Sub 1 1.0 5.1 3.9 No TE No TE Sub 6 No TE No TE No TE No TE No TE

Sub 2 5.0 No TE No TE 5.0 No TE Sub 7 No TE No TE No TE No TE No TE

Sub 3 9.7 10.0 5.1 9.0 12.9 Sub 8 3.4 4.3 3.4 2.8 3.5

Sub 4 1.7 1.8 0.9 5.5 1.0 Sub 9 No TE No TE No TE No TE No TE

Sub 5 1.9 2.8 3.7 2.3 3.5 Sub 10 No TE 8.2 1.5 1.4 No TE

https://doi.org/10.1371/journal.pone.0225157.t004
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Fig 7. All 5 runs of all 5 subjects compared to their personal, but independent super attractor for minutes 11 to 60.

https://doi.org/10.1371/journal.pone.0225157.g007

Fig 8. All 5 bike trials of all 5 subjects compared to their personal, but independent super attractor for minutes 11 to 60.

https://doi.org/10.1371/journal.pone.0225157.g008
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Applications are conceivable in the areas medical diagnostics, performance assessment, subject

recognition, and robotics. For diagnostics, our group has previously developed and used a fati-

gability scale for multiples sclerosis patients [31, 32]. The new model however, allows descrip-

tion of the transition between normal and fatigability conditions more precisely by

considering morphing. In terms of performance assessment, the results of Figs 7 and 8 suggest

morphing’s magnitude is different depending on the specific subject. This might be correlated

to athletes’ performance levels, using stable running patterns throughout prolonged physical

activities. Further, it might allow deeper insight into the dependencies of parameters such as

gender, training history and anthropometric attributes. Figs 3 and 4 –the arrows above the gap

—show with the help of the similarity rate, that it is possible to find measurement/simulation

combinations belonging to the same subject. This fact and some preliminary analyses suggest

subject recognition is possible though attractor comparison. Here the attractor of a measure-

ment is compared with a database of attractors. Finally, bipedal robots’ movement might profit

from our model by comparing the specific values of the characteristic constant, as well as the

specific form of the attractors between humans and robots.
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