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Lung cancer is characterized by the most common oncological disease and leading cause
of cancer death worldwide, of which a group of subtypes known as non-small cell lung
cancer (NSCLC) accounts for approximately 85%. In the past few decades, important
progression in the therapies of NSCLC has enhanced our understanding of the biology
and progression mechanisms of tumor. The application of immunotherapy and small
molecule tyrosine kinase inhibitors has brought significant clinical benefits in certain
patients. However, early metastasis and the emergence of resistance to antitumor
therapy have resulted in the relatively low overall cure and survival rates for NSCLC.
Autophagy is a conserved process that allows cells to recycle unused or damaged
organelles and cellular components. It has been reported to be related to the progression
of NSCLC and resistance to targeted therapy and cytotoxic chemotherapy. Therefore,
autophagy is considered as a potential therapeutic target for NSCLC. Mounting results
have been reported about the combination of tyrosine kinase inhibitors and inhibitors of
autophagy in models of NSCLC. This review aims to provide a comprehensive review on
the roles of autophagy in NSCLC, focusing on related clinical data of agents that regulate
autophagy in NSCLC. Furthermore, this study will provide a theoretical basis for further
improvement of autophagy-based cancer therapy.

Keywords: non-small cell lung cancer, immunotherapy, resistance, tyrosine kinase inhibitors, autophagy
1 INTRODUCTION

Lung cancer including non-small cell lung cancer (NSCLC) and small-cell lung cancer (SCLC), has
been reported to account for 11.6% and 18.4% of global cancer morbidity and mortality, respectively
(1, 2). According to histological classification, approximately 85% of patients belong to the subtype
referred to as NSCLC, among which the most common subtypes are lung squamous cell carcinoma
(LUSC) and lung adenocarcinoma (LUAD) (3, 4). Over the past few decades, therapies for NSCLC
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have progressed from cytotoxic treatment to effective and better
tolerated regimens that are designed to target to specific
molecular subtypes (3, 5, 6). The identification of target gene
alterations is an evolution for the lung cancer management, with
the combination of tumor genotyping making personalized
treatment possible, and it is of great benefit to patients treated
with kinase inhibitors (TKIs) for EGFR, ALK, ROS1, BRAF, or
MET (7–11). Furthermore, the introduction of immune
checkpoint blockers (ICBs) such as monoclonal antibodies that
target programmed death-1 (PD-1) or programmed death
ligand-1 (PD-L1) and antibodies against cytotoxic T-
lymphocyte antigen-4 (CTLA-4) have indicated a new
direction for lung cancer care (12, 13). To further improve the
treatment efficiency, there is an urgent need to deeply
understand the mechanisms of acquired resistance so as to
provide a theoretical basis for effective treatments at the time
of emergence.

In 2016, Yoshinori Ohsumi was awarded the Nobel Prize in
Medicine for his contributions in elucidating the genetic basis of
autophagy (14, 15). autophagy is generally believed to be an
evolutionarily conserved physiological process, which is
triggered by cellular stress or nutrient depletion, leading to
the circulation of intracellular compounds. The vesicle fuses
with lysosomes, and through subsequent degradation, new
metabolites are produced to meet cell metabolism and energy
requirements (9, 16, 17). Actually, in mammalian cells,
protein degradation during autophagy occurs through three
different mechanisms, including macroautophagy, and
two other relatively less studied types, namely microautophagy
and chaperone-mediated autophagy (CMA) (18). In
macroautophagy, double-membrane vesicles are formed
through a closed restriction membrane, which separates cargo
proteins from the rest of the cytoplasmic components.
Interestingly, proteins enter the lysosome cavity through the
invagination of the lysosomal membrane surface in
microautophagy (18). Different from the above, the selective
pool of cytosolic proteins degraded by CMA are directly
translocated across the lysosomal membrane (19, 20).

As a matter of fact, autophagy has a Janus character in the
initiation and progression of cancer. On the one hand, autophagy
prevents carcinogenesis by reducing the damage of cells
(including DNA), but once carcinogenesis occurs, the role of
autophagy in energy balance would help in cultivating cancer
cells, thereby helping these aggressive cancer cells to grow in the
stress environment (21). This makes the role of autophagy not
only limited to protecting the host, it also has a function that is
not welcomed, including the promotion the recurrence and
invasion of cancer. Results from genetically engineered mouse
models (GEMMs) of lung cancer, pancreatic cancer and
melanoma induced by mutations in RAS or BRAF indicated
that autophagy inhibited the growth of early benign tumors, but
accelerated the growth of advanced cancers (22–26).
Furthermore, there is accumulating evidence indicating that
autophagy inhibition could be a potential approach in the
treatment of advanced cancer (27). Therefore, a more in-depth
understanding of how autophagy affects events in cancer cells
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and the response of patients to treatment may contribute to the
improvement of treatment regimen for NSCLC.

In this article, we will review the research progress on the role
of autophagy in NSCLC progression, the mechanism of
autophagy affecting NSCLC progression, as well as clinical
results obtained so far using autophagy inhibitors in NSCLC.
With the increasing results of clinical research focusing on
autophagy, the review of these topics is particularly timely,
which would enable us to target autophagy effectively to
improve the clinical prognosis of patients with NSCLC.
2 THE PROCESS OF AUTOPHAGY

Macroautophagy (hereafter referred to autophagy) is a multistep
lysosomal degradation pathway that supports nutrient recycling
and metabolic adaptation, which has been implicated as a
process that regulates cancer (14). Mastering the mechanisms
of autophagy flux can promote the development of effective
compounds, thus ultimately treating autophagy-related cancers.
Based on our current knowledge, the autophagy pathway
includes at least 5 steps, which are initiation, vesicle
nucleation, vesicle maturation, vesicle fusion and cargo
degradation (Figure 1).

Autophagy is initiated by activation of Unc-51-like kinase 1
(ULK1) complex, which comprises ULK1, ULK2, autophagy-
related gene 13 (ATG13), focal adhesion kinase interacting
protein 200 kDa (FIP200) and ATG101. ULK1 complex can
integrate two main stress signals in cells, including nutrient
regulator (mTOR) and energy stress factor (AMPK). The
ULK1 complex is usually inactive, and it is activated when
mTORC1 is inhibited or AMPK is activated.

Once ULK1 kinase is activated, it would trigger the
phosphorylation and activation of the Beclin1 -VPS34 (a class
III phosphatidylinositol 3-kinase (PI3K)) complex, which
includes Beclin1, VPS34, and other proteins such as activating
molecule in BECN1-regulated autophagy protein 1 (AMBRA1),
VPS15, ATG14, and UV radiation resistance associated gene
protein (UVRAG), which depends on the subcellular localization
of the complex (28). The activated Beclin1-VPS34 complex
achieves vesicle nucleation through the formation of
phosphatidylinositol 3-phosphate (PI3P) on membranes that
can be derived from the endoplasmic reticulum (ER),
mitochondria, plasma membrane (29–31).

During the maturation process, the formation of
autophagosomes requires two unique protein conjugation
events (32, 33): 1) ATG7 and ATG10 conjugate ATG5 to
ATG12, and then ATG5-ATG12 binds to ATG16L1 to form a
complex, and the ATG5-ATG12-ATG16L1 complex gets
anchored onto PI3P produced by VPS34 on neonatal
autophagosome through WIPI2B scaffold (34); 2) ATG4
cleaves pro-LC3 to generate soluble LC3-I, which is then
conjugated to lipid phosphatidylethanolamine (PE) on the
surface of the emerging autophagosome by ATG3 and ATG7,
and further follows the guidance of the ATG5-ATG12-ATG16L1
complex (35). Once LC3-I is conjugated to lipid, it becomes
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inserted on the surface of the emerging autophagic vesicles (AVs)
(36). On gel electrophoresis, the lipid-conjugated form of LC3
(LC3-II) migrates faster than LC3-I, so that the ratio of LC3-II
and LC3-I can be used as an approximation of the number
of AVs.

In addition to being a marker for AVs, LC3 on AVs is also a
docking site for receptors of autophagy cargo, bringing
autophagy cargo to AVs. Cargo receptors such as SQSTM1
(p62) and the neighbor of BRCA1 (NBR1) bind to proteins
and organelles through ubiquitin labeling, and then undergo
autophagy degradation (37). Specific cargo receptors will
preferentially bind to specific cargoes, which may provide
selectivity for the autophagy process (38). Once the isolation
membrane is enclosed, it is called the autophagosome (27).

After autophagosomes are formed and cargos are sequestered,
the cargo-bound autophagosomes are transported to the
perinuclear region, where lysosomes exist (39). The
membrane-tethering complexes (HOPS complex, VPS genes),
Rab GTPases and soluble N-ethylmaleimide-sensitive factor
attachment protein receptors (SNARE) along with syntaxin 17
(STX17) help the fusion of the autophagosomes to the lysosome
(40, 41). Lastly, autophagic cargo are degraded by lysosomal
hydrolases, and recycled contents are discharged through
nutrient transporters, thereby fueling cell growth (42).

Although these 5 steps of autophagy are well established,
additional autophagy regulators are still being discovered. These
steps in the autophagy pathway represent potential drug targets,
which provide pathways to influence autophagy positively
and negatively.
Frontiers in Oncology | www.frontiersin.org 3
3 THE ROLE OF AUTOPHAGY IN
NSCLC PROGRESSION

Evidence suggests that the role of autophagy in tumorigenesis
may be dichotomous. On the one hand, mice with allelic loss of
Beclin1 are tumor prone and liver-specific deletion of ATG5 or
ATG7 induces benign hepatomas, which suggest a role for
autophagy in tumor suppression (43–45). On the other hand,
autophagy enables cancer cells to survive from metabolically
stressed and hypoxic regions in solid tumors (46–48).

Interestingly, Rao et al. (49) found that the inactivation of the
essential autophagy geneATG5 at early stage increased the number
and volume of hyperplastic regions and adenomas in the mouse
model of KRAS-driven NSCLC. Conversely, at later stages,
autophagy is required for the progression of adenomas to
adenocarcinomas. Indeed, the role of autophagy in cancer is
environment-dependent, and its upregulation is necessary for
cancer cells to survive in hypoxic tumor regions (50). Moreover,
the transformationof the oncogeneRASup-regulates the basal level
of autophagy to meet the needs of maintaining mitochondrial
metabolism and tumor progression (23, 51, 52). Data from
several studies revealed that, in KRASG12D-and BrafV600E-
NSCLC in adult mice, loss of ATG7 caused tumors to accumulate
defectivemitochondria and leaded to impairedmetabolism.On the
other hand, in the absence of ATG7, cancer cell proliferation is
inhibited, and the tumor develops into benign eosinophil tumor
instead of adenoma and cancer, thereby prolonging the lifespan of
mice (53–55).Karsli-Uzunbas (56) et al. found that, in themodels of
NSCLC, 5 weeks of acute reduction in autophagy transformed lung
FIGURE 1 | The autophagy pathway and multiple stages can be inhibited. The autophagy pathway consists 5 steps. Intracellular membranes are prepared by
initiation and vesicle nucleation to form AVs through the formation of PI3P on membranes. Next, LC3-I is conjugated to PE on emerging AVs. Subsequently, LC3 is
docked with the cargo adapter so that the cargo can be loaded into the AVs. After AVs matures, it fuses with lysosomes to complete the degradation of cargo and
the recycling of nutrients. Autophagy inhibitors are shown in green boxes.
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adenocarcinoma into oncocytomas, and blocked the signal
transduction of mTOR and MAP kinase, as well as cell
proliferation and survival.

Tumors that have formed are more dependent on autophagy
than newly developed tumors and normal tissues. This indicates
that there may be a therapeutic target to inhibit tumorigenesis by
appropriately controlling the extent and timing of autophagy
inhibition, while preserving most of the normal tissues.
Therefore, a comprehensive understanding of tumor
dependence on the autophagy pathway driven by specific
oncogenic events can promote autophagy regulation as an
effective and specific cancer treatment strategy.
4 THE MECHANISM OF AUTOPHAGY
AFFECTING NSCLC PROGRESSION

4.1 Autophagy Shapes the Tumor
Microenvironment of NSCLC
The tumor microenvironment (TME) is shaped by several
processes, such as autophagy and immune responses (57). The
TME takes advantage of autophagy to meet the metabolic needs
of cancer stem cells (CSCs), sounding immune cells, cancer
associated fibroblasts (CAF), angiogenesis, neural connections,
as well as extracellular matrix (Figure 2) (21). Furthermore,
recent studies have shown that there is a complex interaction
between autophagy and epithelial-mesenchymal transition
(EMT), through which cancer cells acquire invasive phenotype
and metastatic potential (58, 59).

4.1.1 CSCs
CSCs are a subgroup of cancer cells, which can promote the
occurrence and development of cancer and are related to the
Frontiers in Oncology | www.frontiersin.org 4
production of drug resistance. Interestingly, it is reported that
CSCs promote and maintain tumor heterogeneity by activating
EMT, Juxtacrine and inflammatory signals in TME (60). It has
been revealed that Lung CSCs can degrade p53 through the
autophagy pathway, thereby enhancing Zeb1 expression and
regulating stemness, suggesting that the autophagy-p53-Zeb1
axis regulates the self-renewal ability of CSCs (61). Moreover,
in lung cancer stem cells, miR-138-5p mimic can inhibit ATG7-
dependent regulation of autophagy and self-renewal (62).

4.1.2 CAFs
NSCLC has a high stromal content, which contribute to low
response rates to current therapies and a poor long-term survival
(63). As one of the most abundant cell types in the tumor stroma,
CAFs have a tremendous influence on remodeling the stromal
compartment within the TME through collagen deposition and
matrix metalloproteinase secretion (64). In vitro and in vivo
analysis using xenograft models of lung cancer indicated that
CAFs produced IGF1/2, CXCL12 and b-hydroxybutyrate and
increased the level of reactive oxygen species (ROS), which
resulted in mTOR inactivation and autophagy increasement in
cancer cells after irradiation (65). In addition, by triggering ROS-
mediated autophagy in neighboring CAFs, cancer cells can use
high-energy metabolites like glutamine and lactic acid to carry
out the tricarboxylic acid (TCA) cycle under stress conditions,
thereby supporting tumor growth and progression (21).

4.1.3 EMT
Recently, autophagy has been connected to EMT, an
indispensable multistep process required for cancer cells’
invasion and metastasis (66, 67). Moreover, studies have also
shown that EMT induced by transforming growth factor (TGF)-
b1 in NSCLC is autophagy-dependent (68). In addition,
FIGURE 2 | A schematic representation of the role of autophagy in cancer cells and non-cancer cells.
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rapamycin-induced autophagy can activate cell migration,
invasion and the expression of EMT markers, and knockdown
of Beclin1 can reverse this phenomenon (69). Another
hepatocellular carcinoma model showed that inhibiting
autophagy in vitro did not alter migration, invasion and EMT
marker expression, while inhibition of autophagy in vivo caused
cells to be sensitive to anoikis and reduced lung metastases (70).

There still exists many questions for cancer and TME treatment
targeting autophagy. To unravel the signal transduction that
controls the interaction between cancer cells and other
components of TME, one of the future focuses may be to develop
new models. For example, the development of 3D co-cultivation
systemmight reveal some important metabolic interactomes in the
TME. In order to have a better future for autophagy targeted cancer
therapy, further basic research and translation studies are needed to
clarify newfindings and solve unansweredquestions, like the role of
bacterial components in the tumor microbiome.

4.2 Autophagy and Metabolic
Reprogramming in NSCLC
Some studies have proved the importance of autophagy in
maintaining the growth and survival of cancer cells by regulating
the metabolism of cancer cells. Interestingly, autophagy enhances
glucose uptake by up-regulating the expression of glucose
transporter type 1 (GLUT1) on the cell surface, while blocking
autophagy leads to accumulation ofGLUT1 in late endosomes (71).
Moreover, it is reported that during glucose starvation, hexokinase-
2 (HK2) converts cell metabolism to autophagy-dependent
pathway from glycolysis-dependent ones through the inhibition
of mTORC1 (72). Deregulation of HK2 in Tongue Squamous Cell
Carcinoma inhibited autophagic activity and weakened the
invasiveness (73). Furthermore, cystine transporter SLC7A11-
mediated cystine introduction depends on autophagy-mediated
localization on the cell, and inhibition of autophagy would result in
inactivation of SLC7A11 (74).

As an important event involved in the processing of
metabolites and biosynthesis, autophagy can promote the
metabolic adaptation of cancer cells in the survival of TME
(Figure 2). Guo et al. found that glutamine or glutamate can
rescue the starving ATG7-deficient KRAS-driven lung cancer
cells, revealing the important role of autophagy in supporting the
cyclic metabolites of TCA and nucleotide synthesis (25). In
addition, adult mice with acute systemic loss of ATG7 died
during fasting. The mice showed obvious muscle atrophy and
died of hypoglycemia, which indicated that autophagy is
necessary to maintain glucose homeostasis (56). Interestingly,
the survival rate of cancer cell lines lacking ATG7 and p53 is
reduced, and lipid cysts are formed, showing dysfunction of lipid
metabolism (55). Additionally, in patients with NSCLC
expressing a mutant form of EGFR, c-Jun n-terminal kinase
(JNK)-induced autophagy results in high levels of glycolysis.
Based on these phenomena, inhibition of autophagy may be a
potential therapy for the treatment of lung adenocarcinoma.

4.3 Autophagy and ROS
ROS participates in the occurrence and development of cancer by
oxidizing cell lipids, damaging the integrity of DNA and
Frontiers in Oncology | www.frontiersin.org 5
proteins, which also makes them more susceptible to the
aggression of cancer (21). Autophagy has been shown to
closely interplay with ROS (75–77). In the process of
tumorigenesis, the production of ROS is related to the
accumulation of dysfunctional organelles, which activates the
autophagy pathway to clear the damaged organelles in the cells.
In turn, the loss of autophagy can further induce ROS formation,
leading to DNA damage (78). Autophagy eliminates
accumulated ROS and relieves the metabolic stress of cancer
cells in the TME, thereby promoting tumor survival (23, 42)
(Figure 2). Cancer cells produce ROS under hypoxic conditions,
and the transfer of ROS to CAFs promotes autophagy, thereby
providing nutrition for the growth of cancer cells (21).
Significant increase in ROS levels can cause DNA damage and
the transformation of metabolism from OXPHOS to glycolysis,
proving that autophagy could promote cancer cell growth by
controlling ROS levels and energy metabolism (23). However,
the role of ROS in the regulation of the progression of NSCLC by
autophagy remains to be further determined.
5 CLINICAL RELEVANCE OF AUTOPHAGY
IN NSCLC

5.1 Autophagy and Drug Resistance in
NSCLC
It is worth noting that more and more studies have shown that
autophagy is closely related to drug resistance in NSCLC. For a
long time, the emergence of resistance to EGFR inhibitors has
been a crucial clinical issue (79). Erlotinib can induce apoptosis
and autophagy in NSCLC cells with EGFR activating mutations,
and inhibiting the autophagy process can enhance the
cytotoxicity of erlotinib to cancer cells (80). In addition, by
inhibiting autophagy in NSCLC cells with wild-type EGFR, the
resistance of NSCLC cells to erlotinib can be eliminated (81).
Moreover, the inhibition of autophagy in TKI-resistant lung
cancer cells can significantly enhance the sensitivity of lung
cancer cells to erlotinib by regulating the endoplasmic
reticulum stress (82). Coincidentally, Han W and other studies
have shown that EGFR-TKIs, such as gefitinib and erlotinib, can
activate autophagy of human lung cancer cells, and then the
growth inhibitory effect of EGFR-TKIs on cancer cells is
weakened (83). In vitro study using cell lines and clinical
samples showed that one of the mechanisms of EGFR-TKI
resistance is LC3a-mediated autophagy activation (79).
Furthermore, other pre-clinical studies have demonstrated that
the inhibition of autophagy can overcome the emergence of
resistance to tyrosine kinase inhibitors in NSCLC and ALK-
positive lung cancer (84, 85). Beyond that, it has been proven that
hypoxia-induced autophagy in lung cancer leads to resistance to
the chemotherapy drug cisplatin (86). Based on the
phenomenon that EGFR-TKIs induce autophagy (83, 87), and
autophagy may lead to chemotherapy resistance (88), researchers
speculate that autophagy may be a protective mechanism for
cancer cells and contribute to the emergence of drug resistance
in NSCLC.
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Elucidating the role of autophagy in drug resistance will aid in
exploring how to manipulate autophagy to maximize the effect of
cancer therapy. As the link between autophagy and drug
resistance continues to strengthen, autophagy will undoubtedly
become a promising target in cancer therapy. At the same time, it
is also urgent to advance the combination therapy of autophagy
modulators and existing antitumor drugs in clinical trials.

5.2 Autophagy Promotes Tumor Evasion in
Antitumor Immune Responses
Autophagy has been reported to modulate immune components,
mainly containing T and B lymphocytes, natural killer (NK)
cells, tumor-associated macrophage (TAMs), and dendritic cells
(DCs), Myeloid-derived suppressor cells (MDSCs), thereby
interfering with host innate and adaptive immune responses.
Autophagy in immune cells located in TME controls host
antitumor immunity and induces an immunosuppressive
microenvironment (Figure 2).

Upon systemic autophagy inhibition by chloroquine (CQ), as
well as tumor-specific autophagy inhibition, infiltration of CD8+

T cells and an increase of MHC-I molecules on the surface of
Frontiers in Oncology | www.frontiersin.org 6
cancer cell make them sensitive towards ICB, thereby inhibiting
the growth of tumors (89, 90). The combination of anti-PD-1/
PD-L1 blockade and Vps34 inhibition promotes the mass
production of pro-inflammatory cytokines and chemokines
CCL5, CXCL10 and IFN-g, as well as the accumulation of
CD4+, CD8+ T and NK cells, DCs and M1 macrophages, thus
enhancing the efficacy of treatment (Figure 3) (91). In addition,
autophagy can inhibit the antitumor immune responses by
triggering the degradation of cytotoxic granules released from
CD8+ T and NK cells (92, 93). Furthermore, the combination of
antitumor drug 5-FU and CQ can augment the response of CD8+

T cells to HCT-116 colon cancer cells and promote the
maturation of DCs (94). It is worth noting that the conditional
deletion of ATG7 in KRASG12D-driven lung cancers closely
correlated with abundant tumor infiltration by CTLs and
macrophages (55, 95). Interestingly, Ma et al. found that SKIL
promoted tumorigenesis and immune escape of NSCLC cells
through upregulation of TAZ/autophagy axis and inhibition of
downstream STING pathway, resulting in decreased T cell
infiltration and release of chemokines such as CXCL10, CCL5
and IFN-b (96).
FIGURE 3 | Autophagy-mediated immune evasion of cancer cells: Knockdown of ATG7, or dominant negative expression of ATG4B or treatment of chloroquine
leads to the inhibition of autophagy, which induces the accumulation of MHC-I on the surface of cancer cell. The MHC-I accumulation promotes the recognition and
effect of CD8+ T cells on cancer cells. Likewise, inhibiting autophagy results in the infiltration of TAMs and the conversion of macrophages from M2 to M1 phenotype,
thereby enhancing the antitumor activity. What is noteworthy is that impairment of LAP results in activation of T cells mediated by STING, producing granzyme B and
IFN-g to kill the cancer cells. In addition, the combination of PIK3C3/VPS34 inhibitors with anti-PD-1 and PD-L1 therapy could increase the numbers of NK and
CD8+, CD4+ T cells, macrophages and dendritic cells along with CCL5 and CXCL10 infiltrating in tumor environment. Moreover, SKIL promoted tumorigenesis and
immune escape of NSCLC cells by up-regulating the TAZ/autophagy axis and inhibition on downstream STING pathway, thereby resulting in reducing T cell
infiltration and release of chemokines including CXCL10, CCL5 and IFN-b.
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Besides that, specific deletion of two essential genes, ATG7 or
ATG5, in Treg cells impaired their survival fitness and lineage
stability, leading to loss of Treg and greater tumor resistance
(97). In addition, it was shown that by inducing autophagy to
promote the survival of MDSCs, the high mobility group box 1
can induce an immunosuppressive tumor microenvironment,
thereby promoting tumor progression (98). Furthermore,
glycolysis inhibits the formation of autophagy, and enhances
the expression of autophagy-mediated partial hepatic
enrichment activating factors, thereby promoting the
expression of granulocyte-macrophage colony stimulating
factor, which supports the development of MDSCs in
tumors (99).

In most solid tumors, autophagy plays a crucial role in
controlling macrophages at different stages, especially the
polarization. Interestingly, in B16 melanoma and H22 liver
cancer tumor-bearing mouse models, CQ treatment promotes
the antitumor immunity mediated by CD8+ T cells via activating
the inflammatory cytokines, thereby causing TAMs to deviate
from conversion of M2 phenotype to M1 phenotype (100).
Interestingly, LC3-associated phagocytosis (LAP) has been
shown to contribute to the polarization of macrophages
towards M2 phenotype in TME (101). Larissa D et al. found
that, upon phagocytosis of dying cancer cells, LAP-deficient
TAMs induce antitumor T cell responses by triggering STING-
mediated type-I interferon responses and augmenting the
expression of pro-inflammatory gene (101).

It is noteworthy that inactivation of the autophagy gene ATG5
leads to accelerated tumorigenesis at early stages by promoting the
infiltration of Treg cells in a mouse model of NSCLC (49).
Therefore, great importance should be attached to the right
staging and grading of tumors to maximize the efficacy of
autophagy inhibitors from the perspective of clinical application.

5.3 Biomarkers of Autophagy in NSCLC
A major challenge in all of the clinical studies has been identifying
appropriate pharmacodynamic biomarkers which are specific in
evaluating changes within autophagy. Nevertheless, there are few
effective and specific autophagy-related biomarkers currently
identified, which are crucial for selecting patients for autophagy
inhibitor-related clinical trials and evaluating the effect of
treatment. See Table 1 for some examples of autophagy-related
proteins with biomarker potential.

5.3.1 LC3B
Microtubule-associated protein 1 light chain 3B (MAP1LC3B,
LC3B) is one of the best studied proteins in autophagy-related
proteins, and has been utilized as an autophagy marker in
multiple trials in vivo and in vitro. Accumulating evidence
showed that the high expression of LC3B is related to the high
aggressiveness and adverse prognosis of many types of cancers,
including colorectal cancers (102), breast cancer (103) and
hepatocellular carcinoma (104). It’s worth noting that a recent
study of NSCLC evaluated the relationship between the
expression levels of LC3B and p62 and prognosis, and found
that high punctate expression of LC3B may be associated with a
good prognosis (105).
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5.3.2 LC3A
Early studies reported that there are three different distribution
patterns of LC3A in solid tumors through immunohistochemical
staining, including diffuse distribution in the cytoplasm,
paranuclear and “stone-like” structure (SLS) distribution (106),
and each distribution pattern represents a different prognostic
result. It is worth noting that the increase in the number of SLS is
related to the adverse prognosis of NSCLC (107).

5.3.3 p62
In the process of autophagosome formation, p62 acts as a bridge
linking LC3 and its substrates (116). Since p62 is degraded in the
autophagy flux, it is generally believed that the accumulation of
p62 protein in the cell is a sign of the inhibition of autophagy
(19). In NSCLC, the high expression of p62 significantly related
to the tumor’s high aggressiveness and poor prognosis
(108, 109).

5.3.4 ULK-1/2
ULK-1 and ULK-2 are the only serine/threonine kinases in the
process of autophagy (117, 118), and small molecule inhibitors
for ULK-1/2 are under development (118, 119). In hepatocellular
carcinoma, ULK1 expression was reported to be negatively
correlated with 5-year progression free survival (110).
However, no association of ULK-1/2 with prognosis in NSCLC
is available from current researches. To better determine the
prognostic value of ULK1 and ULK2 in different cancer types,
more studies are urgently needed in larger patient cohorts.

5.3.5 Beclin1 and VPS34
As a key regulator of autophagy, Beclin1 was reported to be an
independent prognostic biomarker in the NSCLC (111).
Similarly, Zheng et al. (112) reported that the high expression
of Beclin1 is related to the better prognosis of NSCLC, indicating
that Beclin1 may become a favorable prognostic marker
of NSCLC.

5.3.6 ATG4B
As the enzymatic roles of cysteine protease ATG4B are of great
significance in the process of autophagy, it is currently referred as
one of the potential therapeutic targets (120, 121). Intense
presence of ATG4B was significantly associated with worse
disease-specific survival in oral squamous cell carcinoma (113).
Previous researches revealed increased expression of ATG4B in
lung cancer cells (122), but its prognostic value for different
cancers is poorly understood.
5.3.7 Additional Autophagy-Related Biomarkers
Of course, there are also reports on the potential of other
autophagy-related proteins as biomarkers. For instance, in
primary resected squamous cell carcinomas of the lung,
chaperone-mediated autophagy markers LAMP2A and HSC70
have been identified as independent poor prognostic markers
(114). In addition, Jiang et al. (115) identified 16 autophagy-
related long non-coding RNAs (lncRNAs) which have significant
prognostic value for LUAD patients.
Frontiers in Oncology | www.frontiersin.org 8
5.4 Autophagy Can be Inhibited at
Multiple Stages
Formation of the autophagosome requires the assistance of
various genes called autophagy related (ATG) genes, which are
evolutionarily-conserved (123). Interestingly, accumulating
evidence revealed that autophagy can be inhibited at multiple
stages (Figure 1). It’s reported that two drugs MRT67307 and
MRT68921 have been synthesized to inhibit ULK1 and ULK2
specifically, which lead to the inhibition of autophagy flux (119).

After the phosphorylation of Beclin1 by ULK1, it promotes
the localization of autophagic proteins to the phagophore. It is
being proved that the pro-autophagic activity of Beclin1 can be
attenuated since BCL-2 and BCL-xL can interact with Beclin1 at
the BH3 domain (124). In addition, phosphorylation of VPS34
(also known as PIK3C3) reduces its interaction with Beclin1,
which can be targeted pharmacologically within the upstream by
3-methyladenine (3-MA) and wortmannin (125) which can
inhibit PI3K, or VPS34 inhibitors, like RNAi or SB02024,
SAR405 (91, 126).

The process of growing double membranes undergoing
maturation and finally forming autophagosomes requires the
participation of a variety of enzymes, including ATG4B, ATG7,
and ATG10. Studies have shown that the ATG4B inhibitor
NSC185058 (121) have both in vitro and in vivo antitumor
activity. Besides, another study found that inhibition of
autophagy by knocking down ATG7 or expressing dominant
negative ATG4B in cancer cells resulted in a significant increase
in the number of CD8+ T cells infiltrating in pancreatic
tumors (89).

Later on, protein STX17 promotes the fusion of
autophagosomes and lysosomes to produce autolysosomes. In
this regard, CQ or hydroxychloroquine (HCQ) and bafilomycin
A1 can inhibit the fusion of autophagosomes with lysosomes,
and lysosomal inhibitors such as Lys05, quinacrine, VATG-027
and VATG-032 can also be utilized to target this process to
inhibit autophagy (127–131).

As an autophagy inhibitor, the clinical efficacy of CQ
undoubtedly illustrates the promise of autophagy inhibition as
a therapeutic strategy, but also highlights the critical need for
new inhibitors of autophagy, including the development of new
compounds, as well as promotion of translation into clinical
medicine. In this regard, certain inhibitors mentioned above are
showing initial promise.

5.5 Clinical Trials Targeting Autophagy
in NSCLC
Indeed, clinical intervention trials targeting autophagy in cancer
treatment are already underway, most of which focus on
inhibition of autophagy. In March 2022, a search for the
search term “autophagy and cancer” on the ClinicalTrials.gov
website showed 91 studies, mainly focusing on inhibiting and
evaluating autophagy to improve prognosis of cancer patients.

As the only drugs used to inhibit autophagy in current clinical
practice, CQ and hydroxychloroquine (HCQ) can prevent the
degradation of cargo by deacidifying the lysosome and blocking
the fusion of autophagosomes with lysosomes (132). Early
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clinical evidence for improving treatment effects by inhibiting
autophagy comes from a small trial involving 18 patients with
glioblastoma, which revealed that the median survival of patients
receiving CQ combined with radiotherapy and temozolomide
alkylation treatment was significantly prolonged compared with
the control group (133). Hereafter, a randomized, double-blind,
placebo-controlled trial demonstrated that administration of CQ
in addition to the conventional treatment of glioblastoma
multiforme can improve the mid-term survival rate (134).

The integrated results of published clinical trials (Table 2)
indicate that HCQ is safe for the treatment of NSCLC.
Interestingly, a dose-escalation phase I study was conducted with
erlotinib and HCQ in patients with advanced NSCLC who had
previously temporarily benefited from EGFR inhibitor therapy.
They found that taking HCQ 1000 mg daily was tolerable and safe
for patients. One patient had a partial response to the combination
of erlotinib and HCQ, and the overall response rate was 5% (135).
Furthermore, seventy-three patients with NSCLC or breast cancer
with brain metastasis were randomly grouped, with patients
receiving full brain radiotherapy and 150 mg of CQ per day for 4
weeks or the same schedule of full brain radiotherapy and a
matching placebo. In their study, they found that combination of
full brain radiotherapy and CQ improved the control of brain
metastasiswithno increase in toxicity (136). In addition, a phase Ib/
II report of chemotherapywithHCQrevealed that additionofHCQ
could reverse chemotherapy resistance in advanced NSCLC (137).

Clinical trials, in which CQ or HCQ were utilized as
autophagy inhibitors that targeting lysosomes, have proved the
safety of targeting autophagy in the treatment of cancer. In
addition to lysosomal inhibitors, other autophagy-specific
inhibitors are still under development, including drugs
targeting early steps, such as ATG4B and ULK1. Although
preliminary data are encouraging, these compounds are still in
early preclinical studies (138).
6 CONCLUSION AND
FUTURE PERSPECTIVE

As the leading cause of cancer-related death, NSCLC remains
difficult to cure. Elucidating the molecular mechanisms of
NSCLC and discovering new biomarkers will aid in developing
more specific and efficient therapies. Autophagy is an important
physiological activity that controls cell survival and death,
affecting cell homeostasis and clinical therapeutics. With an
Frontiers in Oncology | www.frontiersin.org 9
increasing understanding of the role and mechanisms of
autophagy, the problems we currently face are clearly more
complex than initially anticipated. Above all, we need to
identify some reliable compounds targeting key components of
autophagy to deepen our understanding of the consequences of
pharmacological regulation of autophagy and help translate it
into clinical use. In clinical trials, investigating the clinical
efficacy of currently available autophagy-modulating
compounds will improve our understanding of the effects of
these autophagy-modulating agents and promote its translation
in clinical applications. In clinical trials, studying the clinical
efficacy of currently available autophagy-modulating compounds
helps to deepen our understanding of the effects of these
autophagy-modulating agents, thus establishing relevance to
preclinical models.

Autophagy is essential for maintaining glucose homeostasis
and tumor growth in lung cancer (139). Based on this fact, it’s
reasonable to assume that tumor growth can be restricted
through the inhibition of autophagy. Notably, there is also
evidence that autophagy deficiency triggers inhibition of
antitumor immunosurveillance (49), which undoubtedly points
to other therapeutic concepts. Overall, the fact that autophagy
has been described as both tumor suppressor and tumor
promoter in NSCLC does not mean that it cannot be
therapeutically modulated. The overwhelming evidence points
to inhibition of autophagy in NSCLC, and the results of the
combination of chemotherapeutics and autophagy inhibition
have led to the initiation of several clinical trials of
chemoradiotherapy in combination with hydroxychloroquine
(NCT01649947; NCT00728845). The predictive value of mouse
models is limited due to the significant differences in immune
system function between mice and humans, as well as the
inherent limitations of oncogenic induction and genetically
engineered models. Therefore, the impact of modulating
autophagy on antitumor immune responses still needs to be
evaluated in clinical trials.

There is still no complete and reliable system to assess
autophagy in human samples, including blood and tumors,
which undoubtedly limits our ability to evaluate autophagy
regulation in clinical trials. In order to have a better future for
autophagy targeted cancer therapy, further studies should focus
on developing better biomarkers as pharmacodynamic markers
for the efficacy of autophagy inhibitors and patient selection in
the treatment. At the same time, it is obvious that, as tool
compounds and autophagy inhibitors, stronger and specific
autophagy inhibitors are needed.
TABLE 2 | The ongoing clinical trials using therapy targeting autophagy in NSCLC.

Clinical trial identifier Autophagy Inhibitor Clinical trial Phase Additional treatment

NCT01649947 Hydroxychloroquine II Paclitaxel
Carboplatin
Bevacizumab

NCT00728845 Hydroxychloroquine II Paclitaxel
Carboplatin
Bevacizumab
May 2022 | Volum
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