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Introduction
IL-10 is a potent monocyte/macrophage regulatory
cytokine that inhibits expression of proinflammatory media-
tors [1,2]. Monocytes/macrophages, B cells, murine Th2
cells, and some CD8+ cells produce IL-10 [3,4].
Macrophages rapidly produce proinflammatory cytokines
such as tumor necrosis factor alpha (TNF-α), IL-1 and
IL-12 after activation with lipopolysaccharide or IFN-γ,
while production of IL-10 is delayed. Once IL-10 is pro-
duced it functions in an autoregulatory fashion to sup-
press proinflammatory cytokine mRNA expression and
protein production [5–7]. In addition, IL-10 suppresses
the expression of MHC class II molecules and costimula-
tory molecules such as intercellular adhesion molecule 1
and B7, leading to reduction in T-cell macrophage interac-
tions [8–10].

The selective suppression of Th1 cell activity is believed to
be due to IL-10 inhibition of IL-12, a differentiation factor
for Th1 cells [11,12]. The release of reactive oxygen and
nitrogen intermediates by macrophages is also sup-
pressed by IL-10 [13,14]. In addition, IL-10 stimulates the
production of cytokine inhibitors such as IL-1 receptor
antagonist [15]. In patients with rheumatoid arthritis, IL-10
is produced by synovial membrane cells and is found at
high levels in the synovial fluid [16,17]. It has been shown
that suppression of IL-10 production by synovial cells is
associated with increased levels of IL-1 and TNF-α, sug-
gesting that IL-10 plays a suppressive role in rheumatoid
arthritis joints [16]. It was also observed that IL-10 directly
stimulated proteoglycan synthesis and reversed the carti-
lage degradation induced by activated mononuclear cells
[18]. These immunosuppressive activities indicate that

CFA = complete Freund’s adjuvant; CIA = collagen-induced arthritis; ELISA = enzyme-linked immunosorbent assay; FACS = fluorescence-
activated cell sorting; FITC = fluorescein isothiocyanate; H & E = hematoxylin and eosin; IFN = interferon; IL = interleukin; MHC = major histocom-
patibility complex; PCR = polymerase chain reaction; Th cells = T helper cells; TNF-α = tumor necrosis factor alpha; WT = DBA/1 wildtype.
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Abstract

IL-10 is a potent immunoregulatory cytokine attenuating a wide
range of immune effector and inflammatory responses. In the
present study, we assess whether endogenous levels of IL-10
function to regulate the incidence and severity of collagen-
induced arthritis. DBA/1 wildtype (WT), heterozygous
(IL-10+/–) and homozygous (IL-10–/–) IL-10-deficient mice were
immunized with type II collagen. Development of arthritis was
monitored over time, and collagen-specific cytokine production
and anticollagen antibodies were assessed. Arthritis developed
progressively in mice immunized with collagen, and 100% of
the WT, IL-10+/–, and IL-10–/– mice were arthritic at 35 days.

However, the severity of arthritis in the IL-10–/– mice was
significantly greater than that in WT or IL-1+/– animals. Disease
severity was associated with reduced IFN-γ levels and a
dramatic increase in CD11b-positive macrophages.
Paradoxically, both the IgG1 and IgG2a anticollagen antibody
responses were also significantly reduced. These data
demonstrate that IL-10 is capable of controlling disease
severity through a mechanism that involves IFN-γ. Since IL-10
levels are elevated in rheumatoid arthritis synovial fluid, these
findings may have relevance to rheumatoid arthritis.
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IL-10 is a potential therapeutic approach for autoimmune
diseases.

In animal models of arthritis, systemic treatment with IL-10
and adenovirus-mediated transfer of viral IL-10 moderately
suppresses the development of arthritis, but is significantly
more effective when combined with IL-4 [19–24]. The evi-
dence for the importance of IL-10 is further supported by
the fact that in vivo anti-IL-10 treatment accelerates
disease in collagen-induced arthritis (CIA) [22].

Most studies focused on investigating the role of IL-10 in
models of arthritis have involved administration of neutral-
izing antibodies, large amounts of IL-10, or gene therapy in
experimental animals. While these studies are helpful in
broadly defining the function of IL-10, it is difficult to deter-
mine the cytokine dose and timing by these means. To
address the effects of complete elimination of IL-10 in vivo
on the development of CIA and to understand the mecha-
nism responsible for IL-10 regulation, we examined the
development of arthritis in homozygous IL-10–/– IL-10-defi-
cient mice.

Materials and methods
Animals, antigens, and immunization procedure
The IL-10–/– mice were generated as previously described
[25]. The original genetic background of these animals
was a mixture of the strains 129/Ola and C57BL/6. These
IL-10–/– mice were backcrossed to DBA/1 for six genera-
tions and further backcrossed for an additional two gener-
ations to DBA/1 (Jackson Laboratories, Bar Harbor, MA,
USA) in our laboratory.

All mice were typed for the IL-10 mutation by PCR using
primer sets that detect either the DBA/1 wildtype (WT) or
the mutated IL-10 gene. In addition, splenocytes from
IL-10–/– mice activated in vitro did not produce IL-10.

The IL-10–/– mice were maintained in sterilized bedding
and food with acidified water. Chicken type II collagen
was used for generation of arthritis as described else-
where [26]. Male and female WT, heterozygous IL-10+/–

and IL-10–/– mice were immunized once with 100 µg
chicken type II collagen emulsified in complete Freund’s
adjuvant (CFA) (Difco, Detroit, MI, USA) by intradermal
injection at the base of the tail.

Assessment of arthritis
Animals were examined for the onset of joint swelling
every other day. A standard scoring system based upon
redness and swelling of each paw (ranging from 0 to 4 for
each paw, thus resulting in a possible maximum severity
score of 16) was used for the assessment of disease
severity. Histologic studies were performed to determine
the extent of joint damage. At the end of the experiment,
hind paws were dissected, fixed, and decalcified before

being embedded in paraffin, and were sectioned at 6 µm
as previously described [27]. Sagittal sections were
stained with H & E.

Assessment of cytokine production by spleen cells in
vitro
Spleens were obtained at various time points after immu-
nization with collagen. Single cell suspensions were pre-
pared as previously described [28]. Splenocytes
(2.0 × 106 cells/ml) were incubated in 24-well Falcon
plates (Fisher Scientific, Pittsburgh, PA, USA) in RPMI-
1640 media containing 7% fetal bovine serum (Life Tech-
nologies, Grand Island, NY, USA), 100 U/ml penicillin,
100 µg/ml streptomycin, 2 mM L-glutamine, 50 mM 2-ME,
1 mM sodium pyruvate, 0.01 mM nonessential amino
acids, and 10 mM HEPES. Cells were stimulated in the
presence or absence of collagen (100 µg/ml). IFN-γ was
measured from day 5 supernatant using the OptEIA
mouse cytokine detection system (BD PharMingen, San
Diego, CA, USA).

Measurement of immunoglobulin isotypes
An ELISA was used to measure isotype-specific antibod-
ies in serial dilutions (1: 500–1.: 2500) of sera. ELISA
plates were coated with 1 µg chicken type II collagen.
Collagen-specific IgG isotypes were detected with peroxi-
dase-labeled rabbit anti-mouse IgG1 or IgG2a (Zymed Lab-
oratories, San Francisco, CA, USA). Titrated
concentrations of IgG1 and IgG2a myeloma proteins were
used to generate a standard curve, and the IgGs were
detected with the same labeled rabbit anti-mouse IgG1 or
IgG2a antiserum.

Flow cytometry
Flow cytometry was performed on freshly isolated spleen
cells. Immunofluorescence staining of cell surface markers
was performed using FITC-labeled antibodies against
CD3, B220, CD11b, and CD11c (BD PharMingen). FITC-
labeled rat IgG isotypes were used as controls. FcRs were
blocked using anti-FcR antibody (24G2). Flow cytometric
analysis was performed using a FACS Caliburflow
cytometer utilizing CELLQuest software (Becton Dickin-
son, San Jose, CA, USA).

Statistical analysis
Analysis of the arthritis score and disease incidence at dif-
ferent time points were carried out using the nonparamet-
ric Mann–Whitney U test. Student’s t test was used for
statistical analysis of all other data. Analyses were per-
formed using SPSS software (SPSS, Chicago, IL, USA).

Results
Augmented CIA in DBA/1 mice lacking IL-10
To determine whether IL-10 functions as an endogenous
inhibitor of inflammatory arthritis, we examined the devel-
opment of disease using the CIA model. Male and female
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WT, IL-10+/–, and IL-10–/– littermates were immunized with
collagen in CFA intradermally. Data from the male and
female mice were pooled because there was no signifi-
cant difference between the two groups.

All mice succumb to arthritis but the time of onset was
somewhat delayed in the WT and IL-10+/– mice compared
with that in the IL-10–/– mice (Fig. 1a). Interestingly, the
number of arthritic WT and IL-10+/– animals began to
recede after day 35, whereas all IL-10–/– mice were still
arthritic at the time of termination of the experiments,
although with reduced severity. Arthritis severity in IL-10–/–

mice was significantly exacerbated in comparison with
that of WT or IL-10+/– mice (Fig. 1b).

Inflamed joints showed typical histopathological abnormal-
ities described previously (synovial proliferation, leukocyte
infiltration, cartilage and bone erosions) [29,30], which
correlated well with the severity of the clinical symptoms.

Taken together, the results described demonstrate that
IL-10 is important for controlling disease severity.

Anticollagen antibody is reduced in IL-10-deficient mice
Induction of CIA is dependent on B cells, and high doses
of antibodies are pathogenic when transferred to naïve
recipients [31]. IL-10 can affect both the viability and the
production of immunoglobulin by B cells [32,33]. To
determine whether the augmentation in CIA correlated
with an alteration in anticollagen antibodies, we collected
sera from animals at the time of sacrifice. Interestingly,
IL-10–/– mice produced significantly less anticollagen anti-
body than either WT or IL-10+/– mice (Fig. 2). Both the
IgG1 and the IgG2a isotypes of anticollagen antibodies
were substantially reduced.

These results suggest that a decrease in anticollagen anti-
body may be the result of a requirement for IL-10 in B-cell
antibody production.

IFN-γγ levels are reduced in IL-10-deficient mice
IFN-γ production is observed early in collagen-immunized
mice, and progressively increases with the time of clinical
manifestation of arthritis. Although the level of IFN-γ corre-
lates with disease, IFN-γ appears to play a dual role in
disease activity. Anti-IFN-γ treatment early in the course of
disease suppresses arthritis, whereas neutralization of
IFN-γ late in disease exacerbates arthritis. In addition,
IFN-γ receptor-deficient mice exhibit exacerbated disease
[34,35].

We were therefore interested in determining whether the
levels of IFN-γ correlated with arthritis in collagen-immu-
nized WT, IL-10+/–, and IL-10–/– mice. Splenocytes were
isolated from immunized mice and cultured in the pres-
ence and absence of collagen (Fig. 3). IFN-γ levels were

significantly suppressed in the IL-10–/– mice in compari-
son with either WT or IL-10+/– animals.

These results confirm that reduced levels of IFN-γ were
associated with exacerbated arthritis in collagen-immu-
nized animals. These data also suggest that IL-10 posi-
tively regulates IFN-γ, either directly or indirectly.

CD11b+ expansion correlates with reduced IL-10
Matthys et al. recently showed that the enhanced severity
of CIA in IFN-γ receptor-deficient mice immunized with

Figure 1

Incidence and severity of collagen-induced arthritis (CIA) in DBA/1
wildtype (WT), IL-10+/–, and IL-10–/– mice. (a) Incidence of CIA,
expressed as the percentage of arthritic animals in the WT (n = 17),
the IL-10+/– (n = 12), and the IL-10–/–(n = 11) mice groups. 
(b) Disease severity, expressed as the cumulative arthritis score, in
affected animals. Values are presented as the mean ± standard error
of the mean, and represent one of two experiments. Severity of arthritis
was significantly different between days 20 and 50. * P < 0.05 in
comparison with WT mice.
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type II collagen in CFA is due to an expansion of the
CD11b+ cells [36]. Since IL-10–/– mice produce reduced
levels of IFN-γ, we were interested in determining whether
there was a specific expansion of CD11b+ cells.

Although the spleen cell number increased in IL-10–/–

mice (1.42 × 108 ± 0.17) in comparison with WT mice
(0.84 × 108 ± 0.23), there was a specific expansion of the
CD11b+ cell population. The spleen from WT mice con-
tained 10.7% CD11b+ cells, whereas the spleen of
IL-10–/– mice contained 22.5% CD11b+ cells (Table 1).
When the percentage of cells was corrected for cell
number, there was a 3.7-fold increase in CD11b+ cells in
the spleen of IL-10–/– mice. The net number of T cells, B
cells, and dendritic cells was not significantly different.

These data are consistent with the inhibitory effects of IFN-γ
on expansion of CD11b+ cells. The data suggest that IL-10
is important for controlling IFN-γ and/or other cytokines
involved in the process of CD11b+ cell expansion.

In an attempt to understand the mechanism responsible
for the expansion of CD11b+ macrophages in IL-10–/–

mice, we examined cytokines associated with inflammation
and Th1 cell phenotype. We were unable to detect any
difference in the IL-12 or TNF-α levels in IL-10–/– mice in
comparison with WT mice. However, IL-1β was signifi-
cantly increased in IL-10–/– animals (Fig. 4).

These results suggest the possibility that IL-1β may play a
role in CD11b+ cell expansion.

Discussion
IL-10 appears to play an important role in the regulation of
several autoimmune disease models. Treatment with
recombinant IL-10 in CIA, in proteoglycan-induced arthri-
tis, and in experimental autoimmune encephalomyelitis
reduced disease severity, and neutralizing IL-10 with anti-
bodies exacerbated disease [19,20,22,23]. The present
data are consistent with previous results and show that a
complete absence of IL-10 exacerbates inflammation in
CIA [37–39]. The anti-inflammatory properties of IL-10
suggest that endogenous IL-10 may function as a regula-
tor of proinflammatory mediators in vivo [39]. It is interest-
ing, however, that disease severity inversely correlates
with the levels of IFN-γ in IL-10–/– mice, suggesting that
IL-10 may control disease activity via regulating IFN-γ
responses.
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Figure 2

Collagen-specific antibody response is reduced in IL-10–/– mice.
DBA/1 wildtype (WT) (n = 17), IL-10+/– (n = 12) and IL-10–/– (n = 11)
mice were immunized with collagen, and the serum antibody isotypes
to collagen were measured by ELISA. Values are presented as the
mean ± standard error of the mean. * P < 0.05 in comparison with WT
mice.
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IFN-γ levels are reduced in IL-10–/– mice. Spleens were harvested from
collagen-immunized mice and restimulated with collagen ex vivo.
Supernatants were harvested on day 5 and assayed by ELISA. Values
are presented as the mean ± standard error of the mean of: (a) DBA/1
wildtype (WT) (n = 17), IL-10+/– (n = 12), and IL-10–/– (n = 11) mice;
and (b) WT (n = 13) and IL-10–/– (n = 7) mice. * P < 0.05 in
comparison with WT mice.
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Although CIA is considered a Th1-type disease mediated
by IFN-γ, the role of IFN-γ in the pathogenesis of CIA is not
clearly understood. IFN-γ appears to have two separate
functions, disease promoting as well as disease limiting
[40]. Neutralization of IFN-γ with antibodies early in the
course of disease exerts a suppressive effect, whereas
anti-IFN-γ treatment late in disease enhances arthritis [41].
Also, disease severity in CIA is enhanced in IFN-γ recep-
tor-deficient mice, and loss of the IFN-γ receptor turns
mice normally resistant to CIA into an arthritis-susceptible
strain [34,35]. IFN-γ thus provides a dominant protective
effect in CIA. The reduction in IFN-γ in IL-10-deficient mice
is consistent with the disease-limiting properties of IFN-γ.
These results suggest that IL-10 plays an unexpected role
in regulating IFN-γ production in CIA.

Recent work by Matthys et al. demonstrates that the pro-
tective effect of IFN-γ is dependent on the presence of the
mycobacterial component of the adjuvant [36]. Only when
mice are immunized with collagen in CFA is there an
increase in disease severity in IFN-γ receptor-deficient
mice. Ablation of IFN-γ in these mice is associated with
extramedullary hemopoiesis and expansion of CD11b+

cells. Consistent with this observation, a similar increase
in CD11b+ cells was observed in the IL-10–/– mice. These
data suggest that IL-10 controls the IFN-γ concentration in
vivo and that the reduced level of IFN-γ in IL-10–/– mice
contributes to expansion of CD11b+ cells and increase in
disease severity. The increase in IL-1β we observed in
IL-10–/– mice may account for the increase in CD11b+

cells as IL-1β is known for its hematopoietic properties
[42].

In addition to the cellular immune response, anticollagen
antibodies are required for the development of arthritis. In
the studies presented, despite the increase in disease
severity in the IL-10–/– mice, anticollagen antibodies are
reduced. This reduction in antibody levels may be a direct
effect on B cells due to a loss of IL-10 or may be an indi-
rect effect due to downregulation by IFN-γ. The Th1
cytokine IFN-γ is important in vitro and in vivo for enhance-
ment of IgG2a secretion [43]. It is expected that loss of
IFN-γ should result in a reduced collagen-specific IgG2a
response, but it is unexpected that the IgG1 response
would also be reduced. These results indicate that IL-10
has a direct effect on maintaining antibody production in
CIA. In addition, loss of the anti-inflammatory effect of
IL-10 appears to overdrive the requirements for high levels
of anticollagen antibodies in CIA.

Conclusion
In summary, these results suggest that IL-10 is an impor-
tant regulator of inflammation in vivo. In CIA, a deficiency
in IL-10 leads to an increase in disease severity. The cor-
responding reduction in IFN-γ levels and the expansion of
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Table 1

Ratio of cell populations between DBA/1 wildtype spleen and IL-10–/– spleen in IL-10 deficient micea

DBA/1 wildtype IL-10–/–

Cells % n × 107 % n × 107 Ratio of cell number, IL-10–/–/WT

CD3 16.4 ± 0.68 1.3 ± 0.4 9.7 ± 3.8 1.4 ± 0.6 1.07

B220 63.7 ± 2.5 5.3 ± 1.6 31.8 ± 3.3 4.5 ± 0.5 0.84

CD11c 4.1 ± 0.4 0.3 ± 0.1 2.33 ± 0.7 0.3 ± 0.1 0.94

CD11b 10.7 ± 2.0 0.9 ± 0.1 22.5 ± 3.7 3.2 ± 0.8* 3.7

a The percentage of CD3, B220, CD11c, and CD11b cells was determined by flow cytometry as described in Materials and methods, and the
exact number of cells calculated based on the total number of splenocytes. Values are presented as the mean ± standard deviation of three mice.
The ratio was calculated as the number of IL-10–/– cells divided by the number of DBA/1 wildtype cells. * Significantly different (P < 0.05 in
comparison with DBA/1 wildtype).

Figure 4

IL-1β levels are increased in IL-10–/– mice. Supernatants were
harvested on day 5 and assayed by ELISA. Values are presented as
the mean ± standard error of the mean of DBA/1 wildtype (WT)
(n = 12) and IL-10–/– (n = 7) mice, and represent one of two
experiments. * P < 0.05 in comparison with WT mice. TNF-α, tumor
necrosis factor alpha.
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CD11b+ cells suggests a potential mechanism for IL-10
regulation of CIA.
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