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Abstract

Arterial stiffness is a biologic process related to ageing and its relationship with cardiovascular risk is well established.
Several methods are currently available for non-invasive measurement of arterial stiffness that provide valuable
information to further assess patients’ vascular status in real time. In kidney transplantation recipients, several factors
could accelerate the stiffness process, such as the use of calcineurin inhibitors (CNIs), the presence of chronic kidney
disease and other classical cardiovascular factors, which would explain, at least in part, the high cardiovascular mortality
and morbidity. Despite the importance of arterial stiffness as a biomarker of cardiovascular risk, and unlike other
cardiovascular risk factors (e.g. left ventricular hypertrophy), only a few clinical trials or retrospective studies of kidney
recipients have evaluated its impact. In this review we describe the clinical impact of arterial stiffness as a prognostic
marker of cardiovascular disease and the effects of different immunosuppressive regimens on its progression, focusing on
the potential benefits of CNI-sparing protocols and supporting the rationale for individualization of immunosuppression in
patients with lower arterial elasticity. Among the immunosuppressive drugs, a belatacept-based regimen seems to offer
better vascular protection compared with CNIs, although further studies are needed to confirm the preliminary positive
results.
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Introduction

High cardiovascular mortality and morbidity in kidney trans-
plant patients remains a great concern. Although the 1-year
survival rates post-transplantation are high, cardiovascular risk
in these patients is higher than in healthy subjects [1, 2].

Cardiovascular disease is the leading cause of death and
the second cause of graft loss in kidney recipients [3].
However, classic cardiovascular risk factors are not reliable

predictors of cardiovascular events in this population; in fact,
the risk score calculators used for the general population usu-
ally underestimate the cardiovascular risk in kidney recipients
[4]. Immunosuppressive therapy and other unconventional
risk factors (such as arterial stiffness) could explain the failure
in predicting cardiovascular events in this population. Among
immunosuppressive drugs, steroids and calcineurin inhibitors
(CNIs) have a negative impact on the cardiovascular system
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[5, 6], as they are potent vasoconstrictors that directly lead to
vascular fibrosis [7]. Moreover, treatment regimens based on
the use of CNIs and corticosteroids increase blood pressure
(through salt retention and/or hyperactivation of the renin–
angiotensin system) and low-density lipoprotein cholesterol
levels, thus indirectly affecting the vasculature [8, 9].

Prednisone withdrawal and CNI-sparing therapy protocols
are tempting strategies to reduce the cardiovascular burden in
kidney transplant recipients, but these immunosuppressive
regimens might increase the risk of rejection, thereby limiting
their potential clinical benefit [10]. Instead, an individualized
immunosuppressive protocol could improve outcomes in
selected patients with high cardiovascular and low immuno-
logical risk. Biomarkers would be useful towards such per-
sonalized medicine, but unfortunately they are still lacking.
Consequently, transplant clinicians are looking for tools to
predict and prevent cardiovascular events.

In contrast to this discouraging scenario, some recent stud-
ies have addressed the importance of arterial stiffness parame-
ters as powerful predictive variables of cardiovascular events in
kidney transplant recipients [11, 12].

Arterial stiffness is a biologic process related to ageing [13,
14] and blood pressure [15], but also with inflammation [16, 17],
arterial calcification [18] and stage of chronic kidney disease
(CKD) [19]. In kidney transplant recipients, several studies have
also associated arterial elasticity with donor age [20], donor vas-
cular stiffness (in the case of living donors) [21], new-onset dia-
betes post-transplantation [22], cold ischaemia time [23], renal
graft function [glomerular filtration rate (GFR)] [24], hypomagne-
saemia [25] and resistance training [26]. In addition, CNI therapy
is known to contribute to vascular stiffness acceleration [27].

Arterial stiffness in hypertensive patients has been studied
in previous clinical trials [28, 29] that showed certain classes of
blood pressure–lowering drugs appear to decrease stiffness
more effectively than others, although this might be related to
their better control of blood pressure [30]. In kidney transplant
studies, except for a few minor studies that analysed the effect
of several immunosuppressive protocols on arterial stiffness,
only two recent randomized clinical trials have introduced arte-
rial stiffness as a secondary endpoint [31, 32].

Here we provide a descriptive review of the literature focus-
ing on the usefulness of pulse wave velocity (PWV) as a predic-
tor of cardiovascular events and on how immunosuppressive
therapy could modify arterial stiffness in kidney transplant
recipients.

Arterial stiffness evaluation in kidney
transplantation

The three layers of the arterial wall contribute, each to a differ-
ent extent, to its elastic property, which can be measured at
both macro- and microscale levels [33]. With ageing and/or due
to concurrent diseases (e.g. arteriosclerosis), the balance
between elastin fibres and collagens tends to be disrupted in
favour of the latter. This process involves several players,
including matrix metalloproteinases [34–36], which degrade
elastin fibres and the connections between them, calcium depo-
sition in the tunica media and collagen glycosylation by
advanced glycation end products (AGEs) [37]. Also, endothelial
and vascular smooth muscle cells can affect the elastic property
of the arterial wall, although the mechanisms are not well
understood [33]. All the aforementioned factors cause an accel-
eration of arterial stiffness progression.

The gold standard for measuring arterial stiffness is intra-
aortic arterial pressure measurement, an invasive method
requiring arterial catheterization [38]. Nowadays, there also
exist several non-invasive methods for arterial stiffness
assessment [39, 40], with PWV calculation being the most
widely used. Since the aorta has elastic properties, after each
systole, pressure is transmitted through the aortic wall and
branches, generating a forward wave with a propagation speed
(PWV) that depends on the wall elasticity, being faster in
patients with greater stiffness [41]. When the wave reaches the
impedance points on the arterial tree, it generates a reflected,
backward wave that, in presence of increased stiffness,
reaches the aorta during the systole of the same cardiac cycle,
thus causing an augmentation of the central aortic pressure
(AP) that can be quantified as the augmentation index (Aix),
defined as the percentage of the central pulse pressure attrib-
uted to the reflected pulse wave [42].

Figure 1 shows how structural changes in the aorta, small
arteries and arterioles modify the PWV, Aix and pulse pressure,
the three parameters commonly evaluated in studies of arterial
stiffness.

A detailed description of the definition of arterial stiffness
and of the validity of all methods currently available for the
evaluation and measurement of aortic stiffness has been
recently and exhaustively reviewed by Adenwalla et al. [43].

Increased arterial stiffness in kidney
transplant recipients is a powerful predictor of
cardiovascular events

Results from PWV measurements should be evaluated based on
the patient’s age. Although the 2007 European Society of
Hypertension/European Society of Cardiology hypertension
guidelines recommend a fixed threshold value of 12 m/s to
detect patients with high cardiovascular risk [44]. More recently,
a consensus document has set this value at 10 m/s [45].
However, irrespective of the cut-off value, cardiovascular risk is
increased even at a lower threshold [44].

In a Dutch study including a kidney transplant cohort of 330
patients, the PWV was found to be predictive of cardiovascular
events and survival, irrespective of the patient’s age.
Interestingly, patients with a PWV of �7.5 m/s showed worse
survival rates than those with a PWV <7.5 m/s [46].

In 2011, in a prospective study of a cohort of 512 kidney
transplant recipients, PWV, together with central AP and Aix
were measured at the time of kidney transplantation. After a
mean follow-up of 5 years, PWV and AP were included in a
model based on clinical variables and laboratory data to predict
cardiovascular events. Adding PWV and AP data led to a net
reclassification improvement for cardiovascular events of
15.9%. Moreover, patients with a PWV of �8.1 m/s had worse
cardiovascular survival compared with patients with a PWV
<8.1 m/s [11].

Lastly, a recent study from a Norwegian group including
1022 kidney transplant recipients showed that below a cut-off
value of 12 m/s, each increment in PWV of 1 m/s starting from
8 m/s was associated with a 36% increase in mortality risk [12].

The aforementioned studies demonstrate the powerful pre-
dictive value of PWV for cardiovascular events and mortality
(see Table 1), irrespective of age and other clinical or laboratory
variables, thus confirming data obtained from other studies
involving different patient populations [47].
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Arterial stiffness and immunosuppression

As previously described, CNI toxicity on arteries is well known,
at least at the microcirculatory level. Two types of toxicity for
cyclosporine have been described: acute and chronic toxicity
[48]. Acute toxicity is a functional alteration due to an imbal-
ance between vasoconstrictors and vasodilators, leading to a
decrease in renal blood flow and to an increase in vascular
resistance, particularly at the arteriolar level. Since arteriolar
network resistance is the last barrier against pulsatile pressure
and represents the gate of the backward wave [49], this

vasoconstriction at the arteriolar level is probably the cause of
augmentation of certain stiffness parameters (Aix and AP) in
patients treated with cyclosporine. Several factors seem to
play a role in this acute toxicity: hyperactivation of the renin–
angiotensin system [50], upregulation of endothelin receptors
[51], endothelial cell injury [52], alteration in L-arginine nitric
oxide production and hyperactivation of the sympathetic
system [53]. Calcium antagonists and angiotensin receptor
blockers (ARBs) or angiotensin-converting enzyme inhibitors
(ACEis) are known to mitigate the acute toxicity, which makes

Fig. 1. Scheme of wave propagation according the PWV model. (A) Healthy subject/healthy artery: PWV is slow at the aortic level and fast at small (muscular) arteries.

Each wave represents the sum of a unique forward wave (blue arrow) and multiple backward waves (black arrows). Backward waves are generated from reflection

points located in the circulatory system: bifurcations (green dashes) and small arteries and arterioles (not shown in the figure). Due to the PWV gradient (i.e. the length

and resistance at reflection points), backward waves reach, with a delay, the systolic peak of the forward wave, so there is no significant augmentation pressure (or

Aix). (B) Patients with arterial stiffness: aortic media calcification and atherosclerotic plaque (red arrow - pulse presure) tend to increase the PWV at the aortic level.

Moreover, changes in muscular tone and structure in small arteries and/or arteriolar hyalinosis (yellow arrows) increase resistance, amplifying the magnitude of

reflected waves. As a consequence, more prominent backward waves reach the forward wave near the systolic peak, thus generating a notable increase in central AP,

expressed as augmentation pressure.

Table 1. Main studies on the predictive power of arterial stiffness for cardiovascular endpoints (mortality and event)

Source
Number

of patients
Follow-up

(mean years)
Independent predictive
power for CV death: PWV

Independent predictive
power for CV death: Aix or AP

Mitchel et al. 2010 [46] 330 3.8 YES NA
Verbeke et al. 2011 [11] 512 5 YES YES
Dahle et al. 2015 [12] 1040 4.2 YES NA

Aix, augmentation index; AP, aortic pressure; CV, cardiovascular; PWV, pulse wave velocity. All studies used a Sphigmocor device for calculation of PWV and Aix or AP.
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it difficult to understand how all these factors contribute to
acute vascular toxicity [54, 55].

Chronic toxicity is characterized by a structural change in
vessels, particularly small arteries and arterioles [56]. Hyalinosis
lesions on the arteriolar wall, a hallmark of CNI toxicity, are
present in protocol biopsies at 10 years in the majority of
patients receiving tacrolimus or cyclosporine [57]. Treatment
using the mammalian target of rapamycin (mTOR) inhibitors
(imTORs) sirolimus and everolimus has been shown to attenu-
ate allograft vasculopathy in heart transplant recipients [58–60].

Whether immunosuppressive drugs can modify PWV, directly
or indirectly influencing vasculature, remains largely speculative
and difficult to demonstrate for the following reasons [61]. First,
transplantation per se ameliorates arterial stiffness [22, 62, 63],
probably as a result of recovery in renal function. Renal function
is, in fact, closely related to PWV, as shown by Ford et al. [19].
Moreover, transplantation allows better control of blood pressure,
thus decreasing PWV, although Seibert et al. [64] showed that
high PWV was related to cardiovascular events after kidney
transplantation, regardless of peripheral blood pressure. Finally,
the majority of studies published so far are small-scale, retro-
spective and case–control (see Table 2).

Despite these limitations, there is some evidence of a protec-
tive effect of CNI-sparing protocols on the progression of arterial
stiffness in kidney transplant recipients. Table 3 summarizes
the impact of different immunosuppressive drugs on PWV, Aix
and blood pressure.

CNIs and stiffness

Initial data on CNI effects on large arterial functions have been
conflicting. In a prospective study, Zoungas et al. [63] compared
PWV before and after kidney transplantation in 36 patients. At
12 months post-transplantation, PWV improved in all patients,
irrespective of cyclosporine or tacrolimus use, although Aix
reduction was greater in patients treated with tacrolimus
(�8.0 6 16.5% versus �27.4 6 18.2%; P ¼ 0.01).

In a small study, Covic et al. [73] showed that cyclosporine
acutely decreased the Aix. However, the study lacked a control
group and the decrease in Aix after cyclosporine uptake was
related to a decrease in the timing of the reflected wave, which
could lead to an increased PWV in the long term.

Interestingly, in the same period, a cross-sectional study
(including 250 stable kidney transplant recipients) showed
that cyclosporine increased Aix and blood pressure
considerably more than tacrolimus [65]. In 2007, Strózecki et al.

[66] compared the PWV in 76 patients taking cyclosporine with
76 patients taking tacrolimus. The two study groups were
matched for main clinical characteristics (age, blood pressure,
time on haemodialysis, diabetes). The cyclosporine group had
higher PWV values compared with the tacrolimus group
(9.33 6 2.10 versus 8.54 6 1.35, respectively; P < 0.01). In
another study by the same group, stepwise multiple regression
analysis showed that age, male sex, mean arterial pressure
(MAP), cyclosporine (versus tacrolimus) and fasting glucose
concentration were independently associated with increased
PWV [74]. The effect of cyclosporine on stiffness is probably
due to an increase in vascular tone or to impaired nitric- oxide

Table 2. Main studies on the effect of IMS on arterial stiffness in kidney transplant recipients

Source Design N IMS Results Limitation

Zoungas et al. 2004 [63] Longitudinal 36 24 CYC PWV: no difference Small
12 TAC Aix: TAC ###/CYC #

Ferro et al. 2002 [65] Transversal 250 146 CYC PWV: NA Design
62 TAC Aix: TAC # versus CYC

Strzóecki et al. 2007 [66] Transversal 152 76 CYC PWV: TAC # versus CYC Design
76 TAC Aix: NA

Seckinger et al. 2008 [67] Conversion CYC to EVR 27 10 CYC PWV: CYC "; EVR # Small
17 EVR Aix: NA Short follow-up

Joannidès et al. 2011 [68] Conversion CYC to SRL 44 21 CYC PWV: CYC "; SRL # Small
23 SRL Aix: CYC "; SRL # Selection criteria

Gungor et al. 2011 [69] Transversal 81 47 CNI PWV: no difference Small
34 imTOR Aix: no difference Mixed CNI/imTOR

Seibert et al. 2014 [70] Transversal 46 23 BLC PWV: no difference Small
23 CYC AP BLC # versus CYC Selection

Melilli et al. 2015 [71] Transversal 40 20 BLC PWV <8.1: BLC 60%, CNI 40% Small
20 CNI Aix: NA CNI mixed

Cruzado et al. 2016 [72] Conversion TAC to EVR 60 32 TAC PWV: no difference Normal PWV
28 EVR Small

Holdaas et al. 2017 [31] Conversion CNI to EVR 164 95 CNI PWV: no difference Normal PWV
69 EVR Aix: NA CNI mixed

Aix, augmentation index; AP, augmentation pressure; BLC, belatacept; CYC, cyclosporine; EVR, everolimus; IMS, immunosuppression; PWV, pulse wave velocity; SRL,

sirolimus; TAC, tacrolimus.

Table 3. Main effects of different immunosuppressive drugs on
PWV, Aix and blood pressure

Drugs
Systemic blood
pressure PWV Aix or AP

Cyclosporine þþþ þþ þþ/þ
Tacrolimus þ/þþ �/þ þ
imTOR (everolimus

or sirolimus)
� � �/þ

BLC � � �
Mycophenolate mofetil � ? ?
Steroid þ ? ?

?, stand for No Data.
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vasodilation, although a study from Silverborn et al. [75] did not
confirm this hypothesis. In their proof-of-concept study, 18 lung
transplant recipients (all treated with cyclosporine) were com-
pared with patients waiting for lung transplantation and healthy
controls. Arterial resistance, non-endothelial-dependent relaxa-
tion and arterial stiffness (by echo tracking) were analysed. Lung
recipients had significantly less elastic arteries than healthy
controls or patients on the transplant waiting list, even though no
difference in blood pressure or endothelial response to nitric oxide
was seen.

Since cyclosporine was found to be related to higher PWV,
conversion to tacrolimus could be an option to improve arterial
stiffness. This hypothesis was tested in a small study where sta-
ble kidney recipients taking cyclosporine (>10 years) were con-
verted to tacrolimus. PWV (by echo tracking) and ambulatory
blood pressure monitoring (ABPM) were performed at baseline
and repeated at 3 months post-conversion. No difference was
observed in blood pressure or PWV, probably due to the short
time span from conversion [76].

Despite the limitations in their study design, all the afore-
mentioned studies suggest a possible negative impact of CNIs,
and especially cyclosporine, on PWV.

imTORs and arterial stiffness

The imTORs everolimus and sirolimus are used in immunosup-
pressive regimens in kidney transplantation. Yet since their
first use, they have not shown superior efficacy in terms of
renal survival or prevention of rejection compared with
tacrolimus [77, 78]. Beyond their immunosuppressive property,
imTORs exert certain pleiotropic effects on atherogenesis [79,
80] and fibrosis [81], so at least in theory, kidney transplant
recipients may benefit from the use of imTORs in terms of arte-
rial elasticity.

In a randomized clinical trial, 17 of 27 patients were
switched from cyclosporine to everolimus 6 months after kid-
ney transplantation. PWV remained stable in the everolimus
group (9.50 6 1.92 versus 9.13 6 1.62 m/s, DPWV �0.37 6 1.14 m/
s), whereas it was increased in the cyclosporine group
(9.93 6 1.94 versus 10.8 6 2.24 m/s, DPWV þ 0.89 6 1.47 m/s) [67].

In a substudy of the CONCEPT trial [68], 23 of 44 patients
were converted from cyclosporine to sirolimus 12 weeks after
kidney transplantation. PWV and Aix were evaluated at weeks
12, 26 and 52. Patients in the sirolimus group experienced a
decrease in PWV, whereas those in the cyclosporine group had
an increase in PWV, with a significant difference at week 52.
Both groups experienced an increase in Aix, which was more
marked in the cyclosporine group. According to the authors, the
progressive decrease in PWV in the sirolimus group was a
cause, rather than a consequence, of the better blood pressure
control.

Despite these encouraging results, a cross-sectional study by
Gungor et al. [69] showed no benefit in terms of PWV or Aix in a
group of patients treated with an imTOR (for at least 6 months,
with either sirolimus or everolimus) compared with treatment
with CNIs (cyclosporine or tacrolimus). In a linear regression
analysis, only conventional risk factors (age, blood pressure,
cholesterol level and proteinuria) were predictive of arterial
stiffness.

More recently, a randomized clinical trial on the effect of late
conversion from CNIs (tacrolimus) to an imTOR (everolimus)
showed a small benefit related to regression of left ventricular
hypertrophy in both groups. As secondary outcomes, changes
in blood pressure (measured by ABPM) and PWV were evaluated

before and after conversion. The median time from transplanta-
tion was 1.7 years for the tacrolimus group (25 patients) and
1.3 years for the everolimus group (31 patients). At 24 months
from randomization, both groups had very well-controlled
blood pressure, although the dipper status was preserved in
more patients on everolimus (30% of tacrolimus-treated
patients were non-dippers versus 22% of patients on everoli-
mus). PWV values at baseline and 12 and 24 months were in the
normal range, with no significant differences between the two
study groups [72].

Another ancillary study from a recent trial [31] evaluated
PWV and blood pressure by ABPM. PWV data were obtained for
277, 223 and 184 patients at randomization and months 12 and
24, respectively. Patients converted to everolimus had a slight
decrease in PWV (month 12: �0.24 m/s; month 24: �0.03 m/s),
whereas patients on cyclosporine experienced a progressive
increase in PWV (month 12: 0.11 m/s; month 24: 0.16 m/s).
Although the difference was not significant, one can argue that
baseline values were in the normal range (mean 7.8 m/s for the
everolimus group and 7.6 m/s for the cyclosporine group).
Follow-up at 24 months confirmed the predictive value of PWV,
since the incidence of cardiovascular events in the entire cohort
was low (2.8% in the everolimus group and 4.8% in the cyclo-
sporine group). In such low-risk populations, a greater number
of patients is necessary in order to show any benefit in a cardio-
vascular endpoint (or PWV) from any therapeutic intervention
(such as conversion to an imTOR). Moreover, since such small
variations (0.4–0.5 m/s) usually occur over a long time span,
follow-up at 24 months was probably too early a time point to
detect any significant change in PWV [82, 83].

Since patients with high PWV at baseline are susceptible to a
steeper increase in PWV [13], we cannot exclude the possibility
that conversion to imTORs is beneficial for these patients.

Co-stimulatory blockade and arterial stiffness

The biologic immunosuppressant belatacept (BLC) is a fusion
protein comprising the common fragment Fc of human immu-
noglobulin G (IgG) and CTL4, which, upon binding to CD80 and
CD86 receptors on antigen-presenting cells (APCs), inhibits co-
stimulatory signals essential for T-lymphocyte activation. In
the two non-inferiority clinical trials BENEFIT and BENEFIT-EXT
[84, 85], BLC was demonstrated to have an anti-rejection effi-
cacy similar to cyclosporine. At the 3-year follow-up, patients
treated with BLC showed better renal function, less renal fibro-
sis in protocol biopsies and a better cardiovascular profile [86].
In particular, at 12 months, systolic and diastolic blood pres-
sures were lower in patients treated with BLC than in those
treated with cyclosporine, as shown in the BENEFIT and
BENEFIT-EXT trials, even though both treatment groups had the
same baseline level of blood pressure. Moreover, in the BENEFIT
trial, both BLC regimens [more intensive (MI) and less intensive
(LI)] were associated with a 30% reduction in the odds of requir-
ing a higher number of antihypertensive medications at month
12 (P¼ 0.02, BLC-LI versus cyclosporine A) [87].

Data analysis from these trials at different time points (12,
36 and 84 months) also showed that patients treated with BLC
had a better GFR compared with patients treated with cyclo-
sporine [87]. A long-term analysis from the BENEFIT trial at
7 years showed a 43% reduction in mortality risk or risk of graft
loss with both the BLC-MI and BLC-LI regimens compared with
the cyclosporine regimen [88]. Since GFR is a powerful predictor
of cardiovascular events and mortality in kidney transplant
recipients [89, 90], these results were not unexpected.
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In addition to better survival rates related to GFR, data from
other studies suggest improved control of arterial stiffness in BLC-
based regimens. In an experimental model of hypertension
induced by angiotensin or deoxycorticosterone acetate (DOCA)–
salt, Vihn et al. [91] administered treatment infusion based on
CTLA4-Ig (a drug with effects mimicking genetic CD80/CD86 defi-
ciency) in mice, thus preventing hypertension acceleration. A pos-
sible influence of the immune system on hypertension is not new,
since the contribution of T cells in DOCA–salt-induced hyperten-
sion in thymectomized mice was shown >25 years ago [92]. In
mild hypertension, endothelial vessel damage causes the release
of damage-associated molecular patterns and altered self-proteins.
Hypothetically these molecules could be recognized as antigens
presented by dendritic cells and thus trigger the immune system,
activating T cells and stimulating cytokine production and inflam-
mation [93], the latter being closely associated with increased vas-
cular stiffness [16].

From a clinical perspective, only two studies have analysed
the impact of BLC on arterial stiffness in kidney transplant recipi-
ents. In the first study, Seibert et al. [70], in a case–control retro-
spective study, compared 23 patients treated with BLC with 23
patients treated with cyclosporine. The two groups showed no
significant differences with regard to gender distribution, age,
body mass index, time on dialysis prior to transplantation
and time since transplantation. After a mean follow-up of
88 months (all patients included had a minimum time from
transplantation of 20 months and were first-kidney recipients),
augmentation pressure was significantly better in the BLC group
[augmentation pressure 12.7 mmHg (range 8.3–16) versus 7.3 (2.3–
11.7); P¼ 0.048], despite no differences in systolic and diastolic
blood pressures (both peripheral and central). PWV mean values
were identical in both groups (8.8 m/s).

In the second study [71], our group compared 20 patients
treated with BLC with 20 patients on CNIs (16 on tacrolimus and
4 on cyclosporine). The control CNI group was matched for all
the main variables affecting PWV. There were no differences in
median PWV between the two groups: 7.9 6 3.4 m/s (range 4.1–
12) in the CNI group and 7.4 6 4 m/s (range 5.2–15.5) in the BLC
group (P¼ 0.4). Due to the large discrepancy in age in our popu-
lation study, we chose a value of 8.1 m/s of femoral-carotid PWV
as the cut-off value for high arterial stiffness, which was shown
to correlate with an increased cardiovascular mortality risk in a
recent retrospective study performed in a transplant population
[11]. In that study, 50% of patients in the CNI group had a PWV
>8.1 m/s versus 25% of patients in the BLC group (P¼ 0.08).
Regression logistical analysis showed that age, renal resistive
index at 3–6 months after transplantation and BLC [odds ratio
0.008 (95% confidence interval 0.004–0.890); P ¼ 0.045] were pre-
dictive variables of PWV.

Although these two studies have some limitations (transver-
sal, lack of a baseline record of arterial stiffness measurements),
data on PWV and augmentation pressure suggest that
improvement in arterial stiffness could be obtained using BLC
as the main immunosuppressant.

Limitations

Although the number of publications on arterial stiffness in kid-
ney transplantation is increasing, most studies present limita-
tions that warrant caution in interpreting the results. As with
any method of measurement performed by an operator, there is
a risk of high interobserver variation. Although the techniques
used to measure arterial stiffness have been validated in terms
of reproducibility in healthy and CKD patients [29, 94, 95], most

published studies on kidney transplantation do not report data
on intra- or interobserver variability, making it difficult to
assess and compare the data quality of each study. In fact, only
a few studies on kidney transplantation have reported an
acceptable variation coefficient index (intraclass correlation
coefficient) for operator variability [21, 76, 93]. There is also an
extreme paucity of data on intrapatient variations in stiffness
parameters.

Confounding factors represent another limitation relevant
to arterial stiffness studies, including blood pressure and the
duration of kidney disease, both closely related to arterial stiff-
ness. In kidney transplantation, studies published so far have
only reported the impact of time on dialysis [22, 25, 66], whereas
data on the duration of disease and/or blood pressure are
scarce. Moreover, most of these studies analysed only the rela-
tionship between a single determination of blood pressure and
stiffness parameters. More rigorous blood pressure determina-
tions using ABPM and repeated arterial stiffness measurements
are needed in order to confirm a possible independent effect of
immunosuppression on arterial stiffness. Other confounding
factors such as diabetes and disorders of mineral and bone
metabolism are also related to arterial stiffness in kidney trans-
plantation [25, 68, 96]. The use of vitamin D supplementation
may produce a decrease in PWV in CKD patients [97], although
no data on vitamin D repletion in recipients are available.
Nonetheless, paricalcitol did not seem to exert a reducing effect
on PWV after 1 year of treatment, as shown by Pihlstrøm et al.
[32] in a randomized trial on the effect of paricalcitol on para-
thyroid hormone levels in kidney transplant recipients.

In conclusion, all these confounders mask the true magnitude
of the impact of immunosuppressive regimens on arterial stiffness.

Open questions and ideas for future clinical
studies

Measurements of PWV, Aix and AP usually take between 20 and
30 min when performed by an experienced operator, which
stands as one of the obstacles to widespread use of arterial stiff-
ness evaluation in patients on transplant waiting lists or after
transplantation. Although magnetic resonance and/or certain
blood pressure devices can assess stiffness parameters, thus
rendering these tests less cumbersome, these parameters have
not yet been proven to be predictive of cardiovascular events
[43, 98, 99]. Moreover, measurement devices approved by
regulatory agencies is often unaffordable in many health care
systems, thus restricting their use to research purposes only.

Since baseline high PWV values predict a higher cardiovascular
risk, future trials in transplantation could include basal PWV as a
biomarker to discriminate those patients at very high cardiovascu-
lar risk who could benefit from a CNI-free immunosuppressive reg-
imen (BLC-based, for example). Moreover, monitoring of PWV after
transplantation at different time points could identify those
patients with rapid progression of arterial stiffness who could ben-
efit from conversion of CNIs to imTORs or who need tighter control
of mineral and bone metabolism or blood pressure.

Conclusion

Kidney transplant recipients with higher values of PWV are at
increased cardiovascular and mortality risk. Preliminary data
from small studies indicate that CNIs, and especially cyclospor-
ine, could increase PWV in renal transplant recipients.
Although some studies suggest a possible protective effect of
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imTORs on arterial stiffness, data from two randomized trials
have not shown significant differences after either early or late
conversion of CNIs to imTORs. The reduction in cardiovascular
mortality risk shown by long-term results from BLC trials could
be due to a decrease in arterial stiffness, which warrants further
investigation.
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