
High-resolution functional annotation of human
transcriptome: predicting isoform functions by a
novel multiple instance-based label propagation
method
Wenyuan Li1,y, Shuli Kang1,y, Chun-Chi Liu2, Shihua Zhang3, Yi Shi1, Yan Liu4 and

Xianghong Jasmine Zhou1,4,*

1Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern
California, Los Angeles, CA 90089, USA, 2Institute of Genomics and Bioinformatics, National Chung Hsing
University, Taiwan 40227, Republic of China, 3National Center for Mathematics and Interdisciplinary Sciences,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China and
4Department of Computer Science, University of Southern California, Los Angeles, CA 90089, USA

Received September 13, 2013; Revised November 19, 2013; Accepted December 10, 2013

ABSTRACT

Alternative transcript processing is an important
mechanism for generating functional diversity in
genes. However, little is known about the precise
functions of individual isoforms. In fact, proteins
(translated from transcript isoforms), not genes,
are the function carriers. By integrating multiple
human RNA-seq data sets, we carried out the first
systematic prediction of isoform functions, enabling
high-resolution functional annotation of human
transcriptome. Unlike gene function prediction,
isoform function prediction faces a unique chal-
lenge: the lack of the training data—all known func-
tional annotations are at the gene level. To address
this challenge, we modelled the gene–isoform rela-
tionships as multiple instance data and developed a
novel label propagation method to predict functions.
Our method achieved an average area under the
receiver operating characteristic curve of 0.67 and
assigned functions to 15 572 isoforms. Interestingly,
we observed that different functions have different
sensitivities to alternative isoform processing, and
that the function diversity of isoforms from the same
gene is positively correlated with their tissue ex-
pression diversity. Finally, we surveyed the literature
to validate our predictions for a number of apoptotic
genes. Strikingly, for the famous ‘TP53’ gene, we not
only accurately identified the apoptosis regulation

function of its five isoforms, but also correctly pre-
dicted the precise direction of the regulation.

INTRODUCTION

The generation of alternative products from a single gene
locus is a common mechanism for increasing transcrip-
tome and proteome complexity in eukaryotic cells. In par-
ticular, >90% of human genes undergo alternative
splicing (1,2). Still, it remains unclear to what extent al-
ternatively processed isoforms have divergent functions.
Some studies have demonstrated that a large number of
unconserved splicing events produce alternative isoforms
at low abundance, and thus may be non-functional noise
in the transcriptome (3,4). On the other hand, in many
cases, alternatively spliced isoforms have distinct or even
opposing functions (5). Moreover, many genomic variants
relevant to inherited diseases change the ratio of alterna-
tively spliced isoforms or generate disease-associated
aberrant splicing products (6), suggesting the importance
of maintaining a properly spliced transcriptome in healthy
individuals.
Although recent years have seen an increase of studies

on isoform-specific functions, most functional annotations
for proteins are still only recorded at the gene level [e.g. in
the Gene Ontology (7) database]. This is the case even
when the original evidence was resolved at the isoform
level. Owing to the limitations of current experimental
techniques, there are very few data available for isoform
functions, although such high-resolution data are crucial
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to understand protein functions. To fill this gap, this
article reports the first systematic prediction of isoform
functions by designing a novel multiple instance-based
label propagation method and by integrating many
genome-wide RNA-seq data sets.
In gene function prediction studies, protein sequence-

based features (e.g. domain annotation and sequence simi-
larity) and protein interactions are usually regarded as
important characteristics and thus are widely used (8,9).
However, existing encoding or annotation schemes
severely limit the usefulness of such data for isoform
function prediction, for four reasons. (i) Alternative
splicing can regulate protein functions via the selective
removal of structural domains (10,11). However, to
assess protein functions on large scales, existing function
prediction methods only use the number of shared
domains to describe functional association between two
genes (12). Without carefully investigating the detailed
domain annotations, this method is insufficient to distin-
guish functionally distinct isoforms (13). (ii) Many alter-
natively spliced exons that regulate protein functions
generate intrinsically disordered protein sequences
(14,15), which have no influence on domain regions.
(iii) Distinct isoform functions have been observed even
in cases, where only a few amino acids change due to the
alternative splicing (16–19). These subtle variances are dif-
ficult to capture with sequence-based features. (iv) The
protein–protein interaction data frequently used in gene
function studies are generally recorded at the gene level,
without information about which isoform was actually
tested in the experiments. Even in cases where a specific
transcript has been annotated, most of the time it is the
canonical isoform (i.e. the best studied one). This would
lead to a systematic bias towards canonical isoforms
when inferring isoform functions using protein interaction
data.
RNA-seq technology can yield genome-wide unbiased

expression profiles at the isoform level. We propose using
the isoform co-expression networks derived from RNA-
seq data to predict isoform functions. Given that several
computational methods have been developed for isoform
expression estimation (20–23) over the past several years,
it is now feasible to profile the expression patterns of in-
dividual isoforms at high-throughput and in an unbiased
manner, opening up great opportunities for elucidating
cellular activities at the isoform level. Recent studies
(15,24) indicate that isoform-level interactions are
usually rewired by tissue-specific exons. As the function
of a protein is largely determined by its interacting
partners, such results further emphasize the importance
of using expression data for isoform function prediction.
From an algorithmic viewpoint, the isoform function

prediction problem is characterized by four major
challenges:

(i) The training data are unconventional. Most existing
functional annotations are assigned to genes but not
isoforms, yet each gene contains one or more
isoforms. These type of data are exactly the ‘mul-
tiple instance (MI)-labelled’ data, in contrast to the
‘single instance-labelled data’ used by traditional

machine learning methods, where the label (a
discrete value representing one of two categories:
+1 or �1) on a training instance gives complete in-
formation about its category. The labels on MI data
are attached to sets of instances (or ‘bags’ in the
jargon of MI learning), not to individual instances.
The standard rule of MI-labelled data is that a bag
is labelled positive only if at least one instance in the
bag is positive, although we may not know which
instances are positive, and the bag is labelled
negative only if all instances within the bag are
negative. In our context of functional annotations
at the gene level, the isoforms are instances and
each gene is a bag of isoforms. If a gene is
labelled as having a function, then we know that
at least one of its isoforms should have this
function; on the other hand, if a gene is labelled
as not having the function, then none of its
isoforms have this function. However, formulating
the existing functional annotation data as MI-
labelled data is only a part of the solution because
of the second challenge described below.

(ii) The isoform function prediction task is unconven-
tional. In fact, we want to make two types of pre-
dictions. The first is ‘inheritance prediction’: given a
gene with a function, we want to know which of its
isoform(s) ‘inherit’ this function. The second is
‘de novo prediction’: we want to predict the func-
tions of isoforms even for genes that are unknown
to have these functions. Inheritance prediction can
take full advantage of the current gene function an-
notations; however, it presents a novel prediction
problem. The fact that a large number of genes
are unannotated to many functions leads us to
consider graph-based semi-supervised learning, also
known as the label propagation (LP) method, due
to its capacity for using unlabelled data.
Nevertheless, few LP methods exist for MI-labelled
networks (25,26), and none of these are suitable for
inheritance predictions.

(iii) Integrating multiple isoform association networks
with ML labels has never been done before. Many
studies in the area of gene function prediction
have demonstrated that combining multiple data
sources can result in higher-quality function predic-
tions (27). We believe that the same principle is
valid for isoform function prediction. However, no
method has been designed for the selection and in-
tegration of multiple MI-labelled networks.

(iv) There is a dearth of validation data for isoform
function prediction. To assess the performance of
our predictions, we need the functional annotations
for isoforms.

To address the first two challenges (i, ii), we propose a
new technique called instance-oriented MI label propaga-
tion (iMILP). iMILP enables both inheritance and de novo
predictions by exploiting the benefits of unlabelled data.
As previously mentioned, existing LP methods for
MI-labelled data aim at classifying bags, not instances
(25,26). In particular, they focus on identifying the single
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most positive instance in each positive bag, and do not
attempt to optimize the scores of all instances within a
bag during the learning process. In contrast, our iMILP
method allows all qualified instances to inherit a positive
bag’s label, via a ‘democratic’ learning process. To address
challenge (iii), we recast the network selection problem as
a feature selection problem, and introduce a wrapper
strategy to solve the problem. Figure 1 illustrates the
iMILP method and network selection and combination
approach. To address challenge (iv), we validate predic-
tions using the set of isoforms, whose host genes are
annotated and contain only a single isoform. Although
there may exist biases in this data set, it is the only large
source of validation data on the isoform level that is avail-
able so far.

Therefore, we have performed the first systematic pre-
diction of isoform functions by integrating 29 isoform co-
expression networks constructed with RNA-seq data
retrieved from the National Center for Biotechnology
Information (NCBI) Sequence Read Archive database.
Our iMILP method obtained an average area under the
receiver operating characteristic curve (AUC) of 0.67, and
assigned 70 392 function annotations to15 572 isoforms.
Our results suggest that although many genes have
isoforms carrying the same function, there is a substantial
fraction of genes with functional variants. We also showed
that functionally diverse isoforms usually have diverse ex-
pression patterns across tissues. An in-depth literature
survey of isoforms related to apoptosis regulation
confirms the majority of our predictions in this functional
category.

MATERIALS AND METHODS

Isoform co-expression network construction

The messenger RNA (mRNA) isoform sequences were ex-
tracted from NCBI Reference Sequences (RefSeq, down-
loaded on January 2013) (28). We discarded all RefSeq
records that were not manually reviewed. To construct

the isoform co-expression networks, we retrieved 29 data
sets of human full-length mRNA sequencing studies from
the NCBI Sequence Read Archive database (29)
(Supplementary Materials for the list of data sets). Each
data set was required to have at least six experiments, and
not to be a population study. The eXpress software (21),
combined with Bowtie2 aligner (30), was used to infer
isoform expression values. The RefSeq mRNA transcripts
were used as transcriptome annotations. Only the ‘Coding
DNA Sequence’ (CDS) sequences were considered to fa-
cilitate the calculation (see ‘Discussion’ section for more
details). The mRNA level expression values were con-
verted directly into protein isoform expressions. In cases
where two or more RefSeq mRNA sequences correspond
to the same protein sequence, they were regarded as be-
longing to a unique protein isoform, and their expression
values were added.
In each RNA-seq data set, a protein isoform is retained

for further analysis only if the coefficient of variation (the
ratio of standard deviation to mean) of its expression
profile is �0.3, and it is significantly expressed with the
expression value �10 fragments per kilobase of exon per
million fragments mapped (FPKM) in at least two
experiments.
We then calculated the Pearson correlation coefficient

(PCC) between the expression profiles of each isoform pair
meeting above criteria. To make the correlation estimates
comparable across data sets with different sample sizes, we
applied Fisher’s z transform (31). Given a PCC estimate r,
Fisher’s transformation score was calculated as
z ¼ 0:5 ln 1+r

1�r

� �
. The distributions of z-scores vary from

data set to data set, so we standardized the z-scores to
enforce zero mean and unit variance in each data set
(32,33). By inverting the z-score, the corresponding
‘normalized’ correlation r’ was calculated and used as
an edge weight in the co-expression networks. For fast
computation, only co-expressed pairs with normalized
PCCs �0.5 were included in the isoform co-expression
networks.

Figure 1. Illustrations of (A–LP) the standard label propagation, with labels assigned to each node, (B–iMILP) the proposed instance-oriented MI
label propagation, with labels assigned to bags of nodes and (C–iMILP+Network Selection) the method of integrating multiple networks before
performing iMILP. Each node represents an instance, and nodes labelled as positive/negative/unknown are as grey/white/question-mark circles with
solid lines. Bags of instances labelled as positive/negative are represented as the large grey/white ovals with dotted lines.

PAGE 3 OF 15 Nucleic Acids Research, 2014, Vol. 42, No. 6 e39

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt1362/-/DC1


Functional annotation of genes

Gene Ontology (GO) data (7) and the UniProt Gene
Ontology Annotation (UniProt-GOA) database (34)
were used as the function categories and gene function
annotations, respectively. By using the ID mapping infor-
mation provided by the UniProt database, GO functions
were assigned to each NCBI’s Gene ID, which includes
one or more RefSeq transcripts. All GO annotations with
the inferred from electronic annotation (IEA) evidence
code were removed from consideration in our analysis
because they have not been verified by human curators.
For a given GO term F, we labelled all its annotated

genes as positive bags. The genes that are only annotated
with its sibling GO terms are labelled as negative bags.
The sibling GO terms of F are defined as those that
share at least one direct parent with F and are not ances-
tors or descendants of F. We selected the functional
categories by two criteria: (i) GO terms associated with
>1000 genes (or <5 genes) were considered too general
(or too specific) and thus ignored; (ii) If a GO term has
>95% of its associated genes also annotated with its
sibling GO terms, this GO term was not considered, as
it is indistinguishable from its siblings. Finally, the re-
maining 4519 GO terms were selected and used in the
function predictions.

Isoform function prediction

The proposed method consists of two components as
shown in Figure 2. (i) The network selection and combin-
ation component chooses an optimal subset of networks
relevant to the given GO category among all input isoform

co-expression networks, then aggregates them into a single
network, which is the input of the second component.
(ii) The predictor component is a novel instance-oriented
MI label propagation method. It takes the combined
network as input and returns function predictions of
isoforms. These two components will be explained in
detail in the following two sections.

Instance-oriented MI label propagation method

All existing LP methods (25,26) for MI-labelled networks
focus on classifying bags. They follow the rule that
‘knowing that one of the instances in the bag is positive
is sufficient for predicting this bag as positive’. The con-
sequence of this rule is that in a positive bag, all but the
most positive instance are ignored. Therefore, these
methods do not help when we need to answer an
instance-level question such as ‘Which instances are
positive in the positive bag?’ In our problem, we are
more interested in knowing which isoforms (instances)
inherit the function of the gene (bag) than which single
isoform is the best representative of the gene’s function.
We propose a novel iMILP method to make predictions at
the instance level. Its label propagation rule is that ‘In the
positive bag, a node (instance) that links to more nodes
from positive bags receives a larger prediction score; any
node that link to no other nodes from positive bags is
demoted to have a prediction score of zero’. Applying
this rule iteratively in the LP method clearly identifies all
instances that are qualified to inherit the bag’s label. In the
following, we first briefly review the standard LP algo-
rithm, then describe how the iMILP algorithm adapts
the LP approach to a network with MI labels.

Figure 2. Flowchart of the proposed method with two components: ‘network selection and combination’ and ‘predictor’. The network selection and
combination component uses the wrapper strategy. The predictor component is our proposed iMILP method.
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Each node i in the network has a label yi 2{+1, �1, 0},
representing a positive, negative or unknown instance, re-
spectively. LP methods usually keep track of a real-valued
prediction score fi2[1, �1] for each node i, which is often
called a ‘soft label’. LP methods diffuse information from
the ‘source nodes’ with unambiguous labels (yi=+1 or
�1) to direct neighbours by matrix multiplication:
f (1)=Lf (0), where f (0) is a vector containing the initial
values of the soft labels for all nodes and its elements are
usually assigned with the labels yi. The matrix L is the
normalized Laplacian of the network (35). Propagating
the labels from source nodes to more distant nodes is ac-
complished by iteratively performing the operation
f (t+1)=Lf (t) (t=0,1,2, . . .), until f (t) converges, where
f (t) is the vector of soft labels for all nodes at the t-th
iteration. However, because the source nodes are
weakened by the diffusion, LP methods include the im-
portant step of restoring all source nodes to their original
extreme values before every diffusion step: f ðtÞi ¼ yi, where
i is the index of each source node. This practice was called
‘clamping’ the source nodes in the pioneering work (36).
The clamping step is critical in that it provides source
nodes with a ‘source of energy’ sufficient to spread their
labels to all reachable nodes in the network.

When the nodes have MI labels, things are different: the
clamping step cannot be performed for source nodes, as
we have no nodes with labels y=+1 in the positive bags.
There do exist labels y=�1 for all nodes in the negative
bags. Therefore, to adapt the LP approach to the MI-
labelled network, it is important to redesign the ‘clamping’
step while keeping the diffusion step. The isoform associ-
ation network (with N isoforms) is represented as an ad-
jacency matrix W ¼ wij

� �
N�N

, where wij denotes the
intensity of association (normalized PCC) between
isoforms i and j. The normalized Laplacian of W is
L ¼ D1=2WD1=2, where D is a diagonal matrix with
Dii=�jwij. We place all isoforms whose gene (real bag)
label is unknown (y=0) into a single new pseudo bag
(called the ‘unlabelled bag’). Because these genes and
their isoforms do not provide any label constraints to
the network, all their isoforms can be grouped into a
single pseudo bag without changing the result. We call
this a pseudo bag because unlike the other bags, it
contains isoforms from more than one gene.

For ease of presentation, a variable name in bold font is
a vector with continuous values. Having defined the
network and terminology, our proposed iMILP algorithm
is as follows:

(i) Initialize the soft label f of each node (isoform) in a
positive, negative or unlabelled bag (gene) as
f=+1, �1 or 0, respectively.

(ii) Clamp the soft labels of nodes as follows:
(a) For each node i in the positive bags, f newi  f i

when fi> e (e is a positive number, close to 0),
otherwise f newi  0.

(b) For each node i in the negative bags, f newi  �1.
(c) For each node i in the unlabelled bag, the soft

label f remains unchanged: f newi  f i.
(d) Within each bag (whether positive, negative or

unlabelled), normalize the vector f new containing

the scores of all nodes in the bag, so that their
squared sum is 1: f  norm(fnew).

(v) Diffuse labels: f  Lf, where f is the vector of soft
labels for all nodes.

(vi) Repeat step (ii) and (iii) until f converges.

We will now explain how the clamping step (step ii)
works for the network with MI labels. Note that the
clamping step is performed on the bag level. We first
tune the soft labels within positive, negative or unlabelled
bags in different ways, based on their definitions in the
MI-labelling scheme, then normalize each bag for
recharging bags.
In a positive bag, nodes with negative soft labels (or

even more strictly, nodes with f< e) are ‘demoted’ to 0,
as indicated in step ii(a). The threshold e should be in-
versely related to the number of instances n in the
positive bag. In practice, we used e=0.01=

ffiffiffi
n
p

. This is a
‘democratic’ learning process that retains all qualified in-
stances of the bag. In contrast, existing MI+LP learners
(25,26) use an ‘authoritarian’ process that promotes only
one ‘witness node’ (the one with the maximum f value
after diffusion) in each positive bag, and ignores all
others. In a negative bag, following the MI-labelling
rule, all nodes must be negative and receive equal f
scores �1, as shown in step ii(b). However, the negative
signals may dominate the network when there are many
negative bags. This problem is alleviated by the next step
[step ii(d)] of normalizing the f scores in the negative bags.
In the single ‘unlabelled bag’, there are a large number of
isoforms whose host genes do not have labels. We keep
their f scores unchanged for they can serve as bridges for
information to diffuse from the labelled bags throughout
the network. Although we do not clamp the nodes in the
unlabelled bag, we still need to normalize the bag to guar-
antee convergence after each diffusion step; otherwise, the
soft labels of these nodes can grow out of control.
Therefore, the next normalization step [step ii(d)] is im-
portant and has different purposes for different types of
bags.
In the normalization step ii(d), we normalize all bags by

constraining the squared sum of the soft labels in a bag
equal to 1. This normalization has three implications for
the solution: (i) all bags are equal, (ii) the soft labels f of
nodes are proportional to their contributions to the bag
and (iii) the larger the bag, the lower the f scores of its
nodes. The first two effects are desirable. The third effect
does not affect either inheritance or de novo predictions
because soft labels only need to be comparable within a
bag, not across bags. Figure 3 illustrates the diffusion and
clamping steps using an example network with 15 nodes.
It can be observed in the figure that f scores of the nodes
inheriting labels of the positive/negative bags are replen-
ished after each clamping step.
After the soft labels f of all nodes converge, we need to

make the final prediction for each node. For inheritance
predictions, we assign positive labels to all nodes with
non-zero f scores in the positive bags. The criterion
should be more stringent for de novo predictions, which
are less reliable. In practice, we have empirically set a
threshold of 0.05 so that all nodes with f no less than
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this threshold in the pseudo unlabelled bag are predicted
to be positive.
The algorithm is computationally efficient with a com-

plexity of O(kjEj+kjVj), where k is the number of iter-
ations (50 is usually enough for convergence), while jEj
and jVj are the numbers of edges and nodes in the

network, respectively. The source code is available on
our website (http://zhoulab.usc.edu/IsoFP).

Network selection and combination algorithm

There exist several network selection and combination al-
gorithms (8,37–39) for gene function prediction. However,

Figure 3. Illustration of the iMILP approach with a 15-nodes example network. The initial network with its MI labels is shown in (A). Red dotted
ovals represent positive bags of nodes, and green dotted ovals represent negative bags of nodes. (B) Each node is initialized with soft labels according
to step i of the iMILP algorithm. After a series of alternating label propagation and clamping steps (C–F), the soft labels converge to (G), which
gives the final prediction scores. The shade of colour in a node indicates the value of its soft label. The varying shades show how labels propagate in
each diffusion step, and how the positive/negative bags are replenished in each clamping step, for preparing the diffusion in the next iteration. In (G),
finally, both inheritance and de novo predictions are correctly made by the colour of these nodes.
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all of them are designed for networks where labels are
assigned to individual nodes. Therefore, they are not im-
mediately suitable for networks with MI labels. To select
informative networks for each GO category among all
input networks, we cast the problem as a feature selection
problem, where each network can be viewed as a feature.
This viewpoint allows us to apply established feature se-
lection strategies to the network selection problem.
Specifically, we use the wrapper method, which is a
widely used feature selection strategy (40). As shown in
Figure 2, it uses the prediction performance of network
subsets to guide a search for the best subset. To evaluate
each subset, a performance score is obtained by applying
the predictive model to selected networks with the K-fold
regular cross-validation (details of the performance evalu-
ation are in the following subsection). Our wrapper algo-
rithm uses a greedy sequential forward strategy (41) to
find the best subset of networks. The greedy search heur-
istics adds a new network to its currently selected subset
only if doing so improves the prediction performance. The
detailed procedure is presented below.

After selecting a subset of m networks G ¼ fi1, . . . ,img
(where i is the index of each network), we used equal
weights to combine them into a single network as
�W ¼

P
h2G Lh, where Lh is the normalized Laplacian of

network h.

Evaluation of the prediction performance

In this section, we explain in detail how the prediction
performance evaluation is implemented for two different
purposes: (i) as a part of the wrapper method, to score
each subset combination of networks and (ii) to assess the
proposed method as a whole. Below we present the two
evaluation methods for these two purposes, respectively.

As aforementioned, the wrapper method needs to assign
a quality score to each network subset. For this purpose,
the prediction performance of the network subset selected
is used as its quality score and can be estimated via the
K-fold regular cross-validation. To make the large-scale
evaluation of isoform-specific function predictions

feasible, we take advantage of the functional annotations
assigned to single-isoform genes because the only isoform
in each single-isoform gene must carry the gene function.
Therefore, for each GO term, we defined the positive
isoforms as those from the positive single-isoform genes,
and the negative isoforms as those from negative genes.
We then performed the K-fold regular cross-validation,
where all positive and negative genes (whatever single-
isoform or multi-isoform genes) were randomly divided
into K equal-size partitions, respectively. The test set
uses all positive isoforms from positive single-isoform
genes and all negative isoforms from negative genes in a
partition, and the training set contains all labelled genes/
bags of all other partitions. To dismiss possible random
effects, this cross-validation procedure was repeated 10
times. For each round of cross-validation, we measured
the AUC, which is the widely used performance measure
in gene function prediction. Finally, we took the average
AUC over all 10 rounds of the K-fold regular cross-valid-
ation. This average is reported as the quality score of the
selected subset of networks for each GO term.
For the second purpose of assessing the performance of

our proposed method as a whole, we used the K-fold
nested cross-validation (42,43), which can provide a
more unbiased estimate of the true performance than the
K-fold regular cross-validation when a model selection
step is involved (network subset selection in our case).
The K-fold nested cross-validation includes the outer
and inner cross-validation loops. The outer cross-valid-
ation loop is used to evaluate the prediction performance;
and the inner cross-validation loop, which is actually a
(K�1)-fold regular cross-validation, is used by the
wrapper method to measure and select the best network
subset (i.e. model selection), as described in the previous
paragraph. The K-fold nested cross-validation was
repeated 10 times, and the average AUC was reported as
the final performance of our method for each GO term. In
this study, we used K=5 for the nested cross-validation,
in which the inner loop is a 4-fold cross-validation for
network selection.

Final predictions

We need to use all the labelled data for making the final
predictions. Therefore, we can perform the following two
steps: (i) apply the wrapper method with the K-fold
regular cross-validation on all labelled data to select the
best network subset and (ii) then train the predictive
model with this best network subset on all labelled data
for making final predictions. In practice, K=5 is used for
the final predictions.

Isoform function dissimilarity calculation

When a GO term is assigned to an isoform, all of its an-
cestors are assigned to this isoform accordingly because of
the hierarchical relationships of GO terms. To remove
unnecessary redundancy in the GO prediction results, we
discarded every GO term being the ancestor of any other
GO term assigned to the same isoform. Only isoforms that
belong to the same gene and have predicted GO term(s) in
the same GO branch were compared to investigate

Input: M networks and a prediction performance
measure
Output: a subset of networks G.
Step 1: Apply the predictor algorithm (iMILP) to each
individual network in order to obtain their prediction
performance scores. Then use these scores to sort the
networks in the non-increasing order.
Step 2: Let G be a set containing the top-ranking
networks. For each network i in the sorted order,

. G0=G[{i} : add network i to the subset G;

. Use the network subset G0 to predict isoform
function and obtain its prediction performance
score, perf(G0);

. If perf(G0)> perf(G), G=G0; otherwise stop and
return the selected networks.

PAGE 7 OF 15 Nucleic Acids Research, 2014, Vol. 42, No. 6 e39



functional dissimilarity. Annotations in the three GO
branches, biological process (BP), cellular component
(CC) and molecular function (MF), were considered sep-
arately. The similarity score of two isoforms was estimated
using G-SESAME method (44) and the dissimilarity score
is simply defined as one minus the similarity score. The
isoform functional divergence of a gene was calculated as
the average dissimilarity score over all possible isoform
pairs with GO annotations in the same branch.

RESULTS

Prediction performance of the iMILP method

The 29 RNA-seq data sets that we used to generate
isoform co-expression networks cover a wide range of ex-
perimental and physiological conditions. We first applied
our method to each single network. As shown in
Figure 4A, no single network yielded an average AUC
across all GO terms better than 0.53. The average AUC

across all 29 single networks is only 0.48, even worse than
a random guess (AUC 0.5). Therefore, we applied the
wrapper method to select and combine a different subset
of networks for each GO term. Our wrapper method
resulted in a dramatically increased AUC score of 0.67,
averaged across all GO terms (Figure 4A). This demon-
strates the necessity of integrating multiple data sets for
isoform function prediction.

GO annotations vary from highly specific functions that
only involve a few genes, to some general categories with
many associated genes, such as ‘cell cycle’. To investigate
whether the performance of our label propagation method
is influenced by the number of positive bags in the
network, we divided the GO terms into 18 groups, follow-
ing a standard procedure used in previous gene function
prediction studies (8), then evaluated the performance of
our algorithm in each group. These groups are based on
the major GO branches (BP, CC and MF) and on sizes
(the number of genes annotated with a GO term). Six size
ranges were defined: [5,10], [11,20], [21,50], [51,100],

Figure 4. Prediction performance of the proposed method. (A) Average AUC score across all GO terms, for each individual isoform co-expression
network (blue bars), and for the combined network using a different subset of networks for each GO term (red bar). (B) Average AUC scores over
all terms within one of three GO branches (BP–biological process, CC–cellular component and MF–molecular function) and one of six ranges for the
number of genes with the GO term (5–10, 11–20, 21–50, 51–100, 101–200 or 201–1000). GO terms annotating fewer genes are more specific. The bars
show average AUC scores for each group.
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[101,200], and [201,1000]. Figure 4B shows that the mean
AUCs are higher than 0.6 in all GO groups. However, we
also observed that the more genes annotated by a GO
term, the (slightly) worse the prediction performance.
This trend is consistent with previous gene function pre-
dictions (8). A possible explanation is that genes
associated with GO terms of larger size are usually more
heterogeneous, and thus it is harder to accurately predict
the labels of their isoforms.

Functional annotations of isoforms

We applied our method to the entire training data set to
generate the final function predictions of human isoforms.
Our method selected and combined more than one
networks for 75.0% of the GO terms (Figure 5A). The
use of each network is shown in Figure 5B. We obtained
70 392 isoform-level function predictions, 13 621 of which
were de novo function predictions, meaning the host genes
are not annotated positively or negatively with predicted

Figure 5. Network usage in the final predictions. (A) Given the number (K) of networks selected by the wrapper method to achieve the best AUC
scores, each bar represents the number of GO terms that use the K networks for predictions. (B) The frequency of each network chosen in the final
predictive models. The indexes of these networks are those of their corresponding RNA-seq data sets.
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functions in the current GO database. Therefore, as a side
product, our de novo predictions also contribute to func-
tional annotation at the gene level. In addition, we pre-
dicted the functions of 8856 isoforms that have at least one
annotation inherited from their host genes. In general, we
believe that these inheritance predictions are more reliable
than de novo predictions. Therefore, in the following
analysis of the properties of isoform functions, we
focused on the inheritance predictions.
With the isoform-level annotation being resolved, we

became interested in seeing which gene functions are
usually shared by many isoforms of the same gene, and
which functions are inherited by one or only a few
isoforms. We proposed the concept of inheritance rate
(IR): given a GO term and a multi-isoform gene annotated
by this term, IR is calculated as the ratio between the
number of isoforms assigned to the GO term and the
total number of isoforms of this gene. A high IR
suggests that this function of the gene is robust against
alternative isoform processing; otherwise it is highly sen-
sitive to this process. Among all GO terms annotated to at
least 10 genes, the functions with the highest IR values are
‘nucleic acid transport’, ‘RNA splicing, via transester-
ification reactions’, ‘cellular protein localization’ and
‘hair follicle maturation’. The functions that are most sen-
sitive to the regulation of isoforms are ‘regulation of
membrane potential’, ‘actin cytoskeleton reorganization’,
‘taxis’ and ‘positive regulation of apoptotic process’.

Functional divergence among isoforms

Among the 7714 multi-isoform genes annotated in the
RefSeq database, 2534 (791 or 1572) genes have at least
two isoforms that have GO BP (CC or MF) terms
assigned in our study. For each of these genes, we
calculated the dissimilarity scores (see ‘Materials and
Methods’ section) of all isoform pairs with annotations
in the same GO branch, and then used their average as
the gene level function dissimilarity score. We found that
within each GO branch, a large number of genes have
isoforms that share the same or similar functions (dissimi-
larity score between 0 and 0.1) (Figure 6A). Specifically,
among BP, CC and MF annotations, 19.0 (482), 44.8 (354)
and 30.7% (483) of the genes, respectively, have multiple
isoforms annotated with identical functions. Nevertheless,
there are also a considerable number of genes with func-
tionally distinct isoforms. For example, 13.1% of genes
have isoforms with a dissimilarity score based on their
BP terms >0.5 (the proportions for CC and MF terms
are 4.9 and 5.2%, respectively).
We also investigated isoform properties that may be

related to functional diversity. Recent studies (24,15)
have found that isoforms with exons showing tissue-
specific expression patterns can rewire the protein inter-
action network. Because protein functions are often
exerted via protein–protein interactions, tissue-specific
expression may lead to tissue-specific functions.
We examined whether the tissue expression diversity of
isoforms within a gene correlates with their functional
diversity. We first calculated a tissue specificity score
(45) for each isoform based on tissue expression data

from the Illumina Human Body Map 2.0 project. For a
gene with several isoforms, we defined the tissue diversity
as the difference between the maximum and minimum
specificity scores of its isoforms, to control the gene-level
tissue specificity. Again for each GO branch separately
(BP, CC or MF), we divided the genes into two
groups with low and high functional diversity scores. To
dismiss a possible bias introduced by the genes having
different numbers of isoforms, we chose subsets from
the low and high groups, where all genes have exactly
two isoforms. As anticipated, we observed significantly
higher tissue expression diversity in the groups with
higher functional diversity, for all three GO domains
(Figure 6B).

Literature validation of isoforms predicted to regulate
apoptosis

The scarcity of literature on isoform-specific functions
challenges any in-depth exploration of the functions pre-
dicted by our method. Nevertheless, because of the great
abundance of cancer-related literature, there are consider-
able number of studies related to apoptosis-regulating
isoforms. Apoptosis, the essential process that regulates
cell death, is usually distressed in cancer cells.
Intriguingly, several apoptosis genes are capable of
regulating this process in the opposite direction via alter-
native isoforms. Below we provide a literature survey of
four genes and their isoforms related to ‘regulation of
apoptosis’.

The human tumour suppressor gene TP53 is well known
for its role in inducing apoptosis and thus inhibiting
tumorigenesis. According to its RefSeq annotation, 8
mRNA isoforms are ascribed to TP53, corresponding to
seven unique protein products. The canonical isoform of
TP53, p53a, is the full-length transcript composed of two
transcription activation domains (TADs), a proline repeat
domain (PXXP), a DNA binding domain (DBD), a
nuclear localization signalling domain and an oligomeriza-
tion domain (OD) (Figure 7). The other six protein
products differ from the canonical form in TAD, PXXP,
DBD and OD. Two of these, p53b and p53g, are
C-terminal isoforms produced by partial intron retention.
Along with p53a, they demonstrate positive regulation of
the apoptotic pathway (46–48). In p53b and p53g, the OD
is replaced by a short peptide of 10 and 15 residues, re-
spectively. Isoform p53b is reported to enhance the tran-
scriptional activity of p53a, and has weaker proapoptotic
activity than p53a (46,47). A recent study found that
mutant p53 breast cancer patients with p53g expressed
have a particularly good prognosis compared with those
without this isoform expressed (48), indicating the
capacity of p53g to induce apoptosis. Interestingly, two
other isoforms, �40p53a and �133p53a, are reported to
have anti-apoptotic activity (49,46). �40p53a lacks the
first TAD, but the DBD and OD are intact. It is able to
interact with p53a, negatively regulating its transcriptional
activity via competitive binding to specific DNA regions.
In this way, it behaves as a suppressor of the full-length
isoform p53a (49). �133p53a has even more amino acids
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deleted, losing both TADs and part of the OD. Thus, this
isoform is an inhibitor of p53a (46).

All five isoforms described above were correctly pre-
dicted to have the GO term ‘regulation of apoptotic
process’ (GO: 0042981) or any of its descendants
(Table 1). We looked at whether the direction of the regu-
lation could be also resolved at the isoform level. For each
isoform, we checked our predictions for the two child

terms ‘positive regulation of apoptotic process’ (GO:
0043065) and ‘negative regulation of apoptotic process’
(GO: 0043066). It should be emphasized that because we
performed prediction for each GO term independently, the
same isoform can be assigned both positive regulation and
negative regulation by different predictions. Therefore, we
have 10 predictions of regulation direction for the five
isoforms. Surprisingly, even for TP53, a gene with many

Figure 6. Functional diversity of isoform-annotated genes. (A) The distribution of functional dissimilarities between isoforms of the same gene. The
G-SESAME method was used to estimate the semantic dissimilarity scores of isoform functions. (B) Tissue expression diversity scores of genes with
low or high functional diversity. Significant differences were observed in all the three GO categories. (P=1.6E-06, 3.2 E-02 and 9.7E-03 for the BP,
CC and MF GO tree branches, respectively. One-sided Wilcoxon tests were used to evaluate the P-values.)
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isoforms, our algorithm made the correct decisions in 9 of
10 predictions.
We also surveyed the literature on three other apoptosis

regulatory genes (Table 1), all of which have both apop-
tosis-inducing and apoptosis-suppressing isoforms.
BCL2L1 has two isoforms: Bcl-xL inhibits and Bcl-xS
promotes programmed cell death (50). CFLAR, the
CASP8 and FADD-like apoptosis regulator, has two
well-annotated isoforms cFLIP-L and cFLIP-S. Both
isoforms are inhibitors of apoptotic proteins (51), and
cFLIP-L is also a promoter of apoptosis (52). The third
gene, DNAJA3, has two isoforms with opposite func-
tions—one induces and the other represses the apoptotic
process (53).
Our iMILP method successfully predicted the ‘regula-

tion of apoptotic process’ function for all 11 isoforms
(including the five TP53 isoforms). Note that this excellent
recall rate (100%) cannot be attributed only to a prefer-
ence for inheriting gene-level annotations in our predic-
tions because there is clearly a selective yet precise (only
one false positive) inheritance from genes to isoforms on
the child GO terms ‘positive regulation of apoptotic
process’ and ‘negative regulation of apoptotic process’.
This result suggests that our method can achieve both
high recall and high precision. On these four genes for

which we could collect sufficient literature evidence, the
overall accuracy of predictions on ‘positive regulation of
apoptotic process’ and ‘negative regulation of apoptotic
process’ are 72.7% (8/11) and 81.8% (9/11), respectively.

Furthermore, when we checked the predictions in detail,
we found that BCL2L1 and CFLAR were not annotated
with the GO term ‘positive regulation of apoptotic
process’ or any of its descendants in the input data.
They were only annotated with the sibling term ‘negative
regulation of apoptotic process’, and thus were always
treated as negative bags in our prediction. Our false-
negative predictions of these isoforms were therefore
caused by missannotations in the GO database. This dis-
covery indicates that our evaluation underestimates the
real power of the method.

In summary, given only isoform expression information,
our method successfully annotated the positive or negative
regulatory functions of apoptotic protein isoforms.

DISCUSSION

Reproducible and fast pipeline for estimating isoform
expressions from RNA-seq data

We estimated isoform expression levels from RNA-seq
data. Because this study uses a large number of RNA-

Table 1. Prediction results on four apoptotic genes

Gene Isoform Predicted as a
regulator
of apoptosis?

Positive regulation? Negative regulation?

Annotation Prediction Annotation Prediction

TP53 p53a � � � � �
p53b � � � � �

p53g � � � � �

�40p53a � � � � �
�133p53a � � � � �

BCL2L1 Bcl-xL � � � � �
Bcl-xS � � � � �

CFLAR cFLIP-L � � � � �

cFLIP-S � � � � �
DNAJA3 Tid-1(L) � � � � �

Tid-1(S) � � � � �

Positive and negative results are represented by circles and crosses, respectively.

Figure 7. TP53 protein isoforms with functional annotations. The coding sequences (dark blue) are illustrated with splicing boundaries. Exonic
regions are shown in proportion (boxes) but intronic regions are not (lines). The transcription activation domains (TAD) 1 and 2, proline rich
domain (PXXP), DNA binding domain (DBD), nuclear localization signalling domain (NLS) and oligomerization domain (OD) are all annotated
according to their locations in the canonical isoform, p53a. The biological function of each isoform is labelled as either positive (green arrow) or
negative (red arrow) regulation of the apoptotic process.
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seq data sets, it is important to choose the pipeline with
the right trade-off between computation speed and esti-
mation quality. Several transcript quantification tools
exist, such as Cufflinks (20), eXpress (21), RSEM (22)
and SLIDE (23). We compared the two most popular
isoform abundance estimation pipelines, tophat+cufflinks
and bowtie2+eXpress, in terms of runtime and reproduci-
bility. Both pipelines generated reproducible isoform
abundances in two replicates of three ENCODE
human cell types (Supplementary Materials) (54).
However, bowtie2+eXpress runs �10 times faster than
tophat+cufflinks because bowtie2+eXpress works directly
on the transcript sequences, without introducing
genomic information. In addition, eXpress provides an
online streaming mechanism, so that bowtie2 and
eXpress can run at the same time using the pipe mechan-
ism of Unix.

Also, because the function annotations were resolved at
the protein level, it is not necessary to distinguish mRNAs
that differ in the untranslated regions. Therefore, we
reduced the computational cost using only the protein-
coding sequence of each RefSeq mRNA in the expression
evaluation.

Challenge in compilation of the negative data sets

There are no annotations of negative associations
between a GO term and a gene. To generate the
negative training data, we followed a popular method
that is widely used in the literature on gene function
prediction literatures (8): genes associated with the
siblings of a given GO term are interpreted as negative
annotations. However, because of the hierarchical struc-
ture of GO terms, any given GO term shares at least one
parent with its siblings. This means that a GO term
could be functionally similar to its siblings, especially
for specific functions. Therefore, we should be cautious
using the genes associated with the sibling terms as
negative data. In fact, the number of genes shared
between a GO term and its siblings can be used to
estimate the functional similarity between the two GO
terms. We found that among all GO terms with at
least five and at most 1000 associated genes, 35.2% of
them share most genes (�95%) with their siblings. The
GO terms with this level of overlap were not considered
in our study (see ‘Materials and Methods’ section). This
statistic also suggests that a substantial portion of the
negative data compiled in this way may not really be
negative, and that a better method is needed for
further development of this framework. A recent study
(55) proposed a more sophisticated method for choosing
negative data, which could be incorporated into our
future work.

Performance evaluation using single-isoform genes is not
perfect

Owing to the lack of curated isoform function data, we
used the annotations of single-isoform genes to assess the
performance of our predictions. However, multiple
isoforms of the same gene may share the same promoter
regions and some consensus exons, which are not

generally shared by a given pair of single-isoform genes.
That is, the relationships between single-isoform genes
and those between multiple isoforms of the same genes
are different. Therefore, the proposed wrapper method
directed by single-isoform genes may not be the best
choice for inheritance predictions in multi-isoform genes,
which aim at distinguishing the function difference
between isoforms transcribed from the same locus. This
issue can eventually be addressed by training our model on
functional annotations with isoform-level resolution when
they become available in the future. However, at this time,
the proposed validation strategy is the best we can do.

Graph-based semi-supervised learning and multiple
instance learning

These two learning models have been extensively studied
in recent years. They were both proposed to solve the
problems that have incompletely labelled data. To date,
few studies have attempted to integrate the two learning
schemes with the goal of fully using both unlabelled data
and semi-labelled (or MI-labelled) data (25,26). All of
them adopt the widely used MIL strategy of selecting
the single instance with the maximum prediction score as
the ‘witness instance’, and using only its score to fit the
positive bag’s label. The approach works well for bag-level
predictions, where one witness instance may be enough for
learning, although it has some criticism even for this
purpose (56). However, this strategy artificially forces
the witness instance to have a much larger prediction
score than other instances in the positive bag, weakening
the roles of other instances and thus distorting instance-
level inheritance predictions. In short, such strategy of
declaring witness instances weakens the label propagation
process, which actually has the power to subtly differen-
tiate instances in a positive bag. In contrast, our proposed
iMILP method ‘democratically’ treats all instances in a
bag in the same manner. Empirically, iMILP converges
quickly, although we do not yet have a theoretical conver-
gence proof. In future work, we will provide a theoretical
analysis of the iMILP method and examine its relation-
ships with existing LP methods.
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