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Williams syndrome (WS) is a clinical condition, involving cognitive deficits and an uneven
language profile, which has been the object of intense inquiry over the last decades.
Although WS results from the hemideletion of around two dozen genes in chromosome
7, no gene has yet been probed to account for, or contribute significantly to, the
language problems exhibited by the affected people. In this paper we have relied on
gene expression profiles in the peripheral blood of WS patients obtained by microarray
analysis and show that several robust candidates for language disorders and/or for
language evolution in the species, all of them located outside the hemideleted region,
are up- or downregulated in the blood of subjects with WS. Most of these genes play
a role in the development and function of brain areas involved in language processing,
which exhibit structural and functional anomalies in people with this condition. Overall,
these genes emerge as robust candidates for language dysfunction in WS.

Keywords: Williams syndrome, blood transcriptional profile, language disorders, language evolution,
candidate genes

INTRODUCTION

Williams syndrome (WS) is a clinical condition resulting from a hemizygous deletion of 1.5 to
1.8 Mb on 7q11.23, which encompasses nearly 30 genes (Korenberg et al., 2000; Pober et al., 2010).
The affected people exhibit a distinctive behavioral and cognitive profile, with enhanced sociability,
mental retardation, impaired spatial cognition, and spared musical abilities (Reilly et al., 1990;
Udwin and Yule, 1991; Bellugi et al., 1999; Galaburda et al., 2002; Levitin et al., 2005). Language
abilities are significantly preserved in people with WS compared to other neurodevelopmental
disorders, to the extent that this syndrome has often been used to support the view that language can
be teased apart from other aspects of cognition. Nonetheless, recent, fine-grained analyses of WS
language have concluded that WS language is delayed or impaired across different levels compared
to the neurotypical population (Karmiloff-Smith and Mills, 2006; Brock, 2007; Mervis and Becerra,
2007; Martens et al., 2008 for good reviews). Specifically, children with WS experience problems
with irregular word forms and complex syntax; likewise, they have problems with word definitions,
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although they usually excel on expressive vocabulary (including
semantic organization and fluency) (Volterra et al., 1996;
Mervis et al., 1999; Purser et al., 2011; Van Den Heuvel
et al., 2016; see Mervis and Becerra, 2007 for discussion).
However, as with other aspects of the cognitive profile of
this condition, no robust gene-to-phenotype associations have
been established in the language domain. To date, the most
promising candidates for language dysfunction in WS are
GTF2I, BAZ1B, and LIMK1. In particular, GTF2I, which
encodes a regulator of transcription, has been repeatedly
related to the behavioral and cognitive disabilities that are
typically found in this condition and that have an impact
on language function (Morris et al., 2003; Tassabehji et al.,
2005; Sakurai et al., 2011; Hoeft et al., 2014). Its adjacent
paralog, GTF2IRD1, has been related to altered vocalizations
among other features (Howard et al., 2012). Interestingly too,
BAZ1B haploinsufficiency explains almost 50% of transcriptional
dysregulation in WS neurons, with BAZ1B target genes being
enriched in functions related to neurogenesis and neuron
differentiation (Lalli et al., 2016). Regarding LIMK1, it regulates
synaptic plasticity and long-term memory (Todorovski et al.,
2015), and its hemideletion has been hypothesized to account
for the observed deficits in spatial cognition in combination
with other genes (Gray et al., 2006; Smith et al., 2009). Still,
these potential links with aspects of language (dys)function
seem quite vague, particularly if one considers our remarkable
understanding of the genetic underpinnings of human language,
language disorders, and language evolution (see Scharff and
White, 2004; Li and Bartlett, 2012; Benítez-Burraco, 2013;
Graham et al., 2015; Fisher, 2017; Murphy and Benítez-
Burraco, 2017, 2018 for reviews). Examining how robust
candidate genes for language disorders and language evolution
behave in people with WS should help refine our view of
the molecular causes of the language deficits attested in this
condition. One general reason supporting this approach is
the deep link that exists between evolution and (abnormal)
development, in the spirit of evo-devo theories. One specific
reason supporting this approach is that although in WS
the number of hemideleted genes is small, changes in the
dosage of hundreds, or even thousands, of other genes can be
expected, with a potential impact on language abilities, in the
spirit of omnigenic theories of complex diseases (Boyle et al.,
2017; Peedicayil and Grayson, 2018). Recently Kimura et al.
(2018) confirmed that the dysregulation of several co-expression
modules involving dozens of genes outside of the 7q11.23
region seemingly accounts for the complex phenotypes observed
in WS patients. Importantly, they found BCL11A, a gene
associated with speech disorders, among the hub genes in the top
WS-related modules.

In this paper we have conducted a more focused research
on the potential dysregulation of genes related to language
outside the WS region as a possible explanation of the distinctive
language profile of the affected people. Similarly to Kimura et al.
(2018), we have relied on gene expression profiles in peripheral
blood of WS patients obtained by microarray analysis. We have
found that significant differences exist in the blood of subjects
with WS compared to neurotypical controls in the expression

levels of robust candidates for language development, language
evolution, and language impairment.

METHODS

The list of core candidates for language (abnormal) development
and language evolution (Supplementary Table S1) encompasses
two subsets of genes. The first subset consists of strong
candidates for language disorders, in particular, developmental
dyslexia (DD) and specific language disorder (SLI), as listed
by Paracchini et al. (2016), Pettigrew et al. (2016) and Chen
et al. (2017). The second subset consists of strong candidates
for language evolution, as compiled by Boeckx and Benítez-
Burraco (2014a,b) and Benítez-Burraco and Boeckx (2015).
These are genes involved in the globularization of the human
skull/brain and the cognitive changes accounting for our
species-specific ability to learn and use languages (aka our
language- readiness). Overall, the genes comprising this second
subset fulfill several criteria. First, they have changed (and/or
interact with genes that have changed) after our split from
Neanderthals/Denisovans, including changes in their coding
regions and/or their epigenetic profile. Second, they play some
known role in brain development, regionalization, wiring, and/or
function. Third, they are candidates for language dysfunction in
broad cognitive disorders, particularly, autism spectrum disorder
(ASD) and schizophrenia (SZ) (see Benítez-Burraco and Murphy,
2016; Murphy and Benítez-Burraco, 2016, 2017 for details about
their role in language processing).

The gene expression profiling data of peripheral blood were
obtained from our previous study (Kimura et al., 2018), available
at the Gene Expression Omnibus (GSE89594). Briefly, total RNA
from 32 WS patients and 30 healthy controls were analyzed
using an Agilent Human GE v2 8×60K Microarray (Agilent
Technologies). After the normalization step, differentially
expressed genes (DEG) were calculated using the Limma R
package (Smyth, 2005). The Benjamini-Hochberg method was
used to evaluate the false discovery rate (FDR) (Benjamini and
Hochberg, 1995). DEG were defined as FDR < 0.05 and the |fold
change (FC)| > 1.2. Gene list enrichment analysis was performed
using Fisher’s exact test. All the expressed genes were used as the
background gene list.

RESULTS

We found that candidates for language (abnormal) development
and language evolution are significantly dysregulated in the blood
of subjects with WS (p = 1.1e-7 by Fisher’s exact test). Figure 1
shows the genes that are significantly up- or down-regulated
compared to controls (FDR < 0.05, |FC| > 1.2).

In order to check the specificity of this set of genes in
relation to language we conducted a functional enrichment
analysis with Enrichr (amp.pharm.mssm.edu/Enrichr; Chen
et al., 2013; Kuleshov et al., 2016), which showed that they are
significantly related to biological processes, molecular functions,
and abnormal phenotypes of interest for language (Table 1).

Frontiers in Neuroscience | www.frontiersin.org 2 March 2019 | Volume 13 | Article 258

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00258 March 25, 2019 Time: 16:47 # 3

Benítez-Burraco and Kimura Language-Related Genes and Williams Syndrome

FIGURE 1 | Genes significantly dysregulated in the blood of subjects with WS (FDR < 0.05, |FC| > 1.2). Candidate genes for language disorders (SLI, DD) are
displayed in light red, whereas candidates for language evolution are colored in light blue.

Finally, these genes were predicted to be preferentially expressed
in body parts important for language processing or for language
development, particularly, the cerebellum and the thalamus
(Table 1 and Supplementary Table S2). We now provide a
detailed discussion of our results.

DISCUSSION

Functional Characterization of Individual
Genes
Nearly one third of the language-related genes found
downregulated in the blood of subjects with WS are candidates
for DD (DOCK4, ZNF385D, and CEP63) and/or for SLI (DOCK4,
NFXL1). As other members of the Dock family, DOCK4 regulates
cytoskeleton assembly and cell adhesion and migration (Gadea
and Blangy, 2014). Specifically, DOCK4 has been shown to

be involved in neuronal migration and neurite differentiation
(Ueda et al., 2008; Xiao et al., 2013), via interaction with the
actin-binding protein cortactin (Ueda et al., 2013). Knockdown
of Dock4 in mice abolishes commissural axon attraction by Shh
(Makihara et al., 2018). The gene has been related to neuronal
migration and neurite outgrowth anomalies linked to DD (Shao
et al., 2016), although it is also associated with ASD (Pagnamenta
et al., 2010) and SZ (Alkelai et al., 2012). GWAs have associated
markers in ZNF385D to the co-occurrence of reading disability
and language impairment (Eicher et al., 2013), but also to
negative symptoms in SZ (Xu et al., 2013). CEP63 is required
for normal spindle assembly, being involved in maintaining
centriole number and establishing the order of events in centriole
formation (Brown et al., 2013). Besides its association with
DD (Einarsdottir et al., 2015), the gene is also a candidate for
primary microcephaly (Marjanović et al., 2015), a feature that is
commonly found in subjects with WS (Jernigan and Bellugi, 1990;
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TABLE 1 | Functional enrichment analysis according to Enrichr of the set of genes significantly dysregulated in the blood of subjects with WS.

Adjusted Combined

Index Name P-value p-value Z-score score

GO Biological Process 2018

1 Regulation of endothelial cell chemotaxis to fibroblast growth factor (GO:2000544) 0.004791 0.04609 −3.72 19.88

2 Regulation of mitotic spindle checkpoint (GO:1903504) 0.004193 0.04609 −3.57 19.54

3 Positive regulation of vascular endothelial cell proliferation (GO: 1905564) 0.005985 0.04609 −3.47 17.74

4 Negative regulation of meiotic cell cycle (GO:0051447) 0.004193 0.04609 −3.21 17.58

5 Positive regulation of smooth muscle cell migration (GO:0014911) 0.006582 0.04609 −3.48 17.49

6 Embryonic camera-type eye morphogenesis (GO:0048596) 0.004193 0.04609 −2.98 16.34

7 Attachment of GPI anchor to protein (GO:0016255) 0.004791 0.04609 −2.95 15.76

8 Regulation of MAP kinase activity (GO:0043405) 0.001228 0.04609 −2.13 14.28

9 Regulation of neuroblast proliferation (GO: 1902692) 0.006582 0.04609 −2.83 14.20

10 Mesodermal cell differentiation (GO:0048333) 0.005985 0.04609 −2.71 13.87

GO Molecular Function 2018

1 MAP kinase tyrosine/serine/threonine phosphatase activity (GO:0017017) 0.004791 0.07352 −3.07 16.41

2 MAP kinase phosphatase activity (GO:0033549) 0.005985 0.07352 −2.64 13.51

3 Transcription corepressor binding (GO:0001222) 0.007774 0.07352 −2.38 11.56

4 Insulin-like growth factor binding (GO:0005520) 0.008965 0.07352 −2.18 10.27

5 Insulin-like growth factor I binding (GO:0031994) 0.008370 0.07352 −2.10 10.02

6 Protein tyrosine kinase binding (GO: 1990782) 0.02901 0.08271 −2.70 9.55

7 Transcription cofactor binding (GO:0001221) 0.01549 0.08271 −2.29 9.54

8 Receptor tyrosine kinase binding (GO:0030971) 0.02374 0.08271 −2.35 8.80

9 Phosphatidylinositol kinase activity (GO:0052742) 0.03077 0.08271 −2.28 7.93

10 Fibroblast growth factor binding (GO:0017134) 0.01372 0.08271 −1.84 7.88

GO Cellular Component 2018

1 Specific granule membrane (GO:0035579) 0.05384 0.2061 −1.87 5.47

2 Spindle pole (GO:0000922) 0.06293 0.2061 −1.79 4.95

3 Centriole (GO:0005814) 0.05612 0.2061 −1.53 4.40

4 Nucleolus (GO:0005730) 0.06032 0.2061 −1.54 4.33

5 Specific granule (GO:0042581) 0.09246 0.2133 −1.57 3.74

6 Microtubule organizing center part (GO:0044450) 0.07361 0.2061 −1.40 3.64

MGI Mammalian Phenotype 2017

1 MP:0002151_abnormal_neural_tube_morphology 0.0001029 0.009725 −3.34 30.71

2 MP:0011089_perinatal_lethality,_complete_penetrance 0.0002578 0.01392 −3.68 30.40

3 MP:0012138_decreased_forebrain_size 0.00003942 0.007070 −2.67 27.06

4 MP:0002950_abnormal_neural_crest_cell_migration 0.00003942 0.007070 −2.48 25.10

5 MP:0010378_increased_respiratory_quotient 0.0002542 0.01392 −2.77 22.94

6 MP:0003864_abnormal_midbrain_development 0.0001725 0.01304 −2.45 21.19

7 MP:0000733_abnormal_muscle_development 0.00005611 0.007070 −2.11 20.66

8 MP:0005221_abnormal_rostral-caudal_axis_patterning 0.0005171 0.02443 −2.55 19.29

9 MP:0005602_decreased_angiogenesis 0.0006517 0.02463 −2.56 18.75

10 MP:0002111_abnormal_tail_morphology 0.0006517 0.02463 −2.47 18.08

Human Phenotype Ontology

1 Malar flattening (HP:0000272) 0.000003455 0.0008259 −2.42 30.38

2 Midface retrusion (HP:0011800) 0.000006118 0.0008259 −2.02 24.26

3 Camptodactyly of finger (HP:0100490) 0.00004567 0.001761 −2.26 22.60

4 Choanal stenosis (HP:0000452) 0.00003450 0.001553 −2.15 22.14

5 Shallow orbits (HP:0000586) 0.00002171 0.001553 −2.02 21.67

6 Ureteral obstruction (HP:0006000) 0.00003450 0.001553 −2.08 21.39

7 Short nose (HP:0003196) 0.00007989 0.002546 −2.26 21.32

8 Ureteral stenosis (HP:0000071) 0.00002991 0.001553 −2.01 20.93

9 Heterogeneous (HP:0001425) 0.00008487 0.002546 −2.14 20.06

10 Depressed nasal bridge (HP:0005280) 0.0002981 0.007161 −2.37 19.20

(Continued)
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TABLE 1 | Continued

Adjusted Combined

Index Name P-value p-value Z-score score

Jensen TISSUES

1 Ectoderm 0.00006469 0.005546 −4.15 39.98

2 Cranium 0.00007203 0.005546 −4.00 38.17

3 Retina 0.008991 0.09231 −7.36 34.68

4 Adult 0.01554 0.09772 −6.50 27.05

5 Neural crest 0.002981 0.06593 −4.14 24.10

6 Somite 0.0005354 0.02749 −3.08 23.19

7 Bud 0.001676 0.05163 −3.59 22.95

8 Mesenchyme 0.01050 0.09772 −5.01 22.84

9 Myoblast 0.001550 0.05163 −3.53 22.83

10 Immune system 0.02200 0.1019 −5.91 22.56

Only the top-10 functions have been included (whenever available). The p-value was computed using Fisher’s exact test. The adjusted p-value was computed using the
Benjamini-Hochberg method for correction for multiple hypotheses testing. The z-score was computed using a modification to Fisher’s exact test and assess the deviation
from the expected rank. Finally, the combined score is a combination of the p-value and z-score calculated by multiplying the two scores (combined score = ln(p-value)
∗ z-score). This combined score provides a compromise between both methods and it is claimed to report the best rankings when compared with the other scoring
schemes. See http://amp.pharm.mssm.edu/Enrichr/help#background&q=5 for details.

Schmitt et al., 2001; Thompson et al., 2005; Jackowski et al.,
2009). Finally, variants of NFXL1, which is predicted to encode a
transcription factor, confer a risk for SLI (Villanueva et al., 2015).
The gene is highly expressed in the cerebellum (Nudel, 2016).

Regarding the candidates for language evolution that we have
found downregulated in the blood of subjects with WS, DUSP1 is
involved in vocal learning in songbirds (Horita et al., 2010, 2012).
PVALB encodes a calcium-binding protein that is structurally
and functionally similar to calmodulin and that is involved
in hippocampal plasticity, learning and memory (Donato
et al., 2013). Interestingly enough, the inactivation of Pvalb-
expressing interneurons in the auditory cortex alters response
to sound, strengthening forward suppression and altering its
frequency dependence (Phillips et al., 2017). Inhibition of
PVALB-expressing GABAergic interneurons results in complex
behavioral changes related to the behavioral phenotype of
people with SZ (Brown et al., 2015). Importantly, some of
the key changes that contributed to the emergence of our
language-readiness involved GABAergic signaling (discussed in
detail in Boeckx and Benítez-Burraco, 2014b), which are vital
for oscillatory processes underlying language processing (Bae
et al., 2010; see Murphy and Benítez-Burraco, 2018 for details).
Reduction in PVALB expression in interneurons has also been
found in mouse models of ASD (Filice et al., 2016), specifically, in
the Cntnap2-/- model (Lauber et al., 2018). CNTNAP2 is a direct
target of FOXP2, the renowned “language gene” (Vernes et al.,
2008; Adam et al., 2017), and regulates language development
in non-pathological populations too (Whitehouse et al., 2011;
Whalley et al., 2011, Kos et al., 2012). Also mice lacking PLAUR
have significantly fewer neocortical parvalbumin-containing
GABAergic interneurons, with this reduction correlating with
impaired social interactions (Bruneau and Szepetowski, 2011).
PLAUR is a target of FOXP2 too (Roll et al., 2010), but also an
effector of SRPX2, another of FOXP2’s targets (Royer-Zemmour
et al., 2008) and a candidate for speech dyspraxia (Roll et al.,
2006). Concerning PAX3, this gene is expressed in the neural

crest and is a candidate for Waardenburg syndrome, a clinical
condition entailing sensorineural hearing loss and developmental
delay (Tassabehji et al., 1992; Chen et al., 2010). Finally, ITGB4
encodes the integrin beta 4 subunit, a receptor for the laminins,
including FLNA (Travis et al., 2004), an actin-binding protein
needed for cytoskeleton remodeling and neuronal migration (Fox
et al., 1998) FLNA binds CMIP (Fox et al., 1998), a candidate for
SLI (Newbury et al., 2009). Interestingly enough, ITGB4 is one
of the proteins bearing fixed changes in humans compared to
extinct hominins (Pääbo, 2014; Supplementary Table S1).

Lastly, among the genes found to be upregulated in the blood
on WS subjects, we found the SLI candidate SETBP1, as well
as FGFR1 and SIX3. SETBP1 is also a candidate for Schinzel-
Giedion syndrome, a clinical condition entailing occasional
epilepsy and severe developmental delay (Ko et al., 2013; Miyake
et al., 2015). Mutations on this gene have been associated as well
to behavioral and social deficits (Coe et al., 2014). The Integrative
Nuclear FGFR1 Signaling (INFS) has been hypothesized to be
one of the neurodevelopmental pathways on which multiple
SZ candidates converge, regulating numerous neurotransmitter
systems and neural circuits (Stachowiak et al., 2013). Finally,
SIX3 contributes to regulate the relative size of the telencephalon
versus the thalamus (Lavado et al., 2008; Sylvester et al., 2010).
Interestingly, Six3 regulates Shh (Jeong et al., 2008), one robust
candidate for microcephaly that has been positively selected in
the human lineage (Dorus et al., 2004), but it also interacts with
several genes relevant for our language-ready brain (Benítez-
Burraco and Boeckx, 2015).

Functional Characterization of the
Set of Dysregulated Genes
The results of our functional enrichment analyses (Table 1) show
that the language-related genes that are dysregulated in the blood
of people with WS mainly contribute to the cytoskeleton activity,
being significantly involved in cell proliferation and migration,
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including neuroblast proliferation. Regarding their molecular
function, they typically participate in protein modification,
particularly via (tyrosine) kinase phosphatase and (tyrosine)
kinase binding activities, but also in gene regulation, via
transcription cofactor binding. Interestingly, these genes are
significantly associated to aberrant processes impacting on brain
development, like abnormal neural tube morphology and neural
crest cell migration, as well as decreased forebrain size and
abnormal midbrain development. Likewise, they are associated to
clinical symptoms mostly impacting on craniofacial morphology,
like malar flattening, midface retrusion, shallow orbits, or
depressed nasal bridge. Finally, these genes are predicted to
be preferentially expressed in the ectoderm, the cranium,
the retina, and the neural crest. According to the Human
Brain Transcriptome Database1all these genes are expressed
in the brain, particularly in the thalamus and the cerebellum
(Supplementary Table S2). The thalamus functions as a sort of
relay center to connect many brain areas involved in language
processing (Wahl et al., 2008; Murdoch, 2010; David et al., 2011)
and changes in the thalamus have been claimed to contribute
to the evolutionary emergence of our language-ready brain
(see Boeckx and Benítez-Burraco, 2014b for details). Similarly,
the cerebellum plays a key role in language processing and
is impaired in language-related pathologies (Vias and Dick,
2017; Mariën and Borgatti, 2018). People with WS exhibit
cerebellar volume alterations that are seemingly associated with
their cognitive, affective and motor distinctive features (Osório
et al., 2014). In the same vein, the thalamus exhibits structural
and functional differences with the neurotypical population,
including disproportionately reduced volumes and decreased
gray matter (Chiang et al., 2007; Campbell et al., 2009),
as well as enhanced thalamic activity (Mobbs et al., 2007;
Bódizs et al., 2012).

CONCLUSION

To conclude, it is true that deciphering the exact molecular causes
of language dysfunction in WS is still pending, particularly,

1 http://hbatlas.org

because at present none of the genes hemideleted in this
condition has been demonstrated to play a central role in
language processing. Nonetheless, in this paper we have shown
that the genes that are dysregulated in subjects with WS are
significantly enriched in core candidates for language disorders
and language evolution. These genes emerge as robust candidates
for language dysfunction in WS. Future research should try to
delve into the expression patterns of these genes in the brain
of people with WS, as well as into their role in neurotypical
brain development. Likewise, altering these genes in animal
models of WS should help gaining a better understanding of their
biological role and ultimately, of their contribution to language
dysfunction in WS.
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