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Edge-of-chaos learning achieved by ion-electron–
coupled dynamics in an ion-gating reservoir
Daiki Nishioka1,2, Takashi Tsuchiya1*, Wataru Namiki1, Makoto Takayanagi1,2, Masataka Imura3,
Yasuo Koide4, Tohru Higuchi2, Kazuya Terabe1

Physical reservoir computing has recently been attracting attention for its ability to substantially reduce the
computational resources required to process time series data. However, the physical reservoirs that have
been reported to date have had insufficient computational capacity, and most of them have a large volume,
which makes their practical application difficult. Here, we describe the development of a Li+ electrolyte–
based ion-gating reservoir (IGR), with ion-electron–coupled dynamics, for use in high-performance physical res-
ervoir computing. A variety of synaptic responses were obtained in response to past experience, which were
stored as transient charge density patterns in an electric double layer, at the Li+ electrolyte/diamond interface.
Performance for a second-order nonlinear dynamical equation task is one order of magnitude higher than mem-
ristor-based reservoirs. The edge-of-chaos state of the IGR enabled the best computational capacity. The IGR
described here opens the way for high-performance and integrated neural network devices.
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INTRODUCTION
Artificial neural network (ANN)–based information processing is
becoming more and more important as a way to deal with the
vast amount of information currently in existence (1, 2). ANN com-
puting [e.g., deep learning with a multilayer neural network (NN)]
can provide excellent learning, classification, and inference charac-
teristics that are close to, and in some cases beyond, those found in
natural intelligence (i.e., the human brain), whereas the enormous
amounts of power required by ANN (as in a typical multilayer NN)
are far higher than that required by human beings (2). The low-
energy efficiency of ANN computing is a serious drawback in the
realization of ubiquitous and versatile artificial intelligence (AI)
but is inherent in the structure of the ANN, which requires the
weights of millions of virtual synaptic nodes to be stored and
updated (i.e., large network size) and requires the consumption of
tremendous amounts of energy. Reservoir computing (RC) has re-
cently been attracting attention because of its ability to substantially
reduce the computational resources required to process time series
data, which it is able to do because of its utilization of the nonlinear
responses of a “reservoir” to input signals.

While simulated recurrent NNs have been used as reservoirs to
perform fully simulated RC (3–5), materials or devices with nonlin-
earity, high dimensionality, and short-term memory have been ex-
plored as possible “physical reservoirs” that can process information
without heavy computational burdens for complicated simulations
of the dynamical states of a reservoir (6). To date, the nonlinear dy-
namics of various materials and devices (e.g., soft bodies, optical
devices, spin torque oscillators, and memristors) have been reported
as providing nonlinear dynamics that are sufficient to perform
physical reservoir–based RC with various time series tasks,

including image recognition, spoken digit classification, and com-
binatorial optimization (6–24). However, to date, the performance
of physical reservoir–based RC has been far from satisfactory
because of the low expression power of physical reservoirs in com-
parison to the RC performance of simulated reservoirs. Further-
more, most of the high-performance physical reservoirs have
large volumes, more than several cubic centimeters, which are not
realistic choices for practical application to integrated AI devices (7–
9). Therefore, achieving compatibility between (i) the high expres-
sion power of a physical reservoir and (ii) small reservoir volume is a
great challenge in nanotechnology research leading toward the
physical implementation of RC at practical levels.

Here, we report the achievement of high-performance physical
RC using an ion-gating reservoir (IGR), in which ion-electron–
coupled dynamics at a lithium ion electrolyte/diamond interface
generate an “edge-of-chaos” state, which is empirically known to
exhibit high computational performance (25). Various synaptic re-
sponses, with asymmetric relaxation and spikes, were obtained with
respect to the input history of a single IGR transistor (IGRT), which
operates in an electric double layer (EDL) mechanism (26–33), to
achieve excellent expression power in a physical reservoir–based
RC. Furthermore, a strong dependence of the synaptic response
on channel length, which is a feature of ion-electron–coupled dy-
namics, is used to realize high dimensionality in a single IGRT.
The IGRT exhibited small errors in some RC tasks, including
0.020 of normalized mean squared error (NMSE) in a nonlinear au-
toregressive moving average (NARMA) task, which is a typical
benchmark for RC (7, 8, 13, 14, 34–37), and achieved 88.8% accu-
racy in a handwritten-digit recognition task. The underlying mech-
anism of the characteristic synaptic response was investigated on the
basis of multiphysics simulation, and it was found that complexed
charge density patterns form and change from moment to moment
in an extremely thin EDL region (<2 nm) during storage and pro-
cessing of input signals. We further performed a Lyapunov analysis
to investigate a possible origin of the high performance from a non-
linear dynamics viewpoint. The calculated value of the maximum
Lyapunov exponent was −6.3 × 10−3, close to an edge-of-chaos
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state, which is located between order (λ < 0) and chaos (λ > 0) and is
empirically known to derive high expression power from a reservoir
in RC (14, 22, 24, 38–40). Because of the many advantages observed,
including (i) the very thin nature of EDL (e.g., nanometer order)
and the spontaneous formation at interfaces and (ii) the strong non-
linear response based on ion-electron–coupled dynamics, our ap-
proach is useful for realizing high-performance, highly integrated,
and low–power consumption AI devices by harnessing the inherent
physical and chemical characteristics of materials.

RESULTS AND DISCUSSION
Electrical responses of IGRT and its application to image
recognition
In biological neuronal network systems, synaptic responses show
characteristic variations in waveform, intensity, and frequency,
with respect to environmental inputs in various forms due to the
chaotic dynamics of the NN, as illustrated in Fig. 1A (41, 42). The

synapses belonging to different dendritic structures are strongly
correlated, and their electrical behavior is affected by this correla-
tion. The wide variations in synaptic responses are used to
achieve high expression power for efficient information processing.
In this study, we use an all-solid-state IGRT, operating in an EDL
mechanism, to obtain wide variation in electrical response for effi-
cient information processing. While the versatile electrical behavior
in biological neuronal network is due to the correlation between
synapses, our IGRT achieves similar versatile electrical responses
on the basis of ion-electron–coupled dynamics at a lithium ion elec-
trolyte/diamond interface, as discussed below.

As shown in Fig. 1A, the transistor consists of a lithium ion–con-
ducting solid electrolyte [Li-Si-Zr-O (LSZO)], a hydrogen-termi-
nated diamond (100) single crystal with a homoepitaxial layer,
and LiCoO2/Pt gate electrode, which works in the manner of an
EDL transistor (EDLT) (33). LiCoO2 is a Li+-electron (hole)
mixed conductor, and it serves as the gate electrode by a reversible
Li+ ion insertion/desertion property. It can supply (remove) Li+ ions

Fig. 1. Electrical response of IGRT based on the EDL effect and its application to image recognition. (A) Illustrations of synaptic responses in biological NNs and our
IGR operating in an EDL mechanism. (B) An example of the handwritten digit 6 from the MNIST database (44). (C) Drain current (ID) responses of the IGRT to 16 different
pulse streams. (D) Image recognition accuracy achieved by IGR as a function of the number of trained images. The dotted line shows the accuracy of a typical, full-
simulation, three-layer NN. The size of the IGR and NNs are given in parentheses. The recognition accuracies of other physical reservoirs, such as memristors [magnetic
skyrmion memristor (MSM)] (13), WOx (16), SiOx-Ag (18), and ionic liquid (IL) (43), are shown for comparison.
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to (from) the diamond channel/LSZO interface to modulate accu-
mulated charge at the EDL under gate voltage (VG)–applied condi-
tions. By applying negative VG to the EDLT, Li+ ions are removed
from the diamond/LSZO interface to form the EDL with negatively
charged Li vacancy in the LSZO and positively charged hole in the
diamond, resulting in notable conductance enhancement in the
channel [a low-resistance state (LRS)], as depicted in Fig. 1A. In
the opposite manner, positive VG application causes Li+ ion

accumulation at the interface, which is accompanied by hole deple-
tion and the resultant insulating [a high-resistance state (HRS)] in
the channel. While a transition process from LRS to HRS is fast, the
one from HRS to LRS is slow because the Li+ ion motion in the elec-
trolyte is affected by channel resistance with HRS, that is, the ion-
electron–coupled dynamics. The ID (drain current)–VG and gate
current–VG curves for IGRT are shown in fig. S1. Details of the dy-
namics will be discussed later with multiphysics simulation. In

Fig. 2. Solving a second-order nonlinear dynamic equation task. (A) Schematic of task calculated by IGR. (B) Various ID responses of the IGRT at different channel
lengths. (C) The method for obtaining virtual nodes and (D) various reservoir states (ID streams) from 10 virtual nodes. (E) Target and prediction waveforms of second-
order nonlinear dynamic equation at the test phase. (F) Prediction error compared to other physical reservoirs.
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addition to the asymmetric relaxation behavior, spikes are observed
in the ID response as shown in Fig. 1A. The spikes are originated
from the EDL charging current and useful to enhance diversity of
the ID response, as discussed later. The IGRT has eight channels
with different channel length (L). Because all the channels of the
device are connected by the electrolyte layer and share common
gate and source electrodes, input signals are also shared by the chan-
nels. Therefore, the different channels are coupled to each other by
three-dimensional Li+ transport through the electrolyte to
some extent.

Said transistor is used as an IGR, which is a novel class of phys-
ical reservoirs. The IGR can map time series data in high-dimension
feature space by using ID response, with asymmetric relaxation and
spikes, the characteristics of which are widely modified by the input
history. To investigate a function of IGR as a physical reservoir, we
performed a handwritten-digit recognition task (13, 16, 18, 43).
Figure 1B is an example of the 28 × 28 pixel input digit “6” from
the Modified National Institute of Standards and Technology
(MNIST) database (44). Said image was converted into binary
time series data and input to the IGRT. The reservoir states were
obtained from ID. Figure 1C shows the 16 different reservoir
states, which were well separated from each other so that all 16 dif-
ferent pixel combinations could be expressed by unique reservoir
states. These values were used as the reservoir output to train and
test the readout network. Similar methods have been used elsewhere
(13, 16, 18, 43). The details of the procedure used are given in Ma-
terials and Methods. Figure 1D shows image recognition accuracy
versus the number of trained images. The recognition accuracy im-
proved from 70.4 to 88.8% as the number of trained images in-
creased from 100 to 60 thousand, supporting understanding that
the recognition task is suitable for the IGR. While the performance
was not as good as that achieved by a typical three-layer NN, the size
of the network in the present study (1960) is far smaller than in a
three-layer NN (784,000). Compared to the recognition accuracies
of other physical reservoirs (83 to 90.2%) (13, 16, 18, 43), that of IGR
is similar or slightly better. However, while the advantage of IGR is
minor for such a relatively easy task, IGR showed very good com-
putational performance on more difficult time series data analysis
tasks that require superior properties, such as reservoir diversity,
which is discussed below.

Solving a second-order nonlinear dynamic equation by IGR
RC is suitable for time series data analysis because it has features
such as short-term memory, nonlinearity, and high dimensionality
for input data. We took advantage of such suitability by using the
IGR to solve a second-order nonlinear dynamical equation task (13,
16), a schematic of which is shown in Fig. 2A. The target yt(k) is
obtained from following equation

ytðkÞ ¼ 0:4ytðk � 1Þ þ 0:4ytðk � 1Þytðk � 2Þ þ u3ðkÞ þ 0:1 ð1Þ

where k and u(k) = [0,0.5] are a discrete time and a random input
that were applied to IGRT as VG pulse streams, respectively. The
reservoir states Xi(k) were obtained from the ID response, and the
reservoir output y(k) is the linear combination of Xi(k) and read out
weights wi trained by ridge regression as follows

y ðkÞ ¼
XN

i¼1
wiXi þ b ð2Þ

whereN and b are the reservoir size and bias, respectively. Details of
the procedure are given in Materials and Methods.

To obtain high-dimensional reservoir states from one-dimen-
sional input, IGRT with an eight-channel (drain)–one-gate–one-
source structure and eight different channel lengths (20 to 1000
μm) were fabricated as shown in Fig. 1A. As shown in Fig. 2A,
the eight different channels provide eight physical nodes in the
RC. By applying VG pulse streams to one common gate and one
common source, we can measure eight different ID responses
from the eight drains (drains 1 to 8 in Fig. 2A). Constant drain-
source voltages (VD = −500 mV) are applied to between drains 1
and 8 and common source. Concerning VG pulse streams, a
random input u(k) is converted to VG pulse streams over a range
from 0 to 0.5 V (please refer to Materials and Methods for the
details). We can get 10 virtual nodes from each of eight different
ID responses. So, we have 80 nodes in total. Target waveform is re-
produced from a linear combination of the 80 nodes (reservoir
states) with 80 weights. In the training phase, 80 weights are
stored in the operating computer, and error was minimized by
the ridge regression. Eight ID responses from common gate inputs
were obtained as shown in Fig. 2B. The intensity of the spikes ob-
served at the edges of VG pulses differ depending on the channel
length. The spikes are due to a gate current induced by the ion
current, which depends on the differential of charge in the EDL
and are more significant with small ID compared to the gate
current. Therefore, short channels with low resistance (≤100 μm)
do not exhibit spikes, while long channels with high resistance
(≥200 μm) exhibit large spikes. For further higher dimensionality
of reservoir states, multiple reservoir states were obtained as
virtual nodes, as shown in Fig. 2C (35). The former nodes 1 to 5
and the latter nodes 6 to 10 correspond to ID responses measured
during the application of write pulses and during the pulse intervals
(VG = 0 V), respectively. The former nodes use the fast relaxation
process of channels from an LRS to an HRS, which is dominated by
Li+ ion accumulation at the electrolyte/channel interface, while the
latter nodes use a relaxation process from an HRS to an LRS of the
channel, which is a relatively slow relaxation process because the Li+
ion motion in the electrolyte is affected by channel resistance with
HRS. Because of the ion-electron–coupled dynamics, in which the
ions of the electrolyte and the electrons of the channel interact, the
IGRT exhibits asymmetric relaxation behavior. In addition, nodes 1
and 6 are characteristic virtual nodes located at the peak of the
spike-like ID. Thus, by using the virtual nodes, we could effectively
extract features such as asymmetric relaxation and spike behavior,
whichare unique features of the EDL. These unique IGR features,
induced by ion-electron–coupled dynamics, will be discussed in
Fig. 4. Figure 2D shows the reservoir state obtained at each virtual
node (1000-μm channel) for a random wave u(k) input. Further-
more, Fig. 2D shows how virtual nodes are taken from the ID re-
sponses measured in the eight physical nodes. One VG pulse,
which corresponds to u(k), gives one ID response in a physical
node just as the one shown in Fig. 2C (80 to 100 ms). It includes
10 virtual nodes as shown in Fig. 2 (C and D). Thus, 10 different
ID streams are reproduced as a function of time step from the 10
virtual nodes as shown in Fig. 2D. Because the device has 8 physical
nodes, each of which give 10 virtual nodes, we have 8 (physical
nodes) × 10 (virtual nodes) = 80 nodes in total as shown in
Fig. 2A. It can be seen that the IGR has good diversity, with each
virtual node showing various behaviors as reflections of its own
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characteristics. The combination of physical and virtual nodes re-
sulted in a reservoir size of 80.

Figure 2E shows the target for the test data and the predicted
output by IGR. The predicted output is in excellent agreement
with the target, that is, Eq. 1 was successfully solved by the IGR.
As shown in Fig. 2F, the predicted error was 1.62 × 10−4 (training
data) and 2.08 × 10−4 (test data), respectively. Compared to other
physical reservoirs (13, 16), the prediction error was extremely
low, indicating that the IGR performs well on time series data anal-
ysis tasks. Such good computational performance of IGR is due to
its ability to effectively exploit the complex and diverse features in-
herent in the ion-electron–coupled dynamics of IGR as reservoir
states. An additional important factor was the stable reproduction
of the good expressivity of the IGR. This means that the nonlinear
mapping to higher-dimensional spaces by the IGR performed on
the training data was exactly the same as for the test data without
altering the IGR condition during operation. This indicates that
the IGR satisfies the echo state property, which is one of the impor-
tant properties required for reservoirs (3).

NARMA2 task
We performed predictions on time series data generated by a
NARMA2 system (45), as shown in Eq. 3, as a more challenging
time series data analysis task. This is known as a NARMA2 task
and is commonly used as a typical RC benchmark task (7, 34, 36,
37).

ytðkþ 1Þ ¼ 0:4ytðkÞ þ 0:4ytðkÞytðk � 1Þ þ 0:6u3ðkÞ þ 0:1 ð3Þ

where u(k) = [0,0.5] is a random input. To evaluate the computa-
tional performance of IGR in the NARMA2 task, we used the
NMSE for an index of RC performance, an explanation of which
is given in Materials and Methods.

Figure 3A shows the relationship between the IGRT operating
conditions and the NMSEs (test phase) of the NARMA2 task.
Good prediction performance was observed in the operation
region with an input pulse period of 20 ms or longer and a duty
ratio of 75% or higher. In particular, the best prediction perfor-
mance (NMSE = 0.020 in the test phase) was achieved at a pulse
period of 50 ms and a duty ratio of 75%. The target and the predict-
ed output by IGR (test phase) under these conditions are shown in
Fig. 3B. Both waveforms are in excellent agreement, evidencing that
IGR successfully predicted the time series generated by the
NARMA2 system (please refer to fig. S2 and section S2 for
details). Figure 3C shows the relationship between the NMSE of
the NARMA2 task in the test phase and the volume of the physical
reservoirs reported so far (7, 34, 36, 37). Although there are not
many reports of physical reservoirs that experimentally demonstrate
the NARMA task, IGR showed the best results in the prediction per-
formance despite its extremely small volume compared to other
physical reservoirs. That is, the IGR showed both extremely good
computational performance on a single device and its suitability
for integration. We also evaluated the effect of device geometry
on IGR performance. Please refer to fig. S3 and section S3
for details.

Fig. 3. NARMA2 task. (A) The relationship between IGRT operating conditions and NMSEs in the test phase of the NARMA2 task. (B) Target and prediction waveforms of
the NARMA2 task. (C) NMSEs of the NARMA2 task and reservoir volumes of various physical reservoirs, which experimentally demonstrated the NARMA2 task. The res-
ervoir volume of IGR was calculated as the product of the total channel area and the thickness of the electrolyte.
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Simulation of ion-electron–coupled dynamics in IGR
The ion and electron dynamics in our IGR were simulated by using
COMSOL multiphysics simulation software (COMSOL Inc.) to
clarify the underlying mechanism in the unique I-V characteristics
of our device. As shown in Fig. 4A, the EDLT model, which is com-
posed of a Li+ electrolyte, a channel, and electrodes, was constructed
by assuming the physical properties of LSZO, EDL, and the device
structure with an adjustment of for reduction of computation
burden. The ID-VG and ID-VD characteristics of the simulated

model agreed well with the experimental result (please refer to
fig. S4, A and B, and to Materials and Methods). Figure 4B shows
the ID response of the device model under four sequential gate pulse
applied conditions. As seen in the rise and fall behavior of ID, the
model reproduces asymmetric ID responses with spikes that are sig-
natures of our device, supporting our understanding that the sim-
ulation reproduces the actual electrochemical transport phenomena
in the device. To grasp the ion and electron (hole) dynamics in the
model in the operation, we capture snapshots of the ion and hole

Fig. 4. Simulation of ion-electron–coupled dynamics. (A) The simulated EDLT, modeled by COMSOL Multiphysics, and the ion and hole distribution at the electrolyte/
channel interface at the initial state. The ion distribution of the electrolyte shows the amount of change from 1022 cm−3 of Li+ concentration. (B) The ID response of the
simulated model under sequential gate pulse applied condition. The dotted line shows the experimental result. (C) Snapshots of the ion and hole distribution, which are
captured at each of the four pulses shown in (B). (D) Schematic illustration of the ID path in the IGR, consisting of two IDs: one corresponding to state variable X(t) and the
other corresponding to state variable Y(t). (E) The ID response as a mixed reservoir of X(t) and Y(t).
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density distribution at specific points. In the snapshot at the initial
state, shown in Fig. 4A, substantial in-plane carrier distribution is
found, in which densities of positively charged holes and negatively
charged Li vacancies are higher near the source electrode than near
the drain electrode. This corresponds to formation of EDL, which is
differently charged by voltage distribution due to application of VD
(= − 500 mV) between the source and drain electrodes. It is noted
that the out-of-plane distribution of excess Li+ (and Li vacancies)
accumulates within 0.3 nm from the interface. The extremely thin
nature of the EDL is consistent with the in situ hard x-ray photo-
electron spectroscopy observation (33). Besides, comparison
between the four conditions shown in Fig. 4C evidences that repe-
tition of input makes a variety of charge density patterns in the
channel. For example, at t = 50 ms, not only the low–hole density
region proceeds from the drain side to the source side; an island-like
pattern also appears within 0.3 nm from the channel/electrolyte in-
terface. This is because such proceeding of the low–hole density
region occurs not only from the drain side but also from the
source side, resulting in a variety of transient charge density pat-
terns. Please refer to movie S1 and fig. S5 for a movie of the
charge density variation and a detailed discussion on the charge dis-
tribution change for the first pulse input, respectively.

Basically, such behavior can be understood in the framework of
transmission line model, in which electrical resistance is dependent
on the location due to the different length of the current path (46).
However, in the present case, local hole resistance in the channel is
strongly dependent on the charging history of EDL. This gives the
ID response of the IGR asymmetric relaxation. Furthermore, spikes
add another feature to the response. High performance of the IGR is
discussed below as two contributions to the total ID: ID to the source
and ID to the gate. Figure 4D is an illustration of the ID path in the
IGR. A partial ID (from the drain to source) corresponds to state
variable X(t) defined with an integral of local resistance R(x,t) at
each channel position x (0 ≤ x ≤ L), XðtÞ ¼ VDðL

x¼0
Rðx;tÞ dx

, in which

L, x, and VD are channel length, position in the channel, and drain
voltage (constant), respectively. By introducing a local voltage
applied to EDL VEDL (x,t) and EDL capacitance (constant) C, X(t)
can be further transformed to

XðtÞ ¼
ðL

x¼0
VDqmCVEDLðx; tÞ dx ð4Þ

in which q and μ are the elementary charge and hole mobility, re-
spectively. On the other hand, the rest of the ID with a spike appear-
ance (from the drain to the gate) corresponds to state variable Y(t),
defined with an integral of EDL charging current IEDL (x,t) at each
channel position x (0 ≤ x ≤ L)

YðtÞ ¼
ðL

x¼0
IEDLðx; tÞ dx ¼

ðL

x¼0
C

dVEDLðx; tÞ
dt

dx ð5Þ

in which VEDL(x,t) and C are a local voltage applied to EDL and
EDL capacitance (constant), respectively. As seen from Eqs. 4 and
5, while both X(t) and Y(t) include VEDL(x,t), it is only expressed in
a derivative form. Therefore, although bothX(t) and Y(t) are related
to VEDL(x,t), they function as two different types of reservoir.
Because the ID observed is the sum of ID to source and to gate,
the ID response is a mixed reservoir of X(t) and Y(t), as shown in

Fig. 4E. Recently, such mixed reservoirs have been theoretically pre-
dicted to show high performance by overcoming a trade-off rela-
tionship between short-term memory and nonlinearity due to the
coexistence or mixture of linear dynamics and nonlinear dynamics
in a reservoir (47). The mixed reservoir property can be a reasonable
explanation for the high performance discussed in time series data
analysis tasks shown in Figs. 2 and 3. In addition, we evaluated the
virtual node dependence of NMSE for NARMA2 task to analyze the
mixed reservoir effect in IGR. The best prediction performance was
obtained for virtual nodes 1 and 6, which correspond to the spike
behavior of the ID (Y(t) dominant regions in Fig. 4E), as shown in
fig. S6A. This indicates that such spikes not only provide reservoir
diversity shown in fig. S6B but also contribute significantly to the
computation. Please refer to section S5 for detailed discussion.

Lyapunov analysis
To evaluate the high performance of the IGR in terms of nonlinear
dynamics, we calculated the Lyapunov exponent, which quantifies
the trajectory stability of the dynamical system by the Jacobi matrix
method for direct analysis of time series data based on unknown
dynamical systems (39, 48). Figure 5A shows the nonlinear ID re-
sponse used in the chaos time series analysis for the 20-, 700-,
and 1000-μm channels when a triangular wave is input to the
IGRT. These channels exhibit completely different nonlinear re-
sponses, including the presence of spikes. While ID response for
L = 20 μm shows monotonical increase (blue arrow) and decrease
(red arrow) with respect to the input triangle waves, those for
L = 700 μm and L = 1000 μm show much complex behavior with
negative differential resistance–like nonlinear input-output charac-
teristics. Specifically, the ID responses for L = 700 μm and L = 1000
μm show a decrease in ID output as indicated by blue arrows in
regions where input VG increases (colored in red in the inset) and
an increase in ID output as indicated by red arrows in regions where
input VG decreases (colored in blue in the inset). Such a negative
differential resistance–like nonlinear input-output characteristic is
a highly nonlinear behavior that has been reported for memristors
in edge-of-chaos states (49). To analyze the nonlinearity of IGR in
detail, we generated 40 reservoir states X by obtaining five virtual
nodes, corresponding to nodes 1 to 5 in Fig. 2C, for ID obtained
from eight channels.

Figure 5B shows the return map [X(k) versus X(k + 1)] obtained
from the reservoir states of nodes 1 and 5 with L = 20 μm, L = 700
μm, and L = 1000 μm (X20μm,Node1, X20μm,Node5, X700μm,Node1,
X700μm,Node5, X1000μm,Node1, and X1000μm,Node5). The return maps
are completely different for each virtual node and for each
channel length (physical node), which indicates that IGR achieves
good diversity as a result of higher dimensioning by introducing
virtual node and channel length. The return map at L = 20 μm,
shown on the left of Fig. 5B, has a narrow trajectory width, indicat-
ing an almost completely periodic response to the triangular wave
input. On the other hand, the return map at L = 700 μm and
L = 1000 μm, shown in the middle and right of Fig. 5B, has a
wide trajectory, indicating that the reservoir state has a relatively un-
stable response that varies slightly from period to period. Similar
unstable characteristics have been reported for memristors (49)
and nanowire networks (22) in chaos and edge-of-chaos states.
We calculated Lyapunov exponents λ, an index of order-chaotic dy-
namics, of the IGR using the Jacobi matrix method (39, 48).
Figure 5C shows the attractor in phase space created by selecting
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Fig. 5. Lyapunov analysis. (A) Nonlinear ID response of the IGR. Triangular wave input (top) and ID response of IGR obtained from 20-μm length channel, 700-μm length
channel, and 1000-μm length channel. (B) The returnmaps of the reservoir correspond to a 20-μm length channel (left), a 700-μm length channel (middle), and a 1000-μm
length channel (right) with nodes 1 and 5. (C) The three-dimensional cross section of the 41D reservoir state spaces of the IGR. (D) Lyapunov spectrum of the IGR cal-
culated by the Jacobi matrix method.
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the axes in theX20μm,Node1,X700μm,Node1, andX700μm,Node5 directions
as one of the cross sections of the 41-dimensional phase space. The
calculated Lyapunov spectrum is also shown in Fig. 5D. The Lyapu-
nov exponents show values ranging from a minimum of −3.0 to a
maximum of −6.3 × 10−3: The maximum Lyapunov exponents λMax
of the IGR is −6.3 × 10−3. Dynamical systems with maximum Lya-
punov exponents λMax near zero are called edges of chaos, and it has
been reported that high computational performance is achieved at
these edges of chaos in computing for physical reservoirs (14, 22,
24), full simulation reservoirs (38–40), and recurrent NN (50)
because of their robustness in the processing of information (25).
The high computational performance of IGR can also be attributed
to edge of chaos, which was achieved by nonlinearity and high di-
mensionality. In other words, the high expressivity is realized by the
asymmetric relaxation and spiking of the ID, which originates from
the ion-electron–coupled dynamics at the electrolyte/semiconduc-
tor interface.

During application of pulse VG streams to the IGRT, diverse and
complex charge density distribution is formed by reflecting the past
experience (hysteresis) as discussed in Fig. 4. Because of ion-elec-
tron–coupled dynamics, ionic and electronic carrier density distri-
butions at a certain time step k strongly affect on the carrier density
distributions formed by subsequential applications of VG pulse
streams later than time step k + 1. Therefore, the carrier density dis-
tribution becomes very sensitive to the past experience, and it gives
instability to the system, leading to the edge-of-chaos state.

To achieve high-performance RC, we developed an IGR on the
basis of ion-electron–coupled dynamics in the vicinity of a lithium
ion solid electrolyte/diamond interface. In the study, various synap-
tic responses, with asymmetric relaxation and spikes, are effective in
achieving excellent expression power for mapping time series data
to higher-dimensional feature space. Good RC performance of the
IGR was demonstrated in handwritten-digit recognition, nonlinear
transformations, and NARMA2 tasks. Multiphysics simulation re-
vealed that during operation, transient charge density patterns form
and change from moment to moment in an extremely thin EDL
region. Asymmetric relaxation and spikes in the ID response
enables high expression power by realizing a mixed reservoir com-
prising different nonlinear dynamics. Lyapunov analysis was per-
formed to inspect the dynamical features of the IGR, which
analysis revealed that the maximum Lyapunov exponents of the
carrier dynamics is −6.3 × 10−3, supporting the understanding
that the IGR operates in edge-of-chaos states under certain condi-
tions. Furthermore, the concept of an IGR can be extended to
various information carriers (e.g., electrons, ions, light, and spin)
as long as their dynamics or transport interact with each other.
While the present EDL system, with its ion-gating transistor struc-
ture, is a typical case, various physical or chemical systems can be
used for achieving IGR with diverse information carriers. Various
materials and interfaces present exciting frontiers for exploring
high-performance, versatile, and integrated physical RC based on
the coupled dynamics inherent in IGR.

MATERIALS AND METHODS
Device fabrication
Hydrogen-terminated diamond was deposited on a single crystal
diamond substrate (100) (EDP) by the microwave-plasma chemical
vapor deposition (MPCVD) method. During deposition, 500 and

0.5 standard cubic centimeter per minute of H2 and CH4, respec-
tively, were introduced, and the hydrogen-terminated diamond
was grown at 950-W radio frequency power. The IGRT were fabri-
cated with eight different channel lengths (20, 50, 70, 100, 200, 500,
700, and 1000 μm), all with a channel width of 100 μm. Pd/Pt elec-
trodes (10 and 35 nm, respectively) were deposited by electron beam
evaporation with maskless lithography after oxygen termination of
the diamond surfaces, other than channels, by oxygen plasma asher.
A 3.5-μm LSZO thin film, used as an electrolyte, was deposited by
pulsed laser deposition (PLD) with an ArF excimer laser. LiCoO2
(100 nm) was deposited by PLD to form the gate electrode, and a
50-nm Pt thin film was deposited by electron beam deposition.

Note that encapsulation technology has been well established for
fabrication of integrated circuits (ICs) in commercial electronic
devices (51) Transfer molding and compression molding using
various types of resin (semiconductor encapsulant) are widely
used to keep ICs in vacuum to protect them. In addition, materials
in our devices were so stable that we could fabricate our devices in
air, although we performed electrical measurements in vacuum for
keeping our devices in the best condition. Therefore, there is no
severe limitation to practical applications.

Measurement method
IGRT measurements were carried out at room temperature in a
vacuum chamber evacuated by a turbo molecular pump. Probers
were used to connect the IGRT in the chamber, and electrical mea-
surements were performed using the source measure unit and pulse
measure unit of a semiconductor parameter analyzer (4200A-SCS,
Keithley).

Image recognition
A handwritten digit from the MNIST dataset (44) was used for the
task of image recognition by IGR, with 60,000 images as training
data and 10,000 as test data. Each pixel of a 28 × 28 pixel handwrit-
ten digit was converted to a binary state of “0” or “1” and input to
the IGRT as a time series data signal every 4 pixels. The “0” and “1”
were set to VG = −0.5 V and VG = 0.3 V, respectively, and the pulse
widths were 10 ms for each. The pulse interval was set to 12.5 ms,
and VG = −0.5 V was also applied during this time. While measur-
ing the ID by applying a constant drain voltage (VD = −0.5 V) to the
IGRT, 16 different time series data (“0000” to “1111”) were input to
the IGRT, and an ID of 12.5 ms after the fourth pulse input was ob-
tained as the reservoir state. The 16 IDs obtained by the measure-
ments were normalized so that the ID corresponding to “1111,”
which has the largest value, became 1 after adding 6 μA as an
offset to the ID. Then, the 784-pixel digit data were replaced with
the reservoir state every 4 pixels, and the digit data converted to
196 values of reservoir state were trained and classified in the
readout network. With the reservoir state matrix as X and the
weight matrix of the readout network as W, the readout function
is defined as follows

hðXÞ ¼ gðW � XÞ ð6Þ

gðzÞ ¼
1

1þ e� z
ð7Þ
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The squared error is defined as

E ¼
1
2

X10

i¼1
½yi � hðxiÞ�2 ð8Þ

The weights W were updated to minimize

D W ¼ � a
@E
@W

ð9Þ

The learning rate α was set to 0.1, and the training was per-
formed 20 times.

Solving second-order nonlinear dynamic equation tasks
A random input u(k) was converted to voltage pulse streams, with a
pulse width of 10 ms and an interval of 10 ms, and applied to the
gate terminal of the IGRT. The intensity of the pulses VG(k) was
equal to u(k), over a range of 0 to 0.5 V, and VG = 0 V was
applied during pulse intervals. The ID responses of the IGRT with
eight channels were measured under constant VD = −0.5 V, and 10
virtual nodes were obtained from each of them. Thus, 80 reservoir
states were obtained from one-dimensional input u(k) by IGR.
These reservoir states were normalized from 0 to 1 for calculation,
as shown in Eq. 2.

Ridge regression for solving second-order nonlinear
dynamic equation tasks and NARMA2 tasks
In the time series data analysis tasks shown in Figs. 2 and 3, the
readout network of IGR was trained by ridge regression. Here, we
explain the algorithm for ridge regression. The reservoir output y(k)
shown in Eq. 2 is transformed to

yðkÞ ¼W � xðkÞ ð10Þ

whereW = (w0,w1,…wN) and x(k) = [X0(k),X1(k),…,XN(k)]T are the
weight vector and the reservoir state vector with a reservoir size ofN,
respectively. Note that w0 = b and X0(k) = 1 to introduce the bias b
shown in Eq. 2. The cost function J(W) in ridge regression is defined
as follows

JðWÞ ¼
1
2

XT

k¼1
½yt ðkÞ � yðkÞ�2 þ

l

2

XN

i¼0
w2
i ð11Þ

where T, λ, and yt(k) are the data length in the training phase, the
ridge parameter, and the target output generated by Eq. 1 or 3, re-
spectively. We fixed T = 450 and λ = 5 × 10−4 for all the tasks dem-
onstrated in Figs. 2 and 3. The weight matrix bW that minimizes cost
function J(W) is given by following Eq. 12

cW ¼ YXTðXXT þ lIÞ� 1
ð12Þ

where Y = [yt(1), yt(2),…, yt(T )], X = [x(1), x(2),…, x(T )], and I[ ⊆
ℝ(N + 1) × (N + 1)] are the target output vector, the reservoir state
matrix, and the identify matrix, respectively.

Then, after learning the readout weights, the computational per-
formance was evaluated by “Prediction error” for solving the
second-order nonlinear dynamic equation task and “NMSE” for

the NARMA2 task, as shown in following Eqs. 13 and 14

Prediction error ¼

XT

k¼1
½ytðkÞ � yðkÞ�2

XT

k¼1
y2
t ðkÞ

ð13Þ

NMSE ¼
1
T

XT

k¼1
½ytðkÞ � yðkÞ�2

s2½ytðkÞ�
ð14Þ

where T is a data length in the training phase (T = 450) or test
phase (T = 150).

Multiphysics modeling
To analyze the dynamical behavior of ions and electrons in IGRT,
finite element modeling and simulation of IGRT was performed
with the COMSOL Multiphysics (COMSOL Inc.). So far, there
have been many reports on such simulations of field-effect transis-
tors and also EDL capacitors (52–56). On the basis of the approach-
es in the literatures, our IGRT model was constructed by modifying
the main framework of a conventional field-effect transistor model
comprising a semiconductor channel, electrodes (source, drain, and
gate), and gate dielectric (52, 53). By modifying the conventional
field-effect transistor model with (i) insertion of an ion-conducting
electrolyte layer between semiconductor channel and gate electrode
to form the semiconductor channel/gate dielectric/electrolyte layer/
gate electrode–laminated structure and (ii) assuming the gate di-
electric as EDL with constant and huge capacitance, semiconductor
channel, we made our IGRT model in which EDL charging/dis-
charging modulate the semiconductor channel resistance.

In the semiconductor channel corresponding to the diamond
channel in the IGRT, we applied a standard description of electronic
carrier transport in semiconductor by using Poison equation de-
scribing the relationship between electric potential (Ψ) and electric
charge density (ρ) as shown in Eq. 15 and semiconductor equations
as shown in Eqs. 16 and 17 (52, 53). To lower computation burden,
only major hole transport was simulated by ignoring minor electron
transport.

r � ð� rCÞ ¼
r

1
; r ¼ qðr � N �a Þ ð15Þ

where ε, p, and N�a are the permittivity, carrier concentrations of
holes, and acceptor concentrations, respectively.

Jp ¼ � qDprp � qnmprC ð16Þ

@p
@t
¼

1
q

� �

r � Jp �
Dp
t

ð17Þ

where Jp and τ are the hole current densities and the hole lifetime,
respectively. Dp and μp are the hole diffusion coefficient and mobil-
ity, respectively, satisfying the following Einstein relation

mp ¼
q
kBT

Dp ð18Þ

where q, kB, and T are the elementary charge (1.60 × 10−19 C),
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Boltzmann constant (1.38 × 10−23 J/K), and room temperature
(293.15 K), respectively. In our model, we used the experimental
result of 150 cm2/Vs for the hole mobility (33). As for the carrier
density of the diamond channel, high-density H-termination
(1013 cm−2) on the surface of the diamond was reported to cause
the two-dimensional hole gas on the surface of diamond (57). To
approximate the two-dimensional hole gas, 1019 cm−3 was set for
acceptor concentration by considering H-termination density
(1013 cm−2) and thickness of the two-dimensional hole gas (1
nm) (58). As seen in fig. S4, ID-VG and ID-VD characteristics of
the diamond-based IGRT were successfully reproduced, indicating
that the hole transport property on the surface of H-terminated
diamond was approximated with sufficient accuracy for the
present study.

In the electrolyte layer corresponding to LSZO in our IGRT, Li+
transport is described by Nernst-Planck equation in which ion flux
Ji is a sum of diffusion flux Jdiff and drift flux Jdrift as follows

Ji ¼ Jdiff þ Jdrift ¼ � Drc � cmirC ð19Þ

where D, c, and μi are diffusion coefficient, ion concentration, and
the ion mobility, respectively. Our model describes Li+ transport in
the electrolyte by solving the Nernst-Planck equation. Li+ carrier
density was set to 1022 cm−3 by using Li concentration in our
LSZO investigated by inductively coupled plasma mass spectro-
scopy. There have been only few reports on mobility and diffusion
coefficient of Li+ conducting amorphous inorganic oxide films, and
we could not find the values for LSZO film (59). We thus substituted
diffusion coefficient of Li+-conducting Li3PO4 amorphous films for
the one of LSZO. Therefore, we calculated mobility of the electrolyte
in the IGRT model from diffusion coefficient of Li3PO4 amorphous
films (6.3 × 10−13 cm2/s) (59). In our IGRT model, the electrolyte
layer was divided by a triangular mesh, which was designed to keep
the maximum mesh size below 0.18 nm in the region within a dis-
tance of 2.5 nm from the diamond/EDL interface, in which drastic
variation in carrier density is expected. On the other hand, outside
of the region, the mesh size was designed to be less than 20 nm to
reduce computational burden.

As for the gate dielectric corresponding to EDL, the capacitance
CEDL was set to 4.0 μF/cm2, which is a typical value of EDL capac-
itance. To express EDL with capacitance CEDL = 4.0 μF/cm2 in
Helmholz model (54–56), thickness (d ) and dielectric constant
(εr) of the gate dielectric were set to 1 nm and 4.5 based on the re-
lationship CEDL = ε 0 εr/d. While we observed VG dependence of
EDL capacitance at diamond/LSZO interface (33), it was simplified
to constant capacitance. As shown as the Eq. 5 in the discussion for
reservoir state Y(t), EDL charging/discharging current density JEDL
is expressed by following Eq. 20, which relates to the modulation of
the channel resistance caused by EDL charging/discharging in our
IGRT model (56).

JEDL ¼ CEDL
dðCch � CelÞ

dt
ð20Þ

where Ψch and Ψel are the electric potential at the diamond channel
and electrolyte, respectively.

Our IGRT model consists of a Li+ electrolyte, EDL, and diamond
channel and was modeled in two dimensions. In the EDL charging
process, Li+ ion transport in the LSZO electrolyte contribute as a
serial resistance to the whole electrical system. The serial resistance

R for the Li+ ion transport is derived from Li+ ion conductivity,
σ = (q)2nD/kBT, and geometric configuration [thickness (t) and
channel length (L)] of the electrolyte, by considering that R is in
inversely proportion to both t and L. Here, n and T are carrier
density and temperature, respectively. For reducing of the system
volume by maintaining R. To reduce computational burden, the
simulation model reduces the channel length from 20 to 1000 μm
in the real device to 1000 nm and reduces the electrolyte thickness
from 3.5 μm in the real device to 100 nm. The diffusion coefficient
of the Li+ electrolyte was reduced from 6.3 × 10−13 to 10−14 cm2/s,
and the mobility of Li+ was set to 4 × 10−13 cm2/Vs to maintain ionic
resistance with decreasing size and in good agreement with the ex-
perimental results. The boundary condition at the bottom of the
channel (substrate side) was set to the insulator. The source,
drain, and gate electrodes were modeled as ohmic contacts. A po-
tential of 0 V is set on the source electrode. Drain andVG are applied
to the electrodes with respect to the source electrode.

Lyapunov analysis
Here, we introduce how the Lyapunov exponents of IGR were cal-
culated by the Jacobi matrix method (39, 48, (60). The Jacobi
method matrix estimates the Jacobi matrix from points on the at-
tractor in the m-dimensional phase space of the time series data.
Let us consider an m-dimensional sphere (ε sphere) of infinitesimal
radius ϵ, centered at a point v(t) on the orbit of the attractor at time
t. With v(ki) (i = 1, 2,…, M ) as the other points on the attractor
located inside the ε sphere, the displacement vector μi of v(ki) as
seen from v(t) is obtained as follows

mi ¼ vðkiÞ � vðtÞ ð21Þ

In addition, the displacement vector zi after time s is obtained as
follows, and a small radius of ε sphere and s allows a linear approx-
imation shown on the right of the equation as bJðtÞ, which is the
Jacobi matrix to estimate

Zi ¼ vðki þ sÞ � vðt þ sÞ � bJðtÞmi ð22Þ

Then, from Eq. 22, the Jacobi matrix can be estimated as follows

bJðtÞ ¼ zimT
i ðmim

T
i Þ ð23Þ

Considering the QR decomposition of the Jacobi matrix, the
Jacobi matrix at time t can be expressed as shown in Eq. 24, and
the Lyapunov exponent λi for i = 1, 2,…, m is calculated as shown
in Eq. 25

bJðtÞ Qt ¼ Qtþ1 Rtþ1 ð24Þ

li ¼ lim
T!1

1
2T

X2T

k¼1
log j Riik j ð25Þ

where Riik is the ith diagonal element of the upper triangular
matrix Rk.

Whereas the Lyapunov exponent λi is ideally defined by a limit
of Eq. 25 as a time step k goes infinite, it is analytically calculated
from experimental data with finite points. Therefore, the calculated
Lyapunov exponents become reliable only when the values are suf-
ficiently converged. On the other hand, in the very initial time steps
near zero, the Lyapunov exponents are not converged, thus,
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deviating largely. That is why we observe very large positive or neg-
ative Lyapunov exponents in the near zero region (k≈ 0). In Fig. 5D,
we can safely conclude that the Lyapunov exponents are sufficiently
converged in k > 1500.

Supplementary Materials
This PDF file includes:
Sections S1 to S5
Figs. S1 to S6

Other Supplementary Material for this
manuscript includes the following:
Movie S1
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