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Abstract

Background: We aim to discover whether HbA1c affects incident cardiovascular dis-

ease (CVD) through regulating endogenous metabolites.

Methods and Results: Totally, 2019 plasma samples were analyzed by liquid

chromatography-quadrupole time-of-flight mass spectrometry. Logistic regression and lin-

ear regression were used to screen metabolites which were associated with both CVD

and HbA1c. The VanderWeele's mediation approach was performed to assess the direct

effect and indirect effect (IE) in the counterfactual model. Forty-eight metabolites showed

an association with both HbA1c and CVD risk. Forty-four of the 48 metabolites worked

as mediators mediated in HbA1c's effect on CVD (odds ratio [OR]IE from 0.997 to 6.098,

false discovery rate q < 0.05, mediated proportion from 0.4% to 85.4%). Pathway enrich-

ment analysis indicated that different metabolic pathway showed significant IE (butanoate

metabolism ORIE = 1.058, mediated proportion = 16.0%; alanine, aspartate and glutamate

metabolism ORIE = 1.082, mediated proportion = 21.8%; TCA (citric acid) cycle metabo-

lism ORIE = 1.048, mediated proportion = 13.8%; phenylalanine metabolism ORIE = 1.067,

mediated proportion = 18.4%; glycerophospholipid metabolism ORIE = 3.007, mediated

proportion = 82.2%; all the P < .01).

Conclusions: Our findings suggest that metabolites mediate the effect of HbA1c on

incident CVD and provide a new study sight into pathogenesis of CVD.
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1 | INTRODUCTION

Cardiovascular disease (CVD) remains a leading cause of death world-

wide, hence an exploration of CVD mechanism has become a top pub-

lic health priority.1 Many researchers have confirmed the association

between diabetes and CVD,2-4 and intensive glycemic control

becomes the standard of care with diabetes complications.5-7 Previ-

ous studies have identified that the disorders of glucose and lipid

metabolism are the crucial cause of CVD, and the abnormalities of glu-

cose is the trigger.8,9

As a major CVD risk factor, high level of HbA1c has been shown to

activate the protein kinase C pathway,10 inducible nitric oxide

synthase,11 and further induce inflammatory factors.12,13 Glucose levels

have a significant negative effect on endothelial function, and
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endothelial dysfunction is a key management of diabetes complications

and CVD.14,15 It is also informed that endothelial dysfunction can make

a metabolic dysregulation.16 The metabolites represent one of the

downstream end products of the environment's interaction with the

genome-transcriptome-proteome, and the endogenous metabolites

level can sensitively reflect phenotype fluctuation for CVD.17

However, the potential relationship among HbA1c, metabolites,

and CVD is still unknown. Here, we carried a hospital-based case con-

trol study with 2019 participants and aimed to explore a potential

mechanism whether endogenous metabolites are involved in effect of

HbA1c on incident CVD.

2 | METHODS

2.1 | Study population

A total of 2019 participants were recruited from the Affiliated Wujin

Hospital of Jiangsu University during August 2009 and December

2015. Each participant underwent coronary angiography for confirma-

tion the presence of CVD.

Plasma samples were collected before the coronary angiography

surgery and quickly stored at −80�C for further metabolomic analyses.

Blood biochemical indices were measured, and the history of diseases

and smoking history were recorded using questionnaire. Patients with

other cardiac-related diseases, blood-related disorders, infectious dis-

eases, and malignant tumors were excluded. All subjects signed the

informed consent forms. This study was approved by the ethics com-

mittee of Affiliated Wujin Hospital of Jiangsu University and complied

with the Helsinki Declaration.

2.2 | Sample preparation

To eliminate the protein in the plasma, 150 μL of acetonitrile was

added to a 50 μL aliquot of plasma and vortexed for 10 seconds. Pre-

cipitated protein was subsequently removed by centrifugation

(13 000 rpm, 10 minutes) at 4�C. Then, 150 μL of the supernatant

was transferred to a tube and dried under a gentle stream of nitrogen

gas at room temperature. Finally, the supernatant was reconstituted

in 100 μL of aqueous acetonitrile (8:2, v/v) for LC/MS (Liquid Chroma-

tography-Mass Spectrometry) detection.

2.3 | Quality control sample

To ensure data quality for metabolic profiling, quality control

(QC) sample was proceeded. The detail process of QC referred to Fan

et al.18

2.4 | Metabolomics study

Liquid chromatographic separation was conducted using a 1290 Infin-

ity System (Agilent Technologies, USA), with 100 × 2.1-mm Zorbax

Eclipse Plus 1.8-mm C18 column maintained at 45�C. The mobile

phase consisted of water with 5 mM ammonium acetate (A) and 10%

aqueous acetonitrile with 5 mM ammonium acetate (B). Gradient pro-

gram of elution was: 5 to 80% B at 0 to 7 minutes, 80 to 100% B at

7 to 12 minutes, 100% B at 12 to 13 minutes, and then back to initial

conditions, and 2 minutes for equilibration. The sample volume

injected was 1 μL and the flow rate was 0.4 mL/min.

The mass spectrometric detection was performed on an Agilent

6530 Q/TOF-MS system (Agilent Technologies, USA) in positive

mode. The parameters were set as: the fragmental voltage at 100 V,

nebulizer gas at 35 psig, capillary voltage at 3500 V, drying gas flow

rate at 10 L/minute, and temperature at 300�C. Reference masses at

m/z 121.0509 and 922.0098 were introduced for accurate mass

calibration.

MassHunter Workstation Software (version B.06.00; Agilent

Technologies) was used to convert mass spectrometry data (.d) into

data format (.mzdata) files. XCMS package (Scripps Center for Met-

abolomics and Mass Spectrometry, La Jolla, California) was used to

conduct the data pre-treatment, including nonlinear retention time

alignment, peak discrimination, filtering, alignment, matching, and

identification. The detailed information of the experiment has been

described in previous study.18

2.5 | Statistical process

2.5.1 | Data process

All metabolites concentrations were first log-transformed prior to ana-

lyses to obtain approximately normal distributions. The false discovery

rate (FDR) using Benjamini and Hochberg method was calculated to

correct the multiple test adjustment. All tests were two-sided, and

P ≤ .05 were considered statistically significant unless stated

otherwise.

2.5.2 | Metabolite-based association analysis

Initially, we performed non-conditional logistic regression to explore

the association between HbA1c and CVD risk with adjusting or no-

adjusting potential covariates (age, gender, smoke and drink history).

Then, the associations between (a) HbA1c and metabolites, (b) metab-

olites and CVD risk were assessed by multiple linear regression and

non-conditional logistic respectively, and the beta value (β), odds ratio

(OR) and 95% confidence interval (95% CI) were calculated.

2.5.3 | Mediation analysis

In order to explore the potential causal mechanisms in “HbA1c –

metabolites – CVD”, we further performed causal mediation analy-

sis. Causal mediation analysis using VanderWeele's mediation model

was applied to evaluate the indirect effect (IE) of HbA1c on CVD

risk that was mediated through metabolites (explained by the

change of metabolites per 1 SD increase of log-transformed level),

as well as the proportion of the effect mediated.19 The sum of the

indirect and direct effects (DEs) is the total effect of HbA1c on

CVD risk.
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logit Pð Þ= θ0 + θHbA1c ×HbA1c+ θMetabolite ×Metabolite

+ θcovariates ×Covariates + e
ð1Þ

in this section, the θHbA1c represents the coefficient of HbA1c condi-

tioned on covariates and metabolite, which also be regard as DE. The

θMetabolite and θcovariates represent the coefficients of metabolite and

covariates, respectively. IE was calculated from formula (2):

IE = θMetabolite × βHbA1c ð2Þ

where βHbA1cwas estimated by formula (3):

Metabolite = β0 + βHbA1c ×HbA1c+ βCovariates ×Covariates

+ e,Weights =w
ð3Þ

In this section, wrepresents the weights, which were calculated for

case and control respectively:

w =
prevalence=r , for case

1−prevalenceð Þ= 1− rð Þ , for control

�
ð4Þ

in which prevalence represents the prevalence of CVD among the at-

risk population, and r represents the proportion of CVD cases in our

dataset. Monte Carlo bootstrapping with 1000 times was used to gen-

erate the standard errors.

2.5.4 | Pathway analysis

We classified the metabolites into different pathways using “Meta-

boAnalyst” (http://www.metaboanalyst.ca/), so that, an elaboration of

comprehensive metabolites will be accomplished. Principal compo-

nent analysis was used to extract the first principal component (PC1)

from metabolites by pathways. Afterwards, mediation analysis was

conducted to seek for the potential relationship among HbA1c, meta-

bolic pathways, and CVD.

2.5.5 | Stratified analysis

The whole participants were divided into young (age < 65) and old

(≥65) groups by age, we conducted the mediation analyses in subsets.

Potential confounders incorporating age, gender, smoking and drink-

ing history were used as covariates and considerably adjusted in all

models. All analyses and visualizations were conducted using R ver-

sion 3.4.1 (The R Foundation).

3 | RESULTS

3.1 | Characteristics of sample

A total of 2019 subjects (1784 CVD patients and 235 at-risk controls)

were included in this study. Each sample underwent coronary angiog-

raphy and plasma samples were analyzed by liquid chromatography-

quadrupole time-of-flight mass spectrometry. The mean age of 2019

participants was 62.9 ± 9.6 years, of which males and females were

1276 (63.1%) and 743 (36.9%), 75% was non-smoker, and 93% was

non-drinker. No significant differences were observed in smoke and

drink history distributions among CVD and non-CVD groups. Age

and gender were found as unbalanced distributions between CVD

and non-CVD subjects (Figure S1).

3.2 | Metabolite-based association analysis

The risk of CVD was increased with the raising level of HbA1c

(OR = 1.79, 95% CI = [1.48, 2.18], P = 3.79 × 10−9), which was consis-

tent with a previous follow-up study.20 This positive association was

further validated when the model was further adjusted for covariates

(OR = 1.86, 95% CI = [1.54, 2.32], P = 2.91 × 10−9). A total of 2059

positive ions were confirmed in our study. We performed a non-

condition logistic regression to uncover the relationship between

CVD risk and metabolism features, and identified 176 metabolites

associated with the incident CVD (P ≤ 0.05). Seventy-five metabolites

reached statistical significance after correction for multiple testing by

FDR-q ≤ 0.05. Acting as CVD risk factors, those metabolites might be

influenced by HbA1c. We further explored the relationship between

each significant metabolite and HbA1c. Out of 75 metabolites,

48 were then detected to be affected by HbA1c (β from −10.18 to

3.34, FDR-q ≤ 0.05) (Table S1, Figure 1).

3.3 | Casual inference analysis

Given these association between HbA1c, metabolites, and CVD risk,

it may be possible that metabolites act as mediators of the effect of

HbA1c on CVD risk (Figure S2). To verify the hypothesis, we per-

formed a causal inference test using VanderWeele's mediation model

and bootstrap methods. As shown in Table 1, among those 48 metab-

olites which were significantly associated with both CVD and HbA1c,

44 metabolic ions were found mediating the effect of HbA1c initiat-

ing CVD risk, with a significant IE (FDR-q ≤ 0.05). In detail, HbA1c

decreased the level of methylglutarylcarnitine which further reduced

CVD risk. In another word, methylglutarylcarnitine alleviated the

effect of HbA1c on CVD risk (masking effect), and the mediated pro-

portion was not estimated due to the opposite signs (ORIE = 0.997,

95% CI = [0.999, 0.994], FDR-q = 0.026). 2α-Methyl-5α-androstane-

3,17-dione and glycocholic acid revealed a wholly mediate effect (2α-

Methyl-5α-androstane-3,17-dione: ORIE = 1.023, 95% CI = [1.017,

1.029], FDR-q = 9.24 × 10−13; Glycocholic acid: ORIE = 1.246, 95%

CI = [1.183, 1.320], FDR-q = 1.07 × 10−13). More generally, adjusting

with 2α-Methyl-5α-androstane-3,17-dione and glycocholic acid, the

effect of HbA1c on CVD was non-significantly. Besides, the

remaining 41 metabolites showed a positive IE explaining partial phe-

notypic variance (ORIE = 1.001 to 6.098, FDR-q ≤ 0.05, mediated

proportion = 0.4% to 85.4%).
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3.4 | Pathway analysis

Considering an overall interpretation for metabolic IDE, pathway

enrichment was investigated. Figure 2 showed all enriched metabolic

pathways according to P values, and we extracted PC1s from the

corresponding five metabolic pathways (Alanine, aspartate and gluta-

mate metabolism, glycerophospholipid metabolism, phenylalanine metab-

olism, butanoate metabolism, and citrate cycle metabolism). The
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F IGURE 1 Metabolites associated with incident cardiovascular disease (CVD) (red blocks) and HbA1c (yellow blocks). All metabolites were
nominally associated with incident CVD. Among those metabolites, gray blocks represented no significant association with HbA1c. FDR-q values
were calculated, and 0.05 was threshold. *means that the metabolites were tentatively identified with reference compounds
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TABLE 1 HbA1c associated with incident cardiovascular disease mediated by metabolites

Metabolites Indirect effect (IE) FDR-qIE Mediated proportion (%)

1,3-Octadiene 1.050 (1.031, 1.074) 8.38 × 10−6 15.2

2-Hydroxylauric acid 1.009 (1.005, 1.014) 2.02 × 10−4 3.2

2-Nonynoic acid 1.012 (1.007, 1.018) 6.08 × 10−5 4.4

2-Octenoylcarnitine 1.001 (0.999, 1.002) 5.31 × 10−2 a

2α-Methyl-5α-androstane-3,17-dione 1.023 (1.017, 1.029) 9.24 × 10−13 b

3-Octanone 1.038 (1.023, 1.052) 1.33 × 10−6 11.9

5-Hydroxy tryptamine 1.002 (1.001, 1.004) 1.31 × 10−2 0.8

*Aspartic acid 1.040 (1.007, 1.087) 4.93 × 10−2 11.7

Decenyl acetate 1.002 (1.001, 1.003) 2.02 × 10−4 0.7

*Eicosatrienoic acid 1.008 (1.003, 1.015) 1.38 × 10−2 3

*Ethylchenodeoxycholic acid 1.021 (1.008, 1.036) 6.21 × 10−3 6.5

*Fumaric acid 1.011 (1.006, 1.015) 4.90 × 10−5 3.3

*Glycerophosphocholine 1.024 (1.003, 1.047) 3.48 × 10−2 6.9

*Glycocholic acid 1.246 (1.183, 1.320) 1.07 × 10−13 b

*Glycodeoxycholic acid 1.007 (1.004, 1.010) 1.92 × 10−5 3

*Hippuric acid 1.012 (1.007, 1.014) 1.71 × 10−7 3.7

Indole-3-ethanol 1.001 (1.001, 1.001) 6.85 × 10−7 0.4

*Isoleucylproline 1.004 (1.002, 1.007) 3.12 × 10−3 1.5

*LysoPC(16:0) 6.098 (2.201, 17.253) 1.78 × 10−3 85.4

*LysoPC(16:1) 1.024 (1.003, 1.046) 3.21 × 10−2 7.5

*LysoPC(18:0) 2.527 (1.956, 3.323) 8.48 × 10−11 79.6

*LysoPC(18:1) 2.942 (2.032, 4.255) 1.00 × 10−7 82.2

*LysoPC(18:2) 1.677 (1.182, 2.373) 6.32 × 10−3 61.2

*LysoPC(20:3) 1.025 (1.002, 1.052) 4.91 × 10−2 7.6

LysoPC(20:5) 1.022 (1.009, 1.045) 2.01 × 10−2 6.9

LysoPC(22:6) 1.034 (1.004, 1.064) 3.12 × 10−2 9.9

LysoPC(24:0) 1.008 (1.005, 1.011) 1.18 × 10−6 3.2

*LysoPE(16:0) 1.022 (1.006, 1.044) 1.35 × 10−2 6.7

*LysoPE(18:0) 1.006 (1.002, 1.012) 2.60 × 10−2 2.1

*LysoPE(18:1) 1.011 (1.006, 1.016) 5.55 × 10−5 4.1

LysoPE(18:3) 1.006 (1.003, 1.009) 2.02 × 10−4 2

LysoPE(20:4) 1.015 (1.002, 1.031) 4.83 × 10−2 4.7

LysoPE(22:5) 1.001 (0.999, 1.003) 1.95 × 10−1 a

LysoPE(22:6) 1.008 (1.002, 1.016) 3.22 × 10−2 2.8

Methylglutarylcarnitine 0.997 (0.999, 0.994) 2.63 × 10−2 c

MG(18:0/0:0/0:0) 1.006 (1.001, 1.014) 7.36 × 10−2 a

N-Phenylacetyl-L-glutamine 1.231 (1.133, 1.349) 1.22 × 10−5 42.7

*Palmitoylethanolamide 1.006 (1.003, 1.009) 2.02 × 10−4 2.7

PG(15:0/14:0) 1.014 (1.002, 1.029) 4.81 × 10−2 4.4

Phosphatidylcholine 1.006 (1.004, 1.009) 1.22 × 10−5 2.2

*Phytosphingosine 1.112 (1.059, 1.172) 1.39 × 10−4 29.3

Phosphocholine 1.045 (1.021, 1.074) 1.32 × 10−3 12.5

PI(20:4/0:0) 1.033 (1.017, 1.049) 1.47 × 10−4 9.7

Succinic acid 1.047 (1.018, 1.087) 9.32 × 10−3 13.6

Trimethylamine-N-oxide 1.014 (1.006, 1.022) 1.75 × 10−3 5.3

Undecan-3-ol 1.007 (0.999, 1.022) 2.12 × 10−1 a

(Continues)
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corresponding PC1s' proportion of variance was 0.950, 0.898, 0.994,

0.897, and 0.947, respectively, which indicated an appropriate repre-

sentativeness of pathway metabolites. We assessed the proportion of

HbA1c effect on risk of CVD that was mediated through metabolic

PC1s. As shown in Table 2, Butanoate metabolism ORIE = 1.058,

FDR-q = 0.001, mediated proportion = 16%; alanine, aspartate and

glutamate metabolism ORIE = 1.082, FDR-q = 0.002, mediated propor-

tion = 21.8%; TCA cycle metabolism ORIE = 1.048, FDR-q = 0.003,

mediated proportion = 13.8%; phenylalanine metabolism ORIE = 1.067,

FDR-q = 0.004, mediated proportion = 18.4%; glycerophospholipid

metabolism ORIE = 3.007, FDR-q = 5.72 × 10−9, mediated propor-

tion = 82.2%. The IE among those pathways ranged from 1.048 to

3.001, which averagely explained 30.4% total effect (IE + DE). The lin-

ear combination of metabolites in certain pathway uncovered a

potential mediator in HbA1c caused CVD.

3.5 | Stratified analysis

Based on the age division standard from world health organization

(WHO), we divided participants into young (<65) and old (≥65) groups.

Re-extracting PC1s from both young and old groups, we obtained

analogous results in 5 metabolic pathways (Tables S2 and S3). Compared

with total participants, five metabolic pathways showed a consistent

result in young group (butanoate metabolism ORIE = 1.050, P = .01, medi-

ated proportion = 14.7%; alanine, aspartate and glutamate metabolism

ORIE = 1.062, P = 0.025, mediated proportion = 17.9%; TCA cycle IE

= 1.049, P = 0.011, mediated proportion = 14.5%; phenylalanine metabo-

lism ORIE = 1.075，P = .003, mediated proportion = 20.6%;

glycerophospholipid metabolism ORIE = 3.561，P = 8.25 × 10−8, medi-

ated proportion = 86.5%). However, butanoate metabolism, citrate

cycle, and phenylalanine metabolism in old group failed (butanoate

metabolism ORIE = 1.040，P = .192; alanine, aspartate and glutamate

metabolism ORIE = 1.129，P = .023, mediated proportion = 29.2%; TCA

cycle ORIE = 1.039，P = .197; phenylalanine metabolism ORIE = 1.051,

P = .142; glycerophospholipid metabolism ORIE = 2.557, P = .003, medi-

ated proportion = 70.2%).

4 | DISCUSSION

As previous reported, metabolic biomarkers always play a critical role

in CVD.20 Hyperglycemia, as measured by HbA1c level, is confirmed

as an independent risk factor for CVD, and leads to a poor prognosis.

Owing to the unknown mechanism, we investigated relationship

among CVD, extensive plasma metabolites and HbA1c. Overall, we

consider that HbA1c might induce CVD via metabolites contributions.

These metabolites may act as an important role in the causal pathway

from HbA1c to CVD risk. To our knowledge, this is the first casual

inference study involving “HbA1c-Metabolites-CVD risk”.

In this study, significant IEs were identified among 42 metabolites

independent from established CVD risk factor, and nine metabolites

belonged to lysophosphatidylcholine (LPC) category. Ganna et al21

discovered a strong negative association between LPC and incident

CVD in independent studies, Stegemann et al22 confirmed that high

levels of individual species of LPC were predictive factor for CVD

over a 10-year observation period. In additional, Sattler declared that

the level of LPC tightly associated with type 2 diabetes that were

independently confirmed in the European Prospective Investigation

into Cancer and Nutrition Potsdam cohort.23 Consisting with the

potentially relationship among HbA1c, LPC, and CVD, HbA1c in this

study was also found to decrease the level of LPC relative ions, which

indirectly caused elevation of CVD risk.

Pathway analysis classified metabolic mediators into five catego-

ries, and principal analysis assembles those metabolites by pathway.

TABLE 1 (Continued)

Metabolites Indirect effect (IE) FDR-qIE Mediated proportion (%)

*Valine 1.384 (1.069, 1.883) 3.25 × 10−2 53

*γ-Aminobutyric acid 1.021 (1.009, 1.035) 2.32 × 10−3 6.6

Abbreviation: FDR, false discovery rate.

*Means that the metabolites were tentatively identified with reference compounds.
aMediated proportion cannot be estimated because the IE is not significant.
bMediated proportion cannot be estimated because the DE is not significant.
cMediated proportion cannot be estimated because the opposite signs with DE and IE.

F IGURE 2 Metabolic pathway analysis was performed to enrich
significant metabolites into different pathways
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The blood glucose can be metabolized into small molecule metabolites

and then enter the TCA-cycle,24 which is directly coupled to myocar-

dial oxygen consumption. This cycle plays a key role in cell metabolism

and the levels of the involved metabolites can also be affected by other

physiological factors (HbA1c).25 Recent study demonstrates that resi-

dents living in the pollution-affected area always be with higher levels

of urine metabolite profiles, incorporating phenylalanine metabolism

and alanine, aspartate and glutamate metabolism. Those metabolites

are linked to increased oxidative stress, including oxidative and

nitrative DNA damage, and lipid peroxidation.26,27 It was well known

that high level glucose contributes to oxidative stress, which caused

oxidative injury and dysfunction of the vascular endothelium as an indi-

cator in many vascular diseases in early stage. DeRatt et al found that a

high plasma cystathionine concentration in stable angina pectoris was

associated with higher glucose, and phenylalanine concentrations due

to greater catabolism.28 Furthermore, glycerophospholipid metabolism

and butanoate metabolism are also relevant to oxidative stress, and

glycerophospholipid metabolism has been confirmed to be associated

with CVD risk.29-31

This research is absence in external validation. In order to enhance

the reliability, we performed a bootstrap when estimating the SE of

DE and IE, and a stratified analysis was performed to validate the

results. During stratified analysis, we confirmed the robustness perfor-

mance of our results in young group, but three metabolic pathways

(butanoate metabolism, TCA cycle, phenylalanine metabolism) in old

group failed to revel a significant IE.

In this study, we captured 48 metabolites associated with both

HbA1c and CVD risk and tested their mediation effect. It was

revealed that metabolite may act as a mediator between the connec-

tion of HbA1c and CVD incidence and has a potential regulatory

mechanism. we also recognized some limitations here. First, because

of the uncommercial reference compounds obtained, identification of

metabolites is still a challengeable work. Second, future prospective

confirmation in independent cohorts is warranted. Third, the targeted

metabolomics was not done, and only the untargeted metabolomics

for screening of significant metabolites was studied. Fourth, the distri-

butions of age and gender between case and control subjects were

identified, indeed we adjusted those potential confounders among all

models.

5 | CONCLUSIONS

Metabolites were the downstream end products in endogenous

matrix. High level HbA1c contributed to incident CVD, which may be

mediated by metabolite functions. Explanations of the relationship

among HbA1c, metabolites and CVD were beneficial to the etiological

study of CVD.
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TABLE 2 HbA1c associated with incident cardiovascular disease mediated by first principal component in metabolic pathways

Metabolites Pathway PC1 (%) Indirect effect (IE) PIE

Mediated
proportion (%)

*Fumaric acid Butanoate metabolism 95.0 1.058 (1.022, 1.095) 1.47 × 10−3 16.0

*γ-Aminobutyric acid

*Succinic acid

*Aspartic acid Alanine, aspartate and glutamate metabolism 89.8 1.082 (1.035, 1.146) 2.39 × 10−3 21.8

*γ-Aminobutyric acid

*Fumaric acid

*Succinic acid

*Fumaric acid Citrate cycle (TCA cycle) 99.4 1.048 (1.022, 1.087) 2.52 × 10−3 13.8

*Succinic acid

*Hippuric acid Phenylalanine metabolism 89.7 1.067 (1.035, 1.116) 3.87 × 10−3 18.4

N-Phenylacetyl-L-glutamine

*Fumaric acid

*Succinic acid

Phosphatidylcholine Glycerophospholipid metabolism 94.7 3.007 (2.079, 4.362) 5.72 × 10−9 82.2

*LysoPC(18:1)

Phosphocholine

Glycerophosphocholine

*Means that the metabolites were tentatively identified with reference compounds.
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