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Abstract: The significant incidence of deforestation in South America culminates in the contact
of humans with typical forests species. Among these species, one may highlight Lonomia obliqua
caterpillar, which, when touched by humans, can poison them through their bristles. Therefore, better
acknowledging the mechanisms involved in envenomation caused by Lonomia obliqua caterpillar
bristle extract (LOCBE) may contribute to further treatments. Recently, we demonstrated that
LOCBE induces a pro-inflammatory profile in endothelial cells; thus, we decided to investigate the
effects of LOCBE on human polymorphonuclear neutrophils (PMN), which are the first leukocytes
that migrate to the inflammatory focus. Our results showed that treatment with LOCBE induced
PMN chemotaxis together with alterations in actin cytoskeleton and focal adhesion kinase (FAK)
activation, favoring migration. Concurrently, LOCBE induced PMN adhesion to matrix proteins,
such as collagen IV, fibronectin, and fibrinogen. Moreover, we observed that LOCBE attenuated PMN
apoptosis and increased reactive oxygen species (ROS) production together with nuclear factor kB
(NF-κB) activation—a redox-sensitive transcription factor—as well as interleukin (IL)-1β and IL-8
release. We call attention to the ROS-dependent effect of LOCBE on increased cell migration once
an antioxidant treatment reverted it. In summary, we report that LOCBE activates PMN, inducing
pro-inflammatory responses modulated by ROS.

Keywords: Lonomia; venom; neutrophil; reactive oxygen species

Key Contribution: LOCBE acts on PMN migration; survival; triggers ROS production; and activates
NF-κB. We pointed out the possibility of using antioxidants in the treatment of envenomation
promoted by LOCBE.

1. Introduction

Lonomism is the envenomation promoted by caterpillars from the Lonomia genus.
There are two species of Lonomia involved in human accidents: Lonomia obliqua and Lonomia
Achelous [1]. Envenomation caused by Lonomia achelous dates from 1967 in Venezuela [2],
and this caterpillar can be found in Venezuela, Bolivia, Colombia, Ecuador, French Guyana,
Suriname [3,4], and north of Brazil. Lonomia obliqua is found mainly in the south of
Brazil, and recently the species appears to be spreading to the southeast of Brazil [5],
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contributing to the increase in reported accidents [6]. Beyond Brazil, Lonomia obliqua is
present in Argentina, Paraguay, and Uruguay [1]. The deforestation process aggravates
the prevalence of accidents with the caterpillar, which occurs when the victim touches the
caterpillars, leading to contact with the caterpillar’s bristles [7].

Envenomation caused by human contact with the caterpillar Lonomia obliqua triggers
a hemorrhagic clinical profile installed within a period of up to 72 h [8–11]. In parallel to
blood coagulation and the intense fibrinolytic activity, proteases and other active enzymes
present in Lonomia obliqua caterpillar bristle extract (LOCBE) may also cause direct effects
on vascular cells, establishing a vascular inflammation process [12,13].

When a tissue injury occurs, the first step to stabilize an inflammation is the endothe-
lial cell’s recognition of a danger signal, which in turn will induce local vasodilatation
and expose adhesion molecules to induce neutrophil (PMN) rolling, adhesion, and, fi-
nally, PMN transmigration to the injured tissue. PMN migration occurs according to a
gradient concentration of chemotactic agents, and PMNs have their half-lives prolonged to
ensure that they can solve the possible threat. Different signaling pathways mediate these
processes through reactive oxygen species (ROS), generated during PMN activation [14].

Recently we showed that LOCBE activates the endothelium, promoting leukocyte
rolling and adhesion [13]. The main objective of the present study was to evaluate the
effects in vitro of LOCBE on PMN activation and functionality.

2. Results
2.1. In Vivo Effect of LOCBE on Plasma Leakage and Leukocyte Accumulation

Firstly, we applied LOCBE to a hamster cheek pouch to demonstrate microvascular
alterations induced by the venom. In this essay, we tried to mimic in vivo an envenomation
condition, and therefore we topically applied three different concentrations of LOCBE
(20–80 µg/mL) on the exposed hamster cheek pouch (HCP). Thus, we observed that the
HCP treated with LOCBE 20 µg/mL for 10 min showed little increase in plasma leakage
(RFU = relative fluorescent units) but more with 40 µg/mL, that became persistent with
the highest dose of the venom, 80 µg/mL (Figure 1A and Supplemental Figure S1A,B). We
observed a pronounced increase in leukocyte accumulation in the postcapillary and larger
venules that were dose-dependent (Figure 1B and Supplemental Figure S1C,D).

As it is well established that PMN is the first defensive line that migrates to an
inflammatory focus, we aimed to evaluate the role of this cell in poisoning promoted
by LOCBE.

2.2. Effect of LOCBE on PMN Migration

To evaluate the effect of LOCBE on human PMN, we studied the migratory effect for
one hour in a modified Boyden chamber. LOCBE showed to be a chemotactic agent in
all concentrations tested (1–10 µg/mL), similar to fMLP (100 nM) stimulus (Figure 2A).
LOCBE effect on PMN migration was observed as a classic bell shape, so we chose the
concentration of 3 mg/mL for further experiments.
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Figure 1. All hamsters (n = 4) received an intravenous (i.v.) injection of FITC-dextran 150 kDa before LOCBE venom or 
HEPES buffer application. Rhodamine (100 μg/kg) was given i.v. 10 min before LOCBE venom application (500 μL of 20, 
40, or 80 μg/mL). (A) Topical application of 500 μL of HEPES buffer at 0 min (Green curves) and 30 min later of 500 μL of 
LOCBE venom 20, 40, or 80 μg/mL (red curves) during 10 min of interrupted superfusion. LOCBE venom 20 μg/mL caused 
no increase in plasma leakage (RFU = relative fluorescent units) and 40 μg/mL (n = 2) caused a slight increase and 80 μg/mL 
resulted in a prolonged and irreversible increase in plasma leakage until the end of the experiment (90 min). (B) Topical 
LOCBE venom application in 4 different HCPs caused dose-related increments of leukocyte accumulation, reaching 
maximal values between 60 and 90 min after LOCBE venom application. 
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actin (Figure 2B). Proceeding with the investigation about the underlying mechanisms 
involved in the LOCBE effect on PMN migration, we performed a molecular approach, 
investigating the focal adhesion kinase (FAK), a pivotal molecule to cell migration. Once 
activated, FAK forms the focal adhesion, which allows cell movement. The focal adhesion 
formation occurs because FAK promotes actin cytoskeleton rearrangement via adapter 
molecules [15]. Thus, we observed by Western blotting that LOCBE (3 μg/mL) was able to 
promote FAK activation after 30 min (up to 45 min) of treatment (Figure 2C). 
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Figure 1. All hamsters (n = 4) received an intravenous (i.v.) injection of FITC-dextran 150 kDa before LOCBE venom or
HEPES buffer application. Rhodamine (100 µg/kg) was given i.v. 10 min before LOCBE venom application (500 µL of 20,
40, or 80 µg/mL). (A) Topical application of 500 µL of HEPES buffer at 0 min (Green curves) and 30 min later of 500 µL
of LOCBE venom 20, 40, or 80 µg/mL (red curves) during 10 min of interrupted superfusion. LOCBE venom 20 µg/mL
caused no increase in plasma leakage (RFU = relative fluorescent units) and 40 µg/mL (n = 2) caused a slight increase and
80 µg/mL resulted in a prolonged and irreversible increase in plasma leakage until the end of the experiment (90 min).
(B) Topical LOCBE venom application in 4 different HCPs caused dose-related increments of leukocyte accumulation,
reaching maximal values between 60 and 90 min after LOCBE venom application.
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Figure 2. LOBCE presents chemotactic activity. (A) PMNs were inserted in the upper compartment
of a 48-well Boyden chamber (5 × 104 cells per well) to test their migration towards LOBCE (at 1, 3,
and 10 µg/mL), inserted in the lower compartment of the chamber, separated by a 5 µm pore-sized
polyvinylpyrrolidone-free polycarbonate membrane. The peptide fMLP (100 nM) was used as a
positive control. *** p < 0.001 compared to the control group (n = 3). (B) PMNs (106 cells per well)
were incubated in the presence or absence of LOBCE (3 µg/mL) for 30 min. Then, PMNs were fixed,
incubated for two hours with phalloidin-tetramethylrhodamine B isothiocyanate, and examined in
a microscope equipped for epifluorescence. Scale bar: 10 µm. (C) PMNs (106 cells per well) were
incubated in the presence or absence of LOBCE (3 µg/mL) for varying times (up to 60 min). Then,
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PMN were lysed, and extracts were run through SDS-PAGE with acrylamide gels, transferred to
polyvinylidene fluoride membranes, blocked with BSA 5%, and probed with anti-pFAK or anti-actin.
Immunoreactive bands were visualized using an ECL solution through a ChemiDoc Imaging System.
*** p < 0.001 compared to the control group (n = 3).

To assess the mechanisms involved in the LOCBE effect, we evaluated the cytoskeleton
dynamics through phalloidin-rhodamine analysis by fluorescence microscopy after 30 min
of treatment. As expected, LOCBE (3 mg/mL) induced several cytoskeleton rearrangements
compared to the control group, inducing high levels of F-actin (Figure 2B). Proceeding
with the investigation about the underlying mechanisms involved in the LOCBE effect on
PMN migration, we performed a molecular approach, investigating the focal adhesion
kinase (FAK), a pivotal molecule to cell migration. Once activated, FAK forms the focal
adhesion, which allows cell movement. The focal adhesion formation occurs because FAK
promotes actin cytoskeleton rearrangement via adapter molecules [15]. Thus, we observed
by Western blotting that LOCBE (3 µg/mL) was able to promote FAK activation after
30 min (up to 45 min) of treatment (Figure 2C).

2.3. Effect of LOCBE on PMN Adhesion

It is well established that focal adhesion is crucial for cellular adhesion, and that pro-
inflammatory stimuli can induce cluster and integrin activation, which can also facilitate
cell adhesion [16]. Once we observed that LOCBE induced FAK activation, we wondered
about the adhesion function of PMN treated with the venom. So, we tested PMN adhesion
in different matrix proteins, which bind to different adhesion molecules (integrins). We
showed that LOCBE could induce PMN adhesion to collagen IV, fibronectin, and fibrinogen
(Figure 3).
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in a 96-well black plate which was previously coated with (A) collagen IV, (B) fibrinogen, or (C) fibronectin for 30 min at
37 ◦C in a 5% CO2 air atmosphere. After this time, the plate was washed, and the adherent PMNs were measured through
CMFDA fluorescence at excitation and emission wavelengths of 492 and 517 nm, respectively. * p < 0.05 compared to the
control group, ** p < 0.01, compared to the control group (n = 3).

2.4. Effect of LOCBE on PMN ROS Production

Another essential function of PMNs is the ability to generate ROS, which can be
applied to an oxidative burst or to activate ROS-dependent signaling pathways [17]. Ini-
tially, we observed that LOCBE could induce ROS production in all concentrations tested
(Figure 4A). Next, we investigated the activation of ROS-dependent signaling pathways.
Nuclear factor kB (NF-kB) is a ROS-dependent molecule, which can translocate to the
nucleus and induce several pro-inflammatory genes, such as interleukin (IL)-1β, IL-8, and
TNF-α [18,19]. In agreement with this idea, we observed that LOCBE induced nuclear
translocation of NF-kB after 30 min (Figure 4B) and production of IL-1b and IL-8 after three
hours (Figure 4C).
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Figure 4. LOBCE induces ROS-dependent NF-κB activation in PMN. (A) PMNs (5 × 104 cells
per well) were incubated in the presence or absence of LOCBE (1–10 µg/mL) for one hour. Then,
PMNs were washed, incubated with luminol (100 µM), and total ROS production was measured
by chemiluminescence emitted from luminol oxidation (n = 3). (B) PMNs (106 cells per well) were
incubated in the presence or absence of LOCBE (3 µg/mL) for 1.5 h. Then, PMNs were lysed, and
extracts were run through SDS-PAGE with acrylamide gels, transferred to polyvinylidene fluoride
membranes, and probed with anti-NF-κB or anti-histone. Immunoreactive bands were visualized
using an ECL solution through a ChemiDoc Imaging System (n = 3). (C) PMNs (106 cells) were
incubated in the presence or absence of LOCBE (3 µg/mL) for three hours. Then, PMNs were
centrifuged, the supernatant was collected and submitted to quantification of IL-1β, IL8, and TNF-
α using a sandwich ELISA kit according to the manufacturer’s instructions (n = 3), * p < 0.05,
*** p < 0.001.
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2.5. Effect of LOCBE on PMN Survival

PMNs must migrate to the inflammatory site in acute inflammation events. During
migration, PMNs become activated, and their half-lives are prolonged [20]. Therefore, we
asked about the LOCBE effect on PMN survival. We observed, using optical microscopy,
that after 20 h of LOCBE treatment, the number of cells presenting morphological features
of apoptosis (i.e., condensed nucleus, cell volume shrinkage) diminished (Figure 5A). To
confirm this effect, we also observed through cytometry that the number of annexin-V
positive cells decreased after LOCBE (3 µg/mL) treatment (Figure 5B).
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Figure 5. LOBCE induces apoptosis protection in PMN. PMN (106 cells) were incubated in the presence or absence of
LOCBE (1–10 µg/mL) for 20 h. Then, PMNs were centrifuged, and (A) stained with Diff-Quick™ staining kit, and apoptotic
cells were counted using optical microscopy. The bars represent the average of three independent experiments with SEM.
Asterisks indicate statistical significance *** p < 0.001 compared to control group at 0 h; # p < 0.05, compared to control
group after 24 h, ### p < 0.001 compared to control group after 24 h (n = 3); or (B) labeled with annexin V-FITC and PI to be
analyzed using flow cytometry. Annexin V+ cells (apoptotic cells) were read at the FL1 channel, and PI+ cells (necrotic cells)
were read at the FL3 channel (n = 3).

2.6. Oxidative Effect of LOCBE on PMN

After identifying that LOCBE can induce ROS production, we performed this assay in
the presence of the anti-oxidant Trolox™, and we observed that it could inhibit LOCBE’s
(3 µg/mL) effect (Figure 6A). So, we asked about ROS importance in the two crucial
functions of activated PMN mentioned before: migration and survival. To this end, we
performed these assays again, treating PMNs concomitantly with Trolox™ (100 mM). Both
effects were inhibited, suggesting that they are mediated by ROS (Figure 6B,C).
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Figure 6. LOBCE-induced migration and apoptosis protection are ROS-dependent. (A) PMNs
(5 × 104 cells per well) were incubated in the presence or absence of LOCBE (3 µg/mL) for one h.
Then, PMNs were washed, incubated with luminol (100 µM), and total ROS production was measured
by chemiluminescence emitted from luminol oxidation (n = 3). (B) PMNs were pre-incubated in
the presence or absence of Trolox™ (100 µM) for 5 min before insertion in the upper compartment
of a 48-well Boyden chamber (5 × 104 cells per well), and LOBCE (3 µg/mL) was inserted in the
lower compartment. DMEM medium alone was used as a negative control. PMNs migrated through
a 5 µm pore-sized polyvinylpyrrolidone-free polycarbonate membrane. *** p < 0.001 compared to
LOBCE group alone. (n = 3) (C) PMNs (106 cells) were pre-incubated in the presence or absence of
Trolox™ (100 µM) for 5 min. Then, PMNs were treated or not with LOCBE (3 µg/mL) for 20 h. After
this time, PMN were centrifuged and stained with Diff-Quick™ staining kit, and apoptotic cells were
counted using optical microscopy. *** p < 0.001 compared to the control group at 0 h, ### p < 0.001
compared to the LOBCE 3 µg/mL + Trolox group (n = 3).

3. Discussion

Previously, we showed that LOCBE induces vascular inflammation, triggering a robust
pro-inflammatory profile in endothelial cells [13]. Herein, we focused on evaluating the
LOCBE effect in the pivotal agent of the acute inflammatory response: PMNs.

This is the first time that the L. obliqua venom’s effects on PMNs are described. The
caterpillar venom triggers an intense local inflammatory response upon contact with the
caterpillar’s bristle, so we believe that the venom can modulate PMN function, playing a
significant role in initiation and amplification phases of inflammation. In previous studies
by our group, it was shown that LOCBE is able to trigger cell migration, proliferation, and
production of proinflammatory cytokines in endothelial and aortic smooth muscle vascular
cells [11–13]. We also demonstrated previously that L. obliqua venom has a toxin able to gen-
erate active kallikrein from prekallikrein in rat plasma. Intravascular generated kallikrein
during the envenomation can induce ROS production in the kidney (thus contributing
to kidney injury), and also can increase ROS and migration of smooth muscle vascular
cells. All these events seem to be dependent on kallikrein generation triggered by the
venom in plasma, since the pre-treatment of envenomed rats with aprotinin (a kallikrein
inhibitor) was able to decrease ROS generation in vascular cells and protect renal tissue
from injury [11]. Previous proteomic studies also identified some class of molecules, such
as lipocalins and hemolins, which can be involved in a potential cytoprotective effect [21].
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It is well established that purified hemolins are able to induce fibroblasts proliferation and
protect these cells from apoptosis [22].

To understand the envenomation promoted by LOCBE, we applied a high venom
concentration directly in the hamster cheek pouch to simulate the contact of large amounts
of the venom. So, we observed that LOCBE could induce plasma leakage and leukocyte
accumulation, as presented in Supplementary Figure S1A,B that shows an image of plasma
leakage, and Supplementary Figure S1C,D that shows leukocyte accumulation after treat-
ment with LOCBE 80 µg/mL. Once we observed in vivo that LOCBE induced plasma
leakage with the highest dose of the LOCBE venom with a pronounced leukocyte accumu-
lation in venules, followed by migration into extravascular tissue, we evaluated the LOCBE
effect on PMNs in vitro. Given that both the concentrations of LOCBE within the circulation
or the concentrations of PMNs exposed to this are unknown, we tested smaller amounts of
LOCBE in PMNs. Thus, we observed that LOCBE at 3 µg/mL induced PMN activation,
modulating different functions. We characterize LOCBE as a potent chemotactic agent to
PMNs, an inductor of ROS generation, and an anti-apoptotic modulator in PMNs. Taking
these effects together, we can affirm that LOCBE is a pro-inflammatory agent to PMNs.
On the other hand, Waismam et al. [23] showed that a peptide extracted from LOCBE
(Lopap) had no effects on PMN recruitment to the microvasculature. We believe that the
observed effects in this work can help us better understand the mechanisms involved in
the envenomation process, such as FAK activation, ROS production, and NF-kB activation.

It is well established that cellular migration is a process dependent on a well-operationally
actin cytoskeleton [24]. Once PMN migration and actin cytoskeleton rearrangement were
identified, we sought to investigate the mechanisms involved in these effects. Thus, we
investigated the FAK involvement, a key molecule in cell migration. Activated FAK forms
the focal adhesion, which allows cell movement [16]. In this study, we showed that LOCBE
(3 µg/mL) could promote FAK activation while inducing PMN adhesion to fibronectin,
fibrinogen, and collagen IV. We hypothesized that LOCBE can activate α1b1 and α5b1
integrins, facilitating PMN adhesion to fibronectin, fibrinogen, and collagen IV.

Large amounts of ROS have been reported to be related to cell damage, while lower
amounts to cell signaling [25]. Among the redox-sensitive molecules, NF-kB is crucial
to PMN survival (apoptosis inhibition), and, once activated, translocates to the nucleus,
promoting gene transcription. Similarly, NF-kB activation was detected 30 min after PMN
stimulation with LOCBE following the time observed for ROS production. Corroborating
these data, we also observed that LOCBE could induce IL-1β and IL-8 release, a known
NF-kB target gene [18,19]. Our data agree with Pinto et al. [6], which showed that LOCBE
strongly induced IL-8 expression in fibroblasts through gene expression analysis. After
six hours of treatment, we also observed that LOCBE (3–10 µg/mL) was able to induce
COX-2 expression (Supplementary Figure S2), suggesting that the pro-inflammatory profile
observed in this work could be established via COX-2 activation.

After characterizing LOCBE as a pro-oxidant molecule, we investigated the role of
ROS in LOCBE effects and showed that the antioxidant Trolox™ inhibited LOCBE-induced
migration and cell survival. These data show that LOCBE effects on PMNs are modulated
by ROS, since the concomitant use of an antioxidant abolished them.

In addition to PMNs, recent papers described the LOCBE effect on platelets [4,8] and
endothelial cells [13,26] through different mechanisms. These papers have all shown the
role of LOCBE inducing platelet aggregation, erythrocyte lysis, and a pro-inflammatory
profile in endothelial cells.

4. Conclusions

This work showed that LOCBE acts on PMN migration and survival. Furthermore, we
demonstrated that LOCBE triggers ROS production and activates NF-κB, a redox-sensitive
pathway (Figure 7). Finally, we pointed out the possibility of using antioxidants in the
treatment of envenomation promoted by LOCBE.
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5. Material and Methods
5.1. Reagents

HEPES, trypsin, EDTA, bovine serum albumin (BSA), PMSF, benzamidine, leupeptin,
and soybean trypsin inhibitor were from Sigma-Aldrich (St. Louis, MO, USA). TroloxTM
was from Calbiochem (Darmstadt, Germany). Dulbecco’s Modified Eagle’s Medium
(DMEM) and fetal calf serum (FCS) were from GIBCO-BRL (Carlsbad, CA, USA). Antibod-
ies anti-actin, anti-COX-2, anti-pFAK, and anti-NF-κB were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). ECL system was obtained from Pierce Biotechnology
(Rockford, IL, USA). LOCBE was obtained as previously described [25].

5.2. Lonomia obliqua Caterpillar Bristle Extract (LOCBE)

LOCBE was obtained as previously described [27]. L. obliqua caterpillars were collected
in endemic areas from the Brazilian states of Rio Grande do Sul and Santa Catarina, and
kindly donated by the Centro de Informações Toxicológicas (CIT), Porto Alegre, Rio Grande
do Sul, Brazil. The venomous secretion was obtained by cutting bristles, macerating them
in cold phosphate-buffered saline (PBS) (pH 7.4), and centrifuging at 9600× g for 20 min
at 4 ◦C. The supernatant (L. obliqua caterpillar bristle extract—LOCBE) was collected and
maintained at −80 ◦C until use. The protein concentrations of the LOCBE samples were
determined using a BCA (bicinchoninic acid) assay kit (Pierce, Rockford, IL, USA). The
total number of caterpillars used for bristle extract preparation was 30 specimens, and
the protein concentration of the LOCBE samples was 2.10 mg/mL. The total amount of
venom extracted per caterpillar was 2.8 mg. All caterpillars were at sixth instar and 4–5 cm
in size. LOCBE doses used in this work were based on previous studies by our group,
in which venom effects were tested on endothelial and vascular smooth muscle cells in
culture [11–13].

5.3. Intravital Microscopy

Hamsters were purchased from Anilab (São Paulo, Brazil) and maintained in our
animal facilities. The experiments were conducted with male hamsters, three months
old, weighing 110–120 g. Altogether, four hamsters were used, and the procedures were
approved by the local ethical committee (IBCCF, license protocol number 014). Animals
were anesthetized by injection of sodium pentobarbital (intraperitoneal) supplemented
with α-chloralose (2.5% w/v, solution in saline, intravenous—i.v.) through a femoral vein
catheter, as previously described [28,29]. During the experimental procedures, anesthesia
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was monitored by reflex measurement and supplemented with α-chloralose (2.5% w/v,
solution in saline, i.v.) through a femoral vein catheter whenever required. A tracheal
cannula (PE 190) was inserted to facilitate spontaneous breathing, and the body temperature
was maintained at 37 ◦C by a heating pad monitored with a rectal thermistor. The hamster
cheek pouch (HCP) was prepared for intravital microscopy (IVM) as reported [28,30]. The
microcirculation of the HCP was observed after intravenous injection of the tracer FITC-
dextran 150 kDa (100 mg/kg), and leukocyte accumulation was observed after intravenous
injection of the tracer rhodamine 123 using an Axioskop 40 microscope, objective 4×
and oculars 10× (Carl Zeiss, Oberkochen, Germany), equipped with an appropriate filter
(490/520 nm, FITC-dextran, and 524/580 nm, rhodamine) for observations of fluorescence
in epiluminescence (Colibri 2, Carl Zeiss, Oberkochen, Germany). HCPs were continuously
superfused with an HEPES-bicarbonate-buffered saline solution (pH 7.4; composition in
mM: 110.0 NaCl, 4.7 KCl, 2.0 CaCl2, 1.2 MgSO4, 18.0 NaHCO3, 15.39 HEPES, and 14.61 Na
HEPES) at a constant rate of 5 mL/min. A digital camera, AxioCamHRc, and a computer
with the AxioVision 4.4 software program (Carl Zeiss) were used for image analysis of
arteriolar diameter and total fluorescence in a representative rectangular area (5 mm2) of
the HCP. After an initial 30 min control period of continuous superfusion to verify normal
microvascular flow in all vessels and an absence of plasma leakage, HCPs were subjected to
topical applications of different combinations of treatments during interrupted superfusion
in 500µL of HEPES buffer on top of the HCP tissue during interrupted superfusion that
was re-established after 10 min. The experiments were performed by capturing images
with 5 min intervals of a representative area (5 mm2) of the HCP before HEPES buffer
or LOCBE (20–80 µg/mL) application for 10 min, and, subsequently, until the end of the
experiment (50–90 min).

5.4. PMN Isolation

PMNs were isolated from healthy volunteers (approval #38257914.7.0000.5259 from
the Ethics Committee Hospital Universitário Pedro Ernesto, UERJ, Rio de Janeiro, Brazil)
in the presence of 5% EDTA, using a discontinuous Percoll gradient. Volunteers provided
informed consent before blood collection at all times. The study was carried out following
the ethical standards established in the Declaration of Helsinki of 1975 and its later amend-
ments. After isolation, PMNs were suspended in DMEM serum-free and submitted to the
assays, except in the case of apoptosis assay, in which PMNs were suspended in DMEM
containing 10% FBS.

5.5. Cell Migration Assay

Aliquots of 106 cells/mL were seeded in a 48-well modified Boyden chamber with
5 µm pore-sized polyvinylpyrrolidone-free polycarbonate membranes (Neuroprobe, Inc.,
Gaithersburg, MD, USA), as previously described [31]. Some samples were pre-incubated
with Trolox™ for 5 min before addition to the upper chamber, in a total volume of 50 µL
(5 × 104 cells) per well. LOCBE (1–10 µg/mL) or fMLP (100 nM) were added to the lower
chamber (in a total volume of 27 µL). After incubation at 37 ◦C in a 5% CO2 air atmosphere
for one hour, the upper side of the membrane was scrapped, and cells that had migrated
to the lower membrane surface were fixed, stained by Giemsa, and counted by optical
microscopy (400× magnification).

5.6. Cytochemistry

PMNs (106 cells/mL) were incubated in the presence or absence of LOCBE for 30 min
at 37 ◦C in a 5% CO2 air atmosphere. After incubation, the cells were cytocentrifuged and
mounted in coverslips to be fixed with a PBS solution containing 5% paraformaldehyde.
Then, PMNs were permeabilized with Triton (0.2%) for 5 min, washed three times with
PBS, and incubated for two hours with phalloidin-tetramethylrhodamine B isothiocyanate
(1:1000) at room temperature. Coverslips were mounted on a slide using a PBS solution
containing 20 mM N-propyl gallate and 80% glycerol before examination under a micro-
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scope (model BX40 Olympus, Tokyo, Japan) equipped for epifluorescence. The images
were analyzed using Photoshop software (Adobe Systems, San Jose, CA, USA).

5.7. Western Blot Analysis

PMNs (106 cells/mL) were incubated in the presence or absence of LOCBE at 37 ◦C
in a 5% CO2 air atmosphere for 15 min (FAK), 1.5 h (NF-kB), or 4 h (COX). Then, PMNs
were lysed with a buffer containing 50 mM HEPES, pH 6.4, 1 mM MgCl2, 10 mM EDTA,
1% Triton X-100, 1 µg/mL DNase, 0.5 µg/mL Rnase, 1 mM PMSF, 1 mM benzamidine,
1 µg/mL leupeptin, and 1 µM/mL soybean trypsin inhibitor.

Total protein content was quantified, and extracts were boiled at 100 ◦C for 5 min.
Equal amounts of protein (50 µg) were loaded into each lane and separated using sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with acrylamide gels.
Following the transfer, the blots were probed with antibodies against anti-actin, anti-COX-
2, anti-pFAK, or anti-NF-κB overnight. On the next day, membranes were washed and
probed with appropriate HPR-labeled secondary antibodies, and after extensive washings,
membranes were incubated with ECL solution to visualize immunoreactive bands using
ChemiDoc Imaging System (Bio-Rad, Hercules, CA, USA).

5.8. Cell Adhesion Assay

PMNs (106 cells/mL) were incubated for 30 min with CMFDA (10 µM). After incuba-
tion, PMNs were washed, treated or not with LOCBE, and seeded in a 96-well black plate
coated with BSA, collagen IV, fibronectin, or fibrinogen for 30 min at 37 ◦C in a 5% CO2
air atmosphere. After incubation, the plate was washed, and the adherent PMNs were
measured through CMFDA fluorescence, at excitation and emission wavelengths of 492
and 517 nm, respectively, which were analyzed using Envision™ Multilabel Plate Reader
(PerkinElmer, Waltham, MA, USA).

5.9. ROS Production Assay

PMNs (106 cells/mL) were treated with LOCBE for one hour at 37 ◦C in a 5% CO2 air
atmosphere. Following treatment, cells were centrifuged, seeded in 96-well white plates
(5 × 104 cells/well), incubated with luminol (100 µM), and total ROS production was
measured by chemiluminescence emitted from luminol oxidation, using Envision™ Multilabel
Plate Reader.

5.10. ELISA

PMNs (106 cells) were incubated in the presence or absence of LOCBE for three
hours at 37 ◦C in a 5% CO2 air atmosphere. After centrifugation, the supernatant was
collected and submitted to quantification of IL-1β, IL8, and TNF-α. According to the
manufacturer’s instructions, these proteins were quantified using a sandwich ELISA kit
(Peprotech, Cranbury, NJ, USA).

5.11. Apoptosis Analysis

PMNs (106 cells/mL) were suspended in DMEM with 10% FBS and pre-incubated in
the presence or absence of Trolox™ (100 µM) for 5 min at 37 ◦C in a 5% CO2 air atmosphere.
Then, PMNs were treated with LOCBE for 20 h. After treatment, PMNs were centrifuged
and submitted to two different protocols:

Morphologically: PMNs were stained with Diff-Quick™ staining kit (Panotico-Laborclin,
Pinhais, Parana, Brazil), and apoptotic cells were counted using optical microscopy; annexin
V binding: PMNs were fixed and labeled with annexin V-FITC (Abcam, Cambridge, United
Kingdom) and propidium iodide (PI) to be analyzed using flow cytometry (Accuri C6TM,
Ann Arbor, MI, USA). Annexin V+ cells (apoptotic cells) were read at the FL1 channel, and
PI+ cells (necrotic cells) were read at the FL3 channel.
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5.12. Statistical Analysis

Statistical significance was assessed by ANOVA, followed by Bonferroni’s t-test, and a
p < 0.05 was taken as statistically significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxins13120908/s1, Figure S1: Intravital microscopy images showing plasma leakage and
leukocyte accumulation in the hamster cheek pouch. Figure S2: LOCBE induces COX-2 expression.
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