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Abstract: Background: Whether affective states acutely predict the hypothalamic–pituitary–adrenal
(HPA) axis activities and whether energy balance-related behaviors moderate the affect–HPA axis
relationship in obese youths are not well-understood. Methods: 87 mostly obese (94.3% obese)
minority adolescents (mean: 16.3 ± 1.2 years old; 56.8% Latino and 43.2% African American)
participated in a randomized crossover trial in an observation laboratory, where they received either
high-sugar/low-fiber (HSLF) or low-sugar/high-fiber (LSHF) meals first and then crossed over in
the next visit 2–4 weeks later. During each visit, they rated five affective states and provided a saliva
sample every 30 min for the first 5 h and wore a waist-worn accelerometer. The association between
the affect ratings and cortisol levels in the subsequent 30 min and the moderation effect of energy
balance-related behavior were examined using multilevel models. Results: Within-person negative
affect (β = 0.02, p = 0.0343) and feeling of panic (β = 0.007, p = 0.004) were acutely related to the
subsequent cortisol level only during the HSLF condition. The time spent in moderate-to-vigorous
physical activity did not moderate the acute relationship between affect and the subsequent cortisol
level. Conclusions: Negative affect could be acutely related to heightened HPA axis activities in
youths, but only when they were exposed to meals with high sugar and low fiber content. These
results suggest that the meals’ sugar and fiber content may modulate HPA axis reactivity to negative
affect in youths.

Keywords: youth; emotion; cortisol; dietary behavior; physical activity; hypothalamic–pituitary–
adrenal axis; obesity; ethnic minority

1. Introduction

The hypothalamic–pituitary–adrenal (HPA) axis is an important neuroendocrinolog-
ical system that provides physiological resources for the human body when faced with
psychological and physiological demands that could challenge homeostasis [1]. Repeated
activation of the HPA axis due to prolonged exposure to psychological or physiological
demands can lead to the development of a dysregulated and maladaptive HPA axis [2,3].
The increase in exposure to cortisol, an indicator of HPA axis activation, has been linked
to decreased insulin sensitivity [4], a major risk factor for developing type II diabetes [5],
as well as increased risks of various adverse mental and physical health conditions [6,7].
Identifying predictors of and mechanisms that could acutely lead to increased cortisol
exposure could provide future research with valuable insights on viable intervention tar-
gets for preventing individuals from exposure to a heightened level of cortisol and further
developing other related adverse health outcomes.
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Affective states are possible acute predictors of increased cortisol levels. Affective
states are momentary experiences or feelings that an individual has about an actual or
perceived internal or external event [8,9]. These feelings could present psychological
demands and thereby activate the HPA axis, as indicated by an increased level of cortisol.
An early meta-analysis showed that compared to the control groups, adults exposed
to experimental conditions designed to elicit various feelings (e.g., fear of losing social
approval, rumination, threats, etc.) had increased cortisol levels as early as 30 min after
exposure to the experimental condition [10]. Evidence of acute HPA axis reactions to
affective states in adolescents, however, is limited. During childhood and adolescence,
many psychological and physiological functions develop and change [11,12], including
HPA axis reactivity to stressors [12]. During adolescence, youths encounter various new
experiences and feelings. Several studies showed that on days when youths reported
experiencing higher negative affect, their cortisol levels also declined at a slower rate
throughout the day [13–16], indicating elevated HPA axis activities (for the review, see [7]).
Laboratory-based studies have shown that emotion induction and laboratory-induced
emotional stressors lead to noticeable changes in cortisol levels as early as 30 min after the
exposure [10]. However, whether affective states that occur naturally (i.e., unstimulated
affective states) are related to cortisol levels on a momentary basis remains unresolved.
Investigating the acute HPA axis reactivity to unstimulated affective states in adolescence
may provide valuable targets for intervention that focus on reducing exposure to cortisol.
Such investigation could be especially important for overweight and obese adolescents
who are at an elevated risk for experiencing weight-related victimization [17] that could
translate into an elevated level of negative affect, as well as the development of related
adverse health outcomes [6,7]. Therefore, the first aim of this study was to examine whether
affective states are acutely related to salivary cortisol levels in obese ethnic minority youths.

The substantial between- and within-person variations in the effects of affective states
on HPA axis activities [10,18] suggest that there may be unexplored moderators in the
affect–HPA axis relationship. Energy balance-related behaviors, including moderate-to-
vigorous physical activity (MVPA) and dietary behavior, could be possible behavioral
moderators in this relationship. Both MVPA and dietary behavior have been shown to
change affective states acutely. Recent evidence has suggested that MVPA could acutely
improve youths’ affective states [19,20]. Furthermore, recent evidence has shown that
participation in physical activity of moderate intensity reduced adults’ HPA reactivity to
stressors [21,22]. On the other hand, dietary behavior, such as breakfast consumption [23]
and sugar consumption [24,25], has been shown to affect individuals’ affective states. While
acute changes in eating behavior after being exposed to stressors were reported by various
prior studies [26,27], whether dietary behavior could modify how affective states relate to
cortisol levels has rarely been discussed. Understanding the role of these energy balance-
related behaviors in modifying the affect–HPA axis relationship could provide valuable
targets for prevention and intervention efforts that aim to reduce the risk of developing
adverse health outcomes related to a maladaptive HPA axis. However, whether these
behaviors could acutely change how affective states relate to HPA axis activities remains
unexplored. The second aim of this study was to examine the potential moderating role of
MVPA and sugar consumption in the acute predictive relationship between affective states
and HPA axis activities.

2. Materials and Methods
2.1. Study Sample

The data for this study came from a laboratory-based randomized crossover trial that
aimed to examine the effect of meal contents on ethnic minority adolescents’ mood states,
physical activity, and metabolic indices. The full study procedure that includes details
that pertain to the information aligned with the CONSORT guidelines for randomized
crossover trials [28], including condition randomization, is reported in detail elsewhere [29].
Briefly, this study is a secondary data analysis from a randomized crossover trial where
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the participants visited the study observation laboratory on two separate days that were
2–4 weeks apart. For the first visit, each participant was randomized into one of the two
meal conditions, high sugar and low fiber (HS) or low sugar and high fiber (LS), followed
by an 8 h in-laboratory observation period. Each participant returned to the laboratory
for the second time and received the other meal condition after at least two weeks of
the washout period, followed by another 8 h in-laboratory observation period. The HS
breakfast contained 41.0 g of sugar and 1.0 g of fiber, whereas the LS breakfast contained
7.0 g of sugar and 16.0 g of fiber [29]. The study participants were recruited from the Los
Angeles area (born in 2007–2010). The inclusion criteria were as follows: adolescents aged
between 14 and 18 years old, of African American or Latino ethnicity, and with a body
mass index ≥85th percentile for age and sex. The exclusion criteria included diagnosis
of diabetes, participation in a weight loss or exercise program, use of medications that
influenced body weight or insulin sensitivity, or diagnosis of a syndrome that influences
body composition.

2.2. Study Procedure

After signed parental consent and participant assent were provided, the study partici-
pants were scheduled for two visits at the university observational laboratory, each after
a 10 h overnight fast. Each participant received experimental breakfast and lunch meals
(either HS or LS condition for the first visit and the other condition at the second visit)
and was otherwise instructed to engage freely in activities available in the observation
laboratory throughout their 8 h stay. The naturalistic observational laboratory contained
various options for participants to choose from, including treadmill, small trampoline,
jump rope, hula hoops, free weights, video games (Nintendo Wii, Rock Band, Dance Dance
Revolution), books, movies, arts and craft center, and music. At the beginning of the
laboratory stay, a small saline lock intravenous catheter was placed into the participant’s
forearm for subsequent blood samples, and a uniaxial accelerometer (Actigraph GT1M)
was fitted on the participant’s waist for physical activity behavior assessment. For the
first 5 h of each laboratory stay, the participants were interrupted every 30 min for blood
samples and saliva samples, resulting in 10 blood and saliva samples for each laboratory
visit. Throughout the entire 8 h laboratory stay, the participants were asked to provide
ratings for their affective states. The same in-laboratory measurement procedures were
implemented in the second visit.

2.3. Measurements
2.3.1. Salivary Cortisol

Before the first meal and at every 30 min during the first 5 h of each laboratory stay,
the participants were asked to put a cotton plug in their mouth until fully soaked with
saliva. This data collection schedule resulted in 10 salivary cortisol samples in each visit.
Each soaked cotton plug was collected in a labeled vial and stored on dry ice until the end
of the laboratory visit when they were immediately transported to a freezer at –80 ◦C prior
to the assay. Salivary cortisol levels were determined by immunometric assay on a Tosoh
AIA 600II analyzer.

2.3.2. Affective States

Prior to the first meal and at every 30 min during the entire 8 h of each laboratory stay,
the participants were asked to rate their current affective states at the same time with serum
and saliva sample collection. Five affective states were collected at each time using visual
analog scales. The five-item scale included four items from the tension subscale of the
Profile of Mood and States (POMS) scale [30], panic, worry, anxiousness, and nervousness,
and one item for the feeling of calmness, with a possible range from 0 to 100 for each
item. The average negative affective state score was calculated by averaging the scores
for feelings of panic, worry, anxiousness, and nervousness at each moment. Affective
state scores for each item and the average negative affective state were averaged across
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both visits to create personal average scores for each person. The personal average scores
were then subtracted by the grand mean for the respective item to create the grand mean-
centered affective state scores and herein denoted as the between-person (BP) version
of the affective state scores. The BP affective state scores calculated this way represent
the personal average and trait-like affective states of each participant across the study
period. The within-person (WP) versions of affective states were created by subtracting the
affective state scores at each measurement (i.e., every 30 min) from the respective average
affective state scores for that person. The resulting scores represent the participant’s level
of affective states at any given moment within the study period relative to the average level
of each respective affective state of that participant. Both the BP and the WP versions will
be included in the same model to disaggregate the inter- and intraindividual variabilities
in outcomes of interest [31].

2.3.3. Time Spent in MVPA

The amount of time spent in MVPA was assessed with a waist-worn uniaxial ac-
celerometer (ActiGraph GT1X) across the 8 h stay for each laboratory stay. Before the be-
ginning of the 8 h laboratory stay, an accelerometer was fitted on the participant’s right hip
under the cloth using an elastic belt. The accelerometers were set to collect time-stamped
data at a 60 s epoch. Accelerometer data was processed using the SAS code developed by
the National Cancer Institute for use with the National Health and Nutrition Examination
Survey (NHANES). The thresholds for physical activity of moderate-to-vigorous intensity
were age-adjusted using the criteria by Freedson et al. [32]. The time-stamped accelerome-
ter data were matched to the time of the affective states measurement and blood draw. Time
spent in MVPA was summed for each 30 min interval. Both the BP and WP versions for
time spent in MVPA were calculated using the method described in the previous section.

2.4. Statistical Analysis

The main outcome of interest for this study is the log-transformed cortisol value ob-
tained at each 30 min during the laboratory stay. The rationale for using the log-transformed
value is that the raw cortisol values were skewed (mean, 0.784; median, 0.680; min, 0.020;
max, 41.000; skewness, 33.010; kurtosis: 1292.640) with one single extreme outlier of
41 nmol/L. After removing the extreme outlier, the distribution properties of the log-
transformed cortisol values were less skewed (mean, −0.406; median, −0.386; min: −3.912;
max, 1.435; skewness, −0.305; kurtosis, 1.018). This study used the log-transformed cortisol
values after the removal of the one extreme outlier as the outcome variable. This study uti-
lized multilevel modeling (MLM) to examine whether affective states are related to salivary
cortisol levels in the subsequent 30 min. MLM accommodates parameter estimations that
account for the non-independent nature of the outcome variables (i.e., the salivary cortisol
level at each moment was nested within a laboratory visit and within a person) and allows
for disaggregating the within- and between-person association between affective states
and the diurnal cortisol rhythm [15,31]. Since the outcome variables were log-transformed,
parameter estimates resulting from these models were interpreted after the parameter esti-
mates were back-transformed and should be interpreted as percent changes in cortisol [14].
To investigate the moderation effects of energy balance-related behavior, interaction terms
were constructed by multiplying the main predictor of the model with the moderator of
interest for the model. All the final models included age, gender, and ethnicity to control
for the potential confounding effects of age, gender, and ethnic differences in HPA axis
activities. Analyses for this study were conducted using SAS v.9.4 (Cary, NC, USA).

3. Results
3.1. Demographic and Descriptive Statistics

Table 1 presents descriptive information on the study participants, as well as de-
scriptive statistics of the main predictors (i.e., momentary affective state scores) and the
moderator of interest (i.e., time spent in MVPA). Salivary cortisol was the highest at the
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beginning of the laboratory stay and declined throughout the remainder of the morning.
On average, cortisol levels declined at an average rate of 16.48% per 30 min, and the rate of
decline decelerated at a rate of 1.68% per 30 min throughout the morning. However, there
is a significant meal type by time interaction effect (β = 0.077 (0.037), p < 0.05), indicating
that the rate of decline differed between the two meal types when accounted for affective
states. Therefore, subsequent models examined the proposed affect–HPA axis relationship
separately for each meal condition.

Table 1. Descriptive statistics of the study participants, affective states, and time spent in MVPA.

N = 88 Mean Standard Deviation

Age 16.3 1.2

N = 88 Percentage

Gender (%) 48.96% Male

Ethnicity

African American 43.18%

Latino 56.82%

Weight status

Overweight (BMI percentile ≥ 85th and < 95th) 5.7%

Obese (BMI percentile ≥ 95th) 94.3%

Affective States Mean Standard Deviation

Feeling of panic 4.64 9.58

Feeling of anxiousness 8.79 17.48

Feeling of worry 5.48 11.48

Feeling of nervousness 6.90 14.26

Average negative affective states 6.46 11.02

Feeling of calmness 83.32 23.40

Time spent in MVPA (mins) 0.77 2.18

3.2. Does Energy Balance-Related Behavior Moderate the Affect–HPA Axis Relationship?

When examining the affect–HPA axis relationship separately for each meal assignment,
our study revealed that, at the within-person level, the average negative affective state
score was associated with 1.91% (β: 0.02, p < 0.05) higher cortisol level 30 min after they had
reported one point higher in average affective states compared to their personal average
during the HS visit only (Table 2, Model 1). The average negative affective state score was
not related to subsequent cortisol levels during the LS visit (Table 2, Model 2). In models
with the individual item of affective state (i.e., panic, worry, nervousness, anxiousness, and
calmness) as the main predictor, only levels of feeling panic were related to cortisol levels
at the subsequent 30 min at the within-person level (β = 0.02, p < 0.01) during the HS visit
(Table 3). None of the other individual affective state items were associated with levels of
salivary cortisol at the subsequent 30 min and the rate of decline regardless of meal types.
On the other hand, the amount of time spent in MVPA during the 30 min interval, both
at the between- and the within-person level, did not moderate the relationship between
affective states and subsequent cortisol levels.



Int. J. Environ. Res. Public Health 2021, 18, 12670 6 of 9

Table 2. Negative affect, time spent in MVPA, and cortisol levels by meal type.

Effect

Model 1:
HS

Model 2:
LS

Estimate (SE) Estimate (SE)

Intercept 0.713 (0.757) −0.850 (0.796)

Negative affect (WS) 0.008 (0.003) ** −0.002 (0.003)

Negative affect (BS) −0.005 (0.003) −0.003 (0.004)

MVPA (WS) 0.016 (0.008) * 0.014 (0.008) +

MVPA (BS) 0.073 (0.043) 0.047 (0.044)

Time −0.148 (0.025) *** −0.231 (0.025) ***

Time × Time 0.015 (0.002) *** 0.021 (0.002) ***
Age, gender, ethnicity, BMI percentile, and a binary variable adjusting for the order of randomization were
included in all the models; + p < 0.10; * p < 0.050; ** p < 0.010; *** p < 0.001.

Table 3. Models of feeling panic, time spent in MVPA, and cortisol levels by meal type.

Effect

Model 1:
HS

Model 2:
LS

Estimate (SE) Estimate (SE)

Intercept 0.701 (0.762) −0.840 (0.798)

Panic (WS) 0.007 (0.002) ** −0.003 (0.003)

Panic (BS) −0.005 (0.005) −0.002 (0.005)

MVPA (WS) 0.017 (0.008) * 0.014 (0.008) *

MVPA (BS) 0.071 (0.043) * 0.047 (0.044)

Time −0.149 (0.025) *** −0.231 (0.025) ***

Time × Time 0.015 (0.002) *** 0.021 (0.002) ***
Age, gender, ethnicity, BMI percentile, and a binary variable adjusting for order of randomization were included
in all the models; * p < 0.050; ** p < 0.010; *** p < 0.001.

4. Discussion

This study is one of the first to examine the relationship between fluctuations in
affective states and subsequent cortisol levels and the possible moderating effects of
physical activity or specific nutrient intake on this relationship in obese ethnic minority
youths. The results of this study showed that negative affect was related to cortisol levels
measured 30 min later, at the within-person level, and only during the high-sugar condition
laboratory visit. During the HS visit, the participants were provided with breakfast that
contained 41.0 g of sugar [29], a comparable level of sugar in breakfast observed in other
studies conducted among urban overweight and obese ethnic minority youths [33]. The
identified association in the HS condition, therefore, could represent how the obese youths’
neuroendocrine system functions after consuming breakfast on a regular day.

This study further builds on the existing literature by showing that the HPA axis is
acutely reactive to the fluctuations in affective states on a momentary basis when adoles-
cents are provided with a breakfast high in sugar content. The identified within-person
process during the HS condition suggests that when adolescents experience higher-than-
usual negative affective states, especially the feeling of panic, the psychological state places
demands on the body, which in turn activate the HPA axis. However, while research sug-
gests that time spent in MVPA can improve affective states in adolescents [19,20], we did
not find that MVPA alleviated the effects of negative affect on the youths’ neuroendocrine
system. A possible explanation for the lack of a moderating effect could be that the effect
of MVPA is more pronounced in normal-weight participants, as their HPA axis reactivity
differs from their obese counterparts [34]. Another potential explanation could be that
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participants in this study did not engage in a sufficient amount of physical activity to
alleviate the effect of affective states on their neuroendocrine system. Taken together, these
observed within-person associations indicate that the HPA axis is acutely reactive to both
psychological demands when these demands are greater than their respective usual levels,
but only after the participants consumed a breakfast with higher sugar content.

The null relationship between affective states and subsequent salivary cortisol during
the LS condition is unexpected. We speculate that the possible decrease in hunger-related
metabolites due to increased consumption of fiber during the LS condition may explain
the absence of this acute relationship between affective states and subsequent cortisol
levels. Prior research has shown that the levels of ghrelin, one of the metabolites associ-
ated with hunger, are associated with higher HPA axis reactivity [35]. Consumption of
soluble fiber has also been shown to reduce the biomarkers and self-reported rating of
hunger [36]. Therefore, it is possible that after consuming 16.0 g of soluble fiber during
the LS condition [29], the participants’ HPA axes were less reactive to psychological and
physical demands compared to the day when they were exposed to the HS condition.
While this may explain the discrepancies observed within participants between an HS and
LS breakfast condition, we could not examine this physiological mechanism due to the
small subsample (n = 23) of participants with processed ghrelin assays available in the data.
Other metabolites that are sensitive to the meal assignment manipulated in this study, such
as leptin [37] and adiponectin [38], could also be potential sources of confounding, which
could be examined in future studies. Nonetheless, the discrepant results between the HS
and LS visits may suggest a possible role of sugar consumption and HPA axis reactivity.

This study had several limitations. First, while this study took place in an observation
laboratory that was purposefully designed to be like a regular living room and equipped
with entertainment and exercise equipment attuned to the specific participants, the youths’
emotional experiences in the naturalistic environment can still be different from those in the
ambulatory and free-living environment. An important way that fluctuations in affective
states captured in this naturalistic environment differ from the ambulatory environment is
the absence of stressors that occur in an individual’s daily life. Therefore, future studies
that examine whether the number or kind of stressors moderates the relationship between
the affective states, MVPA, and subsequent cortisol levels could further elucidate the
intricate relationship between the affective states, MVPA, and the HPA axis. Secondly,
this study compared how the HPA axis reacts to fluctuations in affective states in two
different meal type conditions, HS and LS meals. Although this study provided novel
insights on the differential impact of nutrient consumption on the impact of affective states
on HPA axis activation, future studies that examine the influence of insulin resistance
could potentially provide more insights into how affective states acutely relate to salivary
cortisol levels, as HPA axis activities are shown to be altered among those with insulin
resistance [39]. Furthermore, future studies that are conducted with multiple days of
specific meal conditions could yield stronger evidence for the effect of specific nutrients
on the HPA axis reactivity. Third, the results of this study might not be generalizable to
youths who are not overweight or not African American or Latino. Studies that include
youths of other ethnic groups and of normal or low BMI would generate more insights into
how racial and BMI differences are related to HPA axis reactivity and its associated mental
(e.g., depression [40]) and physical (e.g., adiposity [6]) consequences.

5. Conclusions

In conclusion, this study showed that, among adolescents, the relationship between
affective states and HPA axis activities differed when the participants were exposed to
meals that differed in sugar and fiber content. While the results of this study provide
novel evidence toward untangling the momentary relationship between affective states
and the HPA axis, future studies with more extended observational periods and a more
representative sample may yield valuable insights to whether these findings replicate
in naturalistic or ambulatory settings. Furthermore, studies that examine how other
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meal contents attenuate the impact of negative affect on the HPA axis could potentially
provide a valuable target in reducing the health risks associated with increased exposure
to cortisol, including elevated risks of decreased insulin sensitivity and development of
type II diabetes.
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