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Abstract 
Introduction: Epidemiological studies that involve interpretation of 
chest radiographs (CXRs) suffer from inter-reader and intra-reader 
variability. Inter-reader and intra-reader variability hinder comparison 
of results from different studies or centres, which negatively affects 
efforts to track the burden of chest diseases or evaluate the efficacy of 
interventions such as vaccines. This study explores machine learning 
models that could standardize interpretation of CXR across studies 
and the utility of incorporating individual reader annotations when 
training models using CXR data sets annotated by multiple readers. 
Methods: Convolutional neural networks were used to classify CXRs 
from seven low to middle-income countries into five categories 
according to the World Health Organization's standardized 
methodology for interpreting paediatric CXRs. We compared models 
trained to predict the final/aggregate classification with models 
trained to predict how each reader would classify an image and then 
aggregate predictions for all readers using unweighted mean. 
Results: Incorporating individual reader's annotations during model 
training improved classification accuracy by 3.4% (multi-class accuracy 
61% vs 59%). Model accuracy was higher for children above 12 
months of age (68% vs 58%). The accuracy of the models in different 
countries ranged between 45% and 71%. 
Conclusions: Machine learning models can annotate CXRs in 
epidemiological studies reducing inter-reader and intra-reader 
variability. In addition, incorporating individual reader annotations 
can improve the performance of machine learning models trained 
using CXRs annotated by multiple readers.
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Introduction
Chest radiograph (CXR) is an essential tool in the diagnosis 
of conditions affecting the lungs. CXR can improve the  
specificity of pneumonia diagnosis, given that clinical diagnosis 
is sensitive but non-specific (Cardoso et al., 2010; Scott et al.,  
2012). Interpretation of CXR by clinicians for diagnosing pneu-
monia is subjective, making the comparison of results from 
different studies or periods difficult to interpret (Ben Shimol  
et al., 2012; Levinsky et al., 2013; Williams et al., 2013). 
The World Health Organization (WHO) developed a stand-
ardized methodology for interpreting paediatric CXR for  
categorization of radiological pneumonia to enable consistent  
assessment of burden of pneumonia and impact of interven-
tions such as vaccines (WHO, 2001). During the assessment of 
the developed tool, it was noted that while there was no variation  
in interpretation of CXR between radiologists and clinicians, 
readers from different sites had varying levels of sensitivity 
and specificity. Readers from two sites had low sensitivity but  
high specificity, while those from a third site had high sensitivity 
but low specificity (Cherian et al., 2005). Fancourt et al. (2017a)  
observed that agreement between primary readers declined 
between the first and second phases of annotation, suggesting 
that intra-reader variability may also be of concern. Inter-reader  
variability in the interpretation of CXRs has also been observed 
in the diagnosis of adult pneumonia and tuberculosis (Melbye  
& Dale, 1992; Yerushalmy, 1969).

Recent developments in machine learning and computer vision 
have shown that machine learning models can be as good 
as radiologists and clinicians at interpreting CXRs (Lakhani  
& Sundaram, 2017; Rajpurkar et al., 2018; Rajpurkar et al.,  
2017). In addition, machine learning models can reduce vari-
ability in CXR interpretation across multiple sites or studies 
if the models are generalizable across sites/studies. Machine 
learning models may also be appropriate in epidemiological  
studies that require interpretation of large numbers of CXRs.

Machine learning models for classifying medical images are 
trained to predict the final classification of a given image, 
obtained by aggregating annotation from multiple human readers  
(Rajpurkar et al., 2018). While aggregated annotations are likely 
to have less misclassification noise, there might be additional 
training signals in each reader’s annotation that may be lost  
by aggregating. Therefore, we propose an alternative approach 
where the models are trained to classify how each reader would 
classify a given image and then aggregating the predictions 
for all readers. Combining predictions for multiple readers 
is similar to ensemble methods in machine learning, where  
predictions from multiple models are averaged. On average, the 
performance of model ensembles is expected to be at least as 
good as the best single model (Goodfellow et al., 2016). How-
ever, unlike ensemble models where multiple models are trained, 
we train a single model that takes a CXR image and reader  
identifier as inputs and produces a prediction on how that reader 
would have classified the image.

This study compares the classification performance of  
models trained to predict the final/aggregate classification with  
models trained to predict how each reader would classify a 
given image and then aggregating the predictions of all readers. 
The models are trained to classify the Pneumonia Etiology 
Research for Child Health (PERCH) data-set that contains  
CXR images of paediatric patients hospitalized with pneumonia 
(Fancourt et al., 2017b; Fancourt et al., 2017a).

Methods
Ethics approval
The study protocol for the initial PERCH study was approved 
by the Institutional Review Boards or Ethical Review Com-
mittees for each of the seven institutions and at The Johns  
Hopkins School of Public Health. Parents or guardians of 
participants provided written informed consent. We made 
a data request for secondary data analysis to John Hopkins  
School of Public Health. 

Data
The PERCH study data-set consists of 4,172 CXRs from 4,008 
paediatric patients hospitalized with severe or very severe  
pneumonia (WHO pneumonia classification). PERCH aimed at 
studying pneumonia aetiology in children and was conducted 
in nine sites from seven low and middle-income countries:  
Kilifi, Kenya; Basse, The Gambia; Nakhon Phanom and 
Sa Kaeo, Thailand; Bamako, Mali; Soweto, South Africa;  
Lusaka, Zambia; and Dhaka and Matlab, Bangladesh. The 
CXR images were classified into five categories based on WHO  
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standardized classification of paediatric CXR: consolidation; 
other infiltrate; both consolidation and other infiltrate; normal 
or uninterpretable (Cherian et al., 2005). Digital CXR imaging 
machines – available at the sites prior to the study - were 
used to acquire images in all sites except Zambia and  
Matlab, where analogue machines were used, and the films were 
then scanned into digital format. The type of scanners used to  
digitize CXR images differed among sites. The CXR images 
were classified into five categories based on WHO standardized  
classification of paediatric CXR: consolidation; other infiltrate;  
both consolidation and other infiltrate; normal or uninterpret-
able (Cherian et al., 2005). More than 98% of the CXR were  
taken anterior-posterior (AP).

There were 18 readers, 14 initial readers (nine paediatricians 
and five radiologists) and four arbitrators (radiologists). The ini-
tial readers consisted of two readers from each country who  
received training on the WHO methodology from the arbi-
trators. Whenever the two initial readers gave conflicting 
interpretations, two arbitrator readers with extensive WHO  
methodology experience were randomly chosen to review the 
image. If the two arbitrators still came to conflicting inter-
pretations, the two arbitrators held a consensus discussion to 
make a final decision. Finally, the arbitrators reviewed 10% of 
images with initial concordance for quality control (Fancourt  
et al., 2017b).

The initial readers assessed between 532 and 657 images 
each and had a median accuracy of 67% (range 40%–74%). 

The arbitrators assessed between 1268 and 1274 images each  
and had median accuracy of 76% (range 59%–77%).). The initial 
reviewers had 44% concordance, while the arbitrators had 49% 
concordance. The agreement between the first two initial read-
ers increased with children’s age (Figure 1). Overall, 611(15%) 
of the CXR images had consolidation only, 993 (24%) had  
infiltrates only, 464 (11%) had both consolidation and infil-
trates, 1692 (40%) were normal, and 409 (10%) were  
uninterpretable. The percentage of images that were considered 
uninterpretable in each site ranged between 4% and 20%. Nor-
mal CXR accounted for approximately half of the images 
in all sites except Zambia and South Africa (31% and 28%,  
respectively) (Figure 2).

Models
A random sample of CXRs from 20% (802/4008) of patients 
from all sites were set aside for final model evaluation/testing,  
while the rest were used for model training and hyper- 
parameter selection. Simple random sampling was used to 
select CXRs to be included in the testing data set so that all 
patients, regardless of site, had an equal chance of being 
selected. Convolutional neural networks were trained to classify  
the CXRs into one of the five WHO categories: consolidation; 
other infiltrate; both consolidation and other infiltrate; normal 
or uninterpretable. Model performance was assessed on the test 
data set using multi-class accuracy and area under the curve  
(AUC, one vs rest). For the model with the highest accuracy, 
we evaluated differences in model performance across sites 
and patient age. In addition, we used Grad-CAM visualizations  

Figure 1. Lowess curve: Agreement of first and second reader by age. The agreement between first and second human readers 
improved with increase in children’s age.
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on randomly selected CXRs to display regions in CXRs 
that the model deemed important in making the predictions  
(Selvaraju et al., 2020). The models were trained using Pytorch 
1.7 running on a desktop with 32GB RAM and a single  
Nvidia Titan RTX graphical processing unit (Paszke et al.,  
2019). The Python code for this analysis is available on  
Github. All libraries used in the analysis are open source and 
can be downloaded using Python package installer or from  
respective websites.

For simplicity, we used pre-trained ResNet18, ResNet34 and 
ResNet50 model architectures from the torchvision version 0.8.2 
library for all our experiments (Marcel & Rodriguez, 2010).  
The ResNet models’ last fully connected layer was replaced 
with a fully connected layer with five output units – one for each  
WHO category.

Incorporating individual reader annotations
The ResNet models have a global average pooling (GAP) opera-
tion after the final convolutional layer. The output of GAP  
is passed to a single fully connected layer which outputs the 
model prediction. Consequently, we can consider the output 
of GAP as image embeddings that act as input for the last 
fully connected layer. We extended the ResNet models to  
include reader embeddings which transformed each reader’s 
identifier into a vector of 32 units using entity embeddings 
for categorical variables (Guo & Berkhahn, 2016). A fully  
connected layer was then used to project the reader em 
bedding to have the same dimension as image embedding. 
An identity, rectified linear unit (ReLU), hyperbolic tangent 
(tanh), or sigmoid activation was applied to the projected  
reader embeddings. Finally, element-wise multiplication was used 
to combine the reader and the image embeddings, and a fully  

connected layer with softmax activation was appended for  
prediction (Figure 3).

We sampled one occurrence of each training CXR in every 
epoch so that models with and without embeddings had the same 
number of weight updates per epoch. In addition, we used each  
reader’s annotation as labels during training, unlike in mod-
els without reader embeddings where the final classification 
was used. There were 18 readers in total. Thus, 18 predictions 
could be made for every CXR image. During inference, the  
18 predictions were then aggregated to give the final prediction 
using an unweighted mean.

Data pipeline and image augmentation
All CXR images were first down-sampled to 300×300 pixels  
to reduce the computation cost of training the models. Then, 
as with the original ResNet implementation, all models were 
trained on images of dimensions 3 × 224 × 224 (He et al., 2015).  
The validation pipeline applied centre crop to resize the images 
to 224 × 224 pixels and applied normalization. The training 
pipeline resized the images to 224 × 224 pixels by applying ran-
dom resized cropping. The training pipeline also applied random  
brightness and contrast augmentation, random horizontal flip, 
and random affine transformations (rotation and sheer) to 
reduce overfitting. Finally, both validation and training pipelines 
applied normalization similar to ImageNet data set by subtract-
ing (0.485, 0.456, 0.406) and dividing by (0.229, 0.224, 0.225)  
from the red, green, and blue channels.

Hyper-parameter optimization
We used the Asynchronous Successive Halving Algorithm (ASHA) 
to identify optimal hyper-parameters for all models using the 
raytune library in python (Li et al., 2020; Liaw et al., 2018).  

Figure 2. Number (percentages) of chest radiographs (CXRs) from each country by classification. Bangladesh (BAN), South Africa 
(SAF), Mali (MAL), Zambia (ZAM), Kenya (KEN), Thailand (THA), and Gambia (GAM).
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We performed ASHA hyper-parameter search by randomly 
sampling 300 hyper-parameter configurations from the hyper- 
parameter search space and then stopping poor-performing 
configurations after 10, 20, 40, and 80 epochs. The hyper- 
parameters tuned for models without reader embeddings 
were training batch size, dropout proportion, weight decay  
coefficient for convolutional and fully connected layers, learning  
rate, the proportion of training images with affine transfor-
mation augmentation, and the proportion of training images 
with brightness and contrast adjustment augmentation. Mod-
els with reader embeddings had additional hyper-parameters for  
maximum L2-norm of reader embeddings, learning rate for 
embedding weights and weight decay coefficient for the fully  
connected layer that project reader embedding to have the same 
dimension as image embeddings. All models were trained 
for a maximum of 150 epochs, with the learning rate halved  
after 50 and 100 epochs.

Results
Models with reader embedding were trained to predict how a 
given reader would classify an image instead of final/aggre-
gate classification. During training, the models with reader  
embeddings had higher cross-entropy loss and lower accuracy 
on the validation data than models trained to predict the final 
classification (Figure 4). However, models with reader embed-
ding made 18 predictions for each CXR, which produced pre-
dictions with better accuracy and AUCs after aggregation.  
Reader embedding improved multi-class accuracy in ResNet18 
(0.61 vs 0.59), ResNet34 (0.6 vs 0.57) and ResNet50 (0.6 
vs 0.59). Models with reader embeddings also had higher 
unweighted mean AUC for ResNet18 (0.86 vs 0.84), ResNet34 
(0.86 vs 0.82) and ResNet50 (0.86 vs 0.84). Disaggregated 

AUCs are shown in Table 1. Figure 4 shows that models  
without reader embedding had wider validation loss and  
accuracy fluctuations in the first 50 epochs of training (before 
the first learning rate reduction). Optimal hyper-parameters for  
each of the models are listed in Table 2.

The best model had an accuracy of 61% and correctly classi-
fied 80% of normal CXR. For CXR with both consolidation  
and infiltrates, 30% were misclassified as consolidation only 
and 30% as infiltrates only. Thirty per cent of CXR with infil-
trates were misclassified as normal (Figure 5). There was wide  
variation in model accuracy across sites: Bangladesh (71%),  
Gambia (67%), Kenya (70%), Mali (59%), South Africa (53%), 
Thailand (65%) and Zambia (45%). The model had lower accu-
racy for children below 12 months of age than older children 
(58% vs 68%). Figure 5b shows that the prediction accuracy  
improved with children’s age. Grad-CAM visualization in  
Figure 6 show that the model used the relevant regions of  
CXR images in making predictions. 

Discussion
Models with reader embeddings were better at classify-
ing CXR images regardless of model architecture (ResNet18,  
ResNet34 or ResNet50). The best model with reader  
embeddings had an accuracy of 61% compared to 59% in models  
ignoring individual reader classification, reflecting a 3.4%  
improvement. While some of the improvement in models 
with reader embeddings could be explained by the additional  
parameters, the cost of training was only slightly higher. 
Models with reader embeddings had more parameters:  
ResNet50 had 67,416 additional parameters while ResNet18 and  
ResNet34 had 16,928 additional parameters each. This increase in 

Figure 3. Model for classifying chest radiographs (CXRs) conditional on reader identity. The upper part of the network learns CXR 
embeddings, while the lower part learns reader embeddings. CXR and reader embedding are combined using element-wise multiplication. 
The reader embeddings allow the model to predict how each reader would classify a given image.
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the number of parameters is minimal, considering that the models 
have tens of millions of parameters (less than 1% increment).

Individual reader annotations are more likely to be misclassified 
compared to labels obtained by aggregating all readers’ anno-
tations, which might make model training difficult (Nettleton  
et al., 2010; Pechenizkiy et al., 2006). Consequently, models 
with reader embeddings had lower validation accuracy during  
training than models trained to predict the aggregated annota-
tion. However, models with reader embedding made multiple 
predictions for each CXR (one prediction per reader) which  
after aggregation had higher accuracy compared to predic-
tions from models predicting the final annotation. We used 
unweighted mean to aggregate predictions from models with 
reader embeddings which might not be optimal. A separate model  

can be trained to learn weights to assign to predictions from each 
reader in a manner similar to stacking (Ozay & Vural, 2013;  
Wolpert, 1992).

The model with reader embedding was equivalent to the 
model without reader embeddings if all the values of reader  
embedding have value one (reader and image embedding 
were combined using element-wise multiplication). If we  
consider image embeddings as features extracted from a given  
image, the learned reader embedding allowed different readers 
to assign different weights to each image feature. The activa-
tion function applied to the reader embeddings determined 
whether the direction of association between image features 
and predicted class could be different for different readers. That 
is, for activation functions that don’t output negative values 

Figure  4.  Validation  loss  and  accuracy  of  models  with  and  without  reader  embedding.  For models with reader embeddings 
(ensemble), the target outcome is individual reader annotations instead of the final classification. The learning rate is annealed after 50 and 
100 epochs.
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(ReLU and sigmoid), the direction of association between a 
given image feature and the predicted class could not differ by  
reader.

The best model had lower accuracy than the initial readers 
(61% vs 67%). However, the comparison of model and readers  
accuracy was tilted in favour of readers because the readers’ 
annotations were used to arrive at the final/aggregate annotation.  
Despite the modest accuracy in performing five-way classi-
fication, the model had high accuracy when identifying nor-
mal CXRs (80% accuracy). Therefore, the model might be  
useful in classifying normal vs abnormal CXRs. Studies com-
paring the performance of clinicians/radiologists and machine  
learning models on independent test data-sets have shown 
that models can outperform human readers. Rajpurkar devel-
oped models that achieved average radiologists’ performance 
in detecting pneumonia and 13 other respiratory conditions 
(2017; 2018). Furthermore, we trained the model using a rela-
tively small data set, which might negatively affect model  
performance. Dunnmon found that increasing the number of 
CXR images from 2,000 to 20,000 increased AUC from 0.84  
to 0.95 (2018).

The agreement between the two initial readers and model  
accuracy improved with children’s age – both the readers and 
models had difficulties interpreting CXR from younger children. 

Difficulty in interpreting CXR from younger children by both 
the readers and models may be due to challenges obtaining  
quality CXR images from very young children. Machine  
learning models may also face challenges classifying CXR of 
smaller or/and younger children due to the presence of body 
parts besides the lungs (limbs and head). However, we applied 
random cropping during model training to make the models  
robust to the presence of other body parts.

There was a wide variation in model accuracy among sites  
(range 45% to 71%) which may be explained by differences 
in pathology distribution or variability in image quality across 
sites. The model performance was poorest for Zambia and 
South Africa - the sites with the lowest proportion of normal 
images - because the model was better at classifying normal 
CXR than other pathologies. On the other hand, the model 
achieved an accuracy of 71% in Bangladesh despite the CXR in  
Matlab being acquired via analogue means, suggesting that the 
models can be applied in settings where digital CXR machines  
are not available. 

The CXRs used for training the models were not annotated 
with bounding boxes of pathologies of interest to allow robust 
evaluation of the model’s ability to identify correct regions of  
interest (ROI). However, visual inspection of Grad-CAM heat-
maps on randomly selected CXRs showed that the machine 

Table 1. Area under the curve (AUC, one-vs-rest) and multi-class accuracy comparing models with and without 
reader embeddings. Bold figures denote the best AUC or accuracy for each model architecture. CXR = chest radiograph.

AUC Accuracy

without reader 
embeddings

with reader 
embeddings

without reader 
embeddings

with reader 
embeddings

Model CXR class

ResNet18

Consolidation 0.83 0.84

0.59 0.61

Consolidation and other infiltrate 0.87 0.9

Normal 0.86 0.88

Other infiltrate 0.79 0.81

Uninterpretable 0.85 0.88

ResNet34

Consolidation 0.79 0.85

0.57 0.6

Consolidation and other infiltrate 0.84 0.89

Normal 0.86 0.87

Other infiltrate 0.78 0.8

Uninterpretable 0.83 0.87

ResNet50

Consolidation 0.84 0.83

0.59 0.6

Consolidation and other infiltrate 0.87 0.89

Normal 0.87 0.88

Other infiltrate 0.78 0.81

Uninterpretable 0.84 0.88
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Figure  5.  Confusion  matrix  and  lowess  curve  of  age  against  accuracy  for  the  model  with  the  highest  accuracy.  Tiles of the 
confusion matrix are shaded by the proportion of chest radiographs (CXRs) predicted to belong to each class (row proportions).

Figure 6. Gradient Class Activation Maps (Grad-CAM) image of 5 randomly sampled CXR images that were correctly classified 
by the best model.  Top row shows the original CXR images and the bottom row shows Grad-CAM heatmap overlaid on CXR images above. 
Intensity of the heatmap corresponds to regions of the CXR image that were most relevant in making the prediction.

learning model used relevant regions in the CXR images in  
making predictions.

Similar to other studies, all models were fitted using CXR  
images down-sampled to 224 by 224 pixels (Dunnmon  

et al., 2018; Rajpurkar et al., 2017; Wang & Xia, 2018). While 
such down-sampling may hinder detection of certain patholo-
gies such as infiltrates, training models using high-resolution 
CXRs is computationally costly and may not be feasible at  
scale.
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Model performance was assessed using a single hold out test 
data set instead of K-fold cross-validation due to restriction in 
computation resources. While we believe that the test set was  
large enough to assess model performance, K-fold cross- 
validation would have allowed for computation of confidence  
intervals of model accuracy. Furthermore, slitting the data 
set by site would allow assessing model generalizability to 
sites not included during model training. Assessing model  
generalizability across sites is important because factors such 
as differences in machines used to acquire CXR images and 
acquisition procedures may degrade model performance dur-
ing the implementation phases, hindering application of machine  
learning models in epidemiological studies carried out in mul-
tiple sites. Data augmentation techniques such as contrast and 
brightness adjustment might result to machine learning mod-
els that are robust to differences in digital CXR machines and  
scanners used in different sites. However, the single train/
test split employed in this study does not allow for such an  
assessment.

Conclusion
In summary, we have demonstrated that machine learning 
models for CXR classification can benefit from incorporating  
individual reader’s classification instead of directly predicting 
the final classification. Furthermore, machine learning models 
demonstrated here are unlikely to suffer from inter-reader  
and intra-reader because they are deterministic. Consequently, 
the models might be suitable for multisite studies or studies  
conducted over a long time.

Data availability
Underlying data
Data will be made publicly available in ClinEpiDB. Investi-
gators can submit a data request describing the purpose for 
which the data will be used which will be shared and reviewed 
by the PERCH Executive Committee prior to approval.  
(Fancourt et al., 2017a).

Extended data
Analysis code available from: https://github.com/pmwaniki/ 
xray-analysis.

Archived analysis code as at time of publication: https://doi.
org/10.5281/zenodo.5501796 (Mwaniki, 2021).

License: MIT license.
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not clear. No text embeddings were used. Instead, we performed entity embeddings of 
categorical variables for reader identifiers instead of one hot encoding. We have added the 
following text to make it clear: “We extended the ResNet models to include reader 
embeddings which transformed each reader’s identifier into a vector of 32 units using entity 
embeddings for categorical variables (Guo and Berkhahn 2016).” 
  
2. Authors refer to the fully connected layer classifier as a linear classifier (bottom of page 4) 
- this is not entirely correct as the activation functions used are still non-linear.  
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Response: While a softmax activation function was applied, the last layer consists of a single 
fully connected layer (no hidden layers). Therefore, the outputs of the last fully connected 
layer are a linear combination of the inputs. To avoid confusion, we have removed the 
phrase “linear classifier” and modified the sentence to read: ”Consequently, we can consider 
the output of GAP as image embeddings that act as input for the last fully connected layer.”  
 
3. On page 5, the authors refer to "contract augmentation" - is it supposed to read as 
"contrast augmentation" rather. 
 
Response: Thank you for pointing out the spelling mistake. The sentence has now been 
corrected to read “contrast augmentation”.  
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