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Abstract

The brain continuously produces internal activity in the absence of afferently salient sensory

input. Spontaneous neural activity is intrinsically defined by circuit structures and associated

with the mode of information processing and behavioral responses. However, the spatio-

temporal dynamics of spontaneous activity in the visual cortices of behaving animals remain

almost elusive. Using a custom-made electrode array, we recorded 32-site electrocortico-

grams in the primary and secondary visual cortex of freely behaving rats and determined the

propagation patterns of spontaneous neural activity. Nonlinear dimensionality reduction and

unsupervised clustering revealed multiple discrete states of the activity patterns. The activity

remained stable in one state and suddenly jumped to another state. The diversity and

dynamics of the internally switching cortical states would imply flexibility of neural responses

to various external inputs.

Introduction

Most neural activity is internally generated without any external sensory input [1]. In terms of

electrophysiological metabolism, neural activity at rest (i.e., when an animal is not engaged in

any specific cognitive tasks) continuously consumes as much, or even more, energy than

evoked activity [2, 3].

Previous studies demonstrated that this spontaneous (also referred to as internal or ongo-

ing) neural activity in the primary visual cortex (V1) was associated with dynamic activity

evoked by external visual stimuli; that is, ongoing activity could encompass and predict evoked

activity in V1 [4–7]. These findings suggested that spontaneous activity is not just background

noise that perturbs signal processing [8]. Experimental and theoretical studies have shown that

ongoing neural activity actively contributes to different functions, including neural develop-

ment [9, 10], representation of sensory stimuli [4, 11–14], sensory information processing [5,

6, 15–17], intertrial variability in neural and behavioral responses [6, 18–24], memory [25, 26],

consciousness [27], and perception [28–30]. However, the internal properties underlying the

dynamics of spontaneous neural activity in awake animals remain almost unclear.
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We focused on the primary and secondary visual cortices (V1 and V2, respectively) of

awake rats as an experimental model of spontaneous cortical activity. To examine whether

spontaneous cortical states exist and how dynamic they are, we designed a novel 32-channel

electrode array and recorded 32-site electrocorticograms (ECoGs) in V1 and V2 of awake rats

while they were presented with a uniform illumination pattern. We then investigated the prop-

agation pattern of ongoing neural activity to explore cortical states. Given the nonlinear prop-

erties of extracellular field oscillations, we analyzed cortical activity using nonlinear

dimensionality reduction and unsupervised clustering.

Materials and methods

Ethical approvals

Animal experiments were performed with the approval of the Animal Experiment Ethics

Committee at The University of Tokyo (approval number: P29-7) and according to the Uni-

versity of Tokyo guidelines for the care and use of laboratory animals. These experimental pro-

tocols were carried out in accordance with the Fundamental Guidelines for Proper Conduct of

Animal Experiment and Related Activities in Academic Research Institutions (Ministry of

Education, Culture, Sports, Science and Technology, Notice No. 71 of 2006), the Standards for

Breeding and Housing of and Pain Alleviation for Experimental Animals (Ministry of the

Environment, Notice No. 88 of 2006) and the Guidelines on the Method of Animal Disposal

(Prime Minister’s Office, Notice No. 40 of 1995). All efforts were made to minimize animal

suffering.

Animals

A total of 8 male 8- to 10-week-old Long Evans rats (Japan SLC, Shizuoka, Japan) with a preop-

erative weight of 300–350 g were individually housed under conditions of controlled tempera-

ture and humidity (22 ± 1˚C, 55 ± 5%), maintained on a 12:12-h light/dark cycle (lights off

from 07:00 to 19:00) with ad libitum access to food and water. Rats were habituated to an

experimenter by daily handling for 2 days before the experiments.

Preparation

We designed and fabricated a parylene-C[poly(chloro-paraxylylene)]-based 32-channel flexi-

ble high-density electrode array plus one reference electrode (Fig 1A and 1B) [31, 32]. The

electrode array was separated into eight strips, each of which consisted of four individual plati-

num electrode channels. The interelectrode distance (between centers) was 700 μm along the

stripe and 350 μm perpendicular to the stripe. Each electrode channel was a square 100 μm on

a side, an area of which was approximately 0.01 mm2. The whole area (2.5 mm × 2.5 mm) of

the array was set such that it would sufficiently cover V1 and V2. The thickness of the array

was 20 μm. The electrode impedance was 17.9 ± 6.3 kO (tested at 1 kHz, 10 nA, 300 cycles).

Surgery

General anesthesia for rats was induced and maintained by 2–3% and 1–2% isoflurane gas in

air, respectively, with careful inspection of the animal condition during the whole surgical pro-

cedure. Veterinary ointment was applied to the rats’ eyes to prevent drying. The skin was ster-

ilized with povidone iodine and 70% ethanol wherever we made an incision.

After sufficient anesthesia, we mounted an animal onto a stereotaxic apparatus with two ear

bars and a nose clamp (SR-6R-HT; Narishige, Tokyo, Japan) according to general surgical pro-

cedures [33]. An incision was made from the area between the eyes to the back of the head.
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Circular craniotomies (approximately 0.9 mm in diameter) were made using a high-speed drill

(SD-102; Narishige). We then performed a 4.0-mm square craniotomy centered at 4.5 mm

posterior and 3.5 mm lateral to bregma so that the craniotomy would cover both V1 (5.5 mm

posterior and 4.0 mm lateral to bregma) and V2 (medial V2 (V2M); 5.0 mm anterior and 2.5

mm lateral to bregma) (Fig 1C and 1D). The electrode array was placed into the square cranial

window, either epidurally or subdurally, on the cortical surface to record ECoGs. An addi-

tional stainless-steel screw was implanted in the bone above the cerebellum (9.6 mm anterior

and 1.0 mm bilateral to bregma) as a ground electrode. The whole electrode assembly was

secured to the skull using stainless-steel screws and dental cement.

After all surgical procedures, anesthesia was terminated. Each animal was allowed to spon-

taneously wake up from anesthesia. Following surgery, each animal was individually housed in

a transparent Plexiglas cage with free access to water and food. We carefully checked the

Fig 1. Propagation pattern of spontaneous neural activity in primary and secondary visual cortices recorded by 32-channel ECoG

electrodes. A, A photograph of a custom-made 32-channel ECoG electrode array. B, A graphic diagram of the ECoG electrode array

shown in A. A number and a letter were allocated to each channel to identify a row and a column, respectively. C, A photograph of a

surgical window. The ECoG electrode array was placed on the cortical surface in the cranial window. D, The electrode array covered the

surface of the primary and secondary visual cortices (V1 and V2, respectively). E, Representative traces of 0.9-s ECoG signals. Note that

we defined a block of 0.9-s 32-channel ECoGs as an episode. F, Left: Representative cross-correlation function between ECoGs (shown

in E) recorded by the latest (e.g., 3h) and the reference (e.g., 3a) channels. Right: The same as left, but between the earliest (e.g., 2a) and

the reference channels. G, A representative pseudocolored matrix of delay between ECoGs (shown in E) recorded by the reference

channel (e.g., 3h) and the other channels. Hot and cold colors indicate long and short delays, respectively.

https://doi.org/10.1371/journal.pone.0256791.g001
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postoperative condition of the animals. The animals were habituated to an experimenter again

by handling and to a recording apparatus for a couple of days until the experiment. After at

least 5 days of recovery from surgery, we commenced electrophysiological recordings.

While our experimental protocols have a mandate to humanely kill animals if they exhibit

any signs of pain, prominent lethargy and discomfort, we did not observe such symptoms in

any rats used in this study.

Apparatus

We used a small open field with transparent walls located in a dark, soundproof room. The

field measured 35 cm in width, 46 cm in depth, and 18 cm in height and was surrounded by

four monitors. Uniform gray images (blank stimuli) and monochrome black-and-white stripe

images (grating stimuli) on the monitors were extended using two mirrors on the top and bot-

tom of the field.

In vivo electrophysiology

We placed each rat in the field to freely explore for 10 minutes and connected the electrode

assembly to a digital low-noise 32-channel amplifier (CerePlex M; Blackrock, UT, USA). The

multiplexed output of the headstage was conducted through lightweight multiwired tethers

and a commutator to a multichannel data acquisition system (Cerebus; Blackrock). We

recorded ECoG signals for 4 h while visual stimuli were presented to an awake rat. Neural

activity in V1 and V2 was continuously recorded while the rat was presented with visual sti-

muli that were alternatively switched and composed of 1-s grating stimuli and 2.5-s blank sti-

muli. We extracted the center of the blank stimuli (0.9-s for duration, 3.5-s for interstimulus

interval) and analyzed the individually separated neural activity (see the next section). For all

recordings, electrophysiological signals were amplified and digitized at 2 kHz and filtered

between 0.1 Hz and 500 Hz.

Data analysis

All data analyses were performed using custom-made MATLAB 2020a (MathWorks, MA,

USA) and Python 3 routines. Summarized data are reported as the mean ± the standard error

of the mean (SEM). The null hypothesis was statistically rejected when P< 0.05 unless other-

wise specified. When multiple comparisons were required, we corrected the original signifi-

cance level (i.e., 0.05) with Bonferroni’s correction and compared the original P values with

the corrected significance level.

We extracted 0.9-s ECoG data approximately every 3.5 s and obtained approximately 4,000

segments per animal (see the previous section; Fig 1E).

We performed the following analyses for each segment (referred to as ‘an episode’, hereaf-

ter); note that an episode was composed of 0.9-s ECoGs from 32 channels. For a pair of given

two electrode channels during an episode, we (circularly) shifted two ECoG signals to calculate

its cross-correlation function C(τ) (-90 ms< τ< 90 ms) between the signals (Fig 1F) [34].

When C(τmax) took the maximum value, we defined a time lag as the amount of time shift (i.e.,
τmax). We repeated this calculation for all 496 (i.e., 32C2) possible pairs of ECoG signals. For

each ECoG channel (among the 32), we counted the number of ‘earlier’ channels (ranging

between 0 and 31) than itself based on the time lag. We defined the most ‘preceding’ channel

as a channel that had either no or fewest ‘earlier’ channels. We computed the time lag of each

channel relative to the most ‘preceding’ channel and created a pseudocolored 32-element

matrix (named a ‘delay matrix’) based on the time lags (Fig 1G); note that a ‘delay’ for a given

channel j was defined as the sum of time lags between channel j and the other channels. We
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then repeated the same calculation for all episodes; that is, we produced as many delay matrices

as episodes.

To better understand the transition in neural activity states, we used two algorithms (i.e.,
nonlinear dimensionality reduction and unsupervised clustering). For nonlinear dimensional-

ity reduction, we utilized uniform manifold approximation and projection (UMAP) (Fig 2A)

[35, 36]. After we removed jamming noises (e.g., hum noises and muscular twitches) from the

signal, we applied UMAP to reduce 32 dimensions of each delay matrix into a point in a two-

dimensional space (Python implemented with the following parameters: n_neighbors = 3,

min_dist = 0.1, n_components = 2, and metric = ‘euclidean’). We repeated the same procedure

for all delay matrices and used a robust continuous clustering (RCC) algorithm to detect states

in the UMAP space (Python implemented with the following parameters: clustering_threshold
= 100, k = 100, and measure = ‘euclidean’) (Fig 2A–2C, S1 Fig) [37], which was subsequently

repeated for all rats (Fig 2D). The number of states was automatically determined and denoted

by K hereafter.

K states could produce K2 transition patterns between episodes. The transition from the Nth

episode (i.e., episode(N)) to the next was transformed into a state-to-state transition matrix,

where a state to which the episode(N) belonged was represented as a ‘stateepisode(N)’. For each

transition pattern, we counted the number of surrogate data points that had more transitions

than the real data and divided the number plus 1 by 10,001 to estimate a P value for the real

data. All P values were summarized and depicted in a pseudocolored K×K ‘transition matrix’

(Fig 3A) and a ‘transition diagram’ (Fig 3B). If the P value for a given transition pattern was

less than the post hoc corrected significance level (i.e., 0.05/K2), it was considered a biased tran-

sition pattern. We then classified K2 transition patterns into K ‘within-states’ (i.e., episode-to-

episode transitions within identical states) and K2-K ‘between-states’ (i.e., transitions between

distinct states). For both ‘within-states’ and ‘between-states’, we calculated the ratio of the

biased transition patterns (Fig 3C).

Fig 2. Diversity in the propagation patterns of neural activity in the visual cortices. A, A representative map of ECoG episodes.

Each of them was embedded in a two-dimensional UMAP space. All episodes were grouped by the RCC routines to identify states. B,

Representative delay matrices for states 1 (left), 2 (middle), and 3 (right) shown in A. C, The percentage and the number of episodes

classified into a given state shown in A. D, The number of states of propagation patterns for all rats tested in this study. Abbreviations:
UMAP, uniform manifold approximation and projection; RCC, robust continuous clustering.

https://doi.org/10.1371/journal.pone.0256791.g002
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Results

Using a mesh-like planar electrode array (Fig 1A and 1B), we recorded ECoGs from 32 sites in

the V1 and V2 of unrestrained rats in an open field (Fig 1C and 1D) [31, 32]. We continuously

monitored spontaneous neural activity for several hours and extracted 0.9-s ECoG data seg-

ments every 3.5 s. Each time segment was referred to as an ‘episode’, hereafter (Fig 1E). Based

on the peak offset (e.g., time lag in propagation) in the cross-correlation function of all possible

pairs of ECoG electrode channels (Fig 1F), we created a delay matrix for an episode (Fig 1G).

We regarded this delay matrix as an index of spontaneous neural activity.

For a given animal, we created as many delay matrices as episodes. We then addressed the

question of how many spontaneous activity states emerged in the cortices based on visual attri-

butes. We reduced 32 dimensions of the delay matrices to two dimensions using UMAP [35]

and classified the matrices into several states using RCC, an unsupervised clustering method

[37]; note that the number of states was not predetermined but was automatically determined

in the RCC method (Fig 2A and 2B). These analyses indicated that the activity patterns were

discrete and subclustered in the state space. To address the question of whether the visual cor-

tical activity patterns emerged uniformly or more preferentially and specific to certain states,

we calculated the number and percentage of episodes in each state. The episodes were not

evenly distributed in a specific state, and most of them were biased in specific states (Fig 2C).

Among all animals tested, the number of states ranged between 6 and 11 (Fig 2D), and similar

biased distributions of episodes were found in all animals (S1 Fig).

We next investigated the time-series dynamics of the propagation patterns by characteriz-

ing whether and how the propagation pattern remained temporally stable or dynamically

switched to another. To issue this question, we visualized the state-to-state dynamics by calcu-

lating the probability of episode-to-episode transitions (Fig 3A and 3B). The transitions also

exhibited ‘biased’ patterns; that is, some specific state transitions occurred more frequently

than a chance level. For example, we found that, for the rat #8939, the transition from the state

2 to 11 significantly occurred compared with the chance level, whereas the occurrence of the

transition from state 2 to 10 was not significantly different from the chance level (Fig 3A). For

all rats used in this study, the number of state-to-state transitions for all of two sequential (i.e.,
the Nth to the next) episodes was biased for the real data but not for the surrogate (S2 Fig). The

Fig 3. Dynamics of transition patterns of neural activity. A, Transition from the Nth episode (i.e., episode(N)) to the next was

transformed into a state-to-state transition matrix, where a state to which the episode(N) belonged was represented as a stateepisode(N).

Warmer colors indicate that a given state-to-state transition was significant. Note that white asterisks in the heat map indicate

P< 0.05/121 and that these transitions were named biased transitions. B, The transition matrix (shown in A) was transformed into a

transition diagram. Red and gray arrows indicate biased and nonbiased state-to-state transitions, respectively. Thicker arrows

represent lower P values. C, The ratio of biased transitions to all transitions within the identical states was significantly higher than

that between distinct states.

https://doi.org/10.1371/journal.pone.0256791.g003
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ratio of biased transitions within the identical states was significantly larger than that between

distinct states (Fig 3C; P = 0.01, t7 = 3.48, n = 8 rats, paired t-test). These results suggested that

the cortical activity propagation pattern was temporally static, unlike Brownian motion or ran-

dom walks.

Discussion

Using our new custom-made flexible ECoG electrode array, we simultaneously recorded spon-

taneous neural activity from V1 and V2 of unrestrained rats and quantified the propagation

patterns of neural activity using time-lag matrices. Based on nonlinear dimensionality reduc-

tion and unsupervised clustering, we further characterized the internal states of spontaneous

neural activity and revealed that the transition of propagation patterns occurred more fre-

quently within states than between different states.

To monitor the population activity in the visual cortex of awake rats with a fine resolution

in space and time, we designed and fabricated a 32-channel high-density ECoG electrode

array. The ECoG electrode array used in this study has much smaller electrode channels and

captures neural activity in higher spatial resolution than previous ECoG arrays used mostly for

humans [32, 38–41]. The ECoG recording method generally has some advantages compared

with other in vivo extracellular/intracellular electrophysiological recordings. Extracellular sin-

gle-unit or multiunit recordings observe suprathreshold firing activity at the single-cell level

[42, 43], whereas ECoG recording allows for less invasive monitoring of summed synaptic

activity from multiple (~ 105 in humans, for example [44]) neurons [45]. More strictly, intra-

cellular recording techniques measure the synaptic activity of individual neurons; however,

simultaneous in vivo intracellular recordings from large populations of neurons are still techni-

cally difficult. Consequently, our recording method allows for recording collective synaptic

activity less invasively on a fine temporal scale for a long time.

For the current analysis, we used nonlinear methods as well as linear methods. Analyses of

extracellular oscillations have often focused on their frequencies, such as delta, beta, theta, and

gamma; however, multichannel ECoG signals are spatiotemporally complex. We thus com-

bined linear and nonlinear methods for the data analysis. Moreover, in UMAP, the larger

n_neighbors value generally results in the even smaller number of clusters, as is consistently

seen in our analysis. Using the delay matrices, we intended to preserve as local structure as

possible to determine cortical states and set 3 as n_neighbors; note that, strictly speaking, it is

hard to determine the truly appropriate value of n_neighbors because UMAP works in a topo-

logical, not metric space.

Spontaneous neural activity in the visual cortex of anesthetized cats could be divided into

more than 30 states using voltage-sensitive dye imaging [4]. Voltage-sensitive dye imaging can

measure synaptic membrane potentials. In this sense, the imaging technique reliably captured

visual cortical neural states based on a large population of neurons. However, imaging meth-

ods were different from electrophysiology in terms of temporal resolution. Electrophysiologi-

cal recording generally enables us to capture fast kinetics of neural signals more precisely than

imaging methods. Thus, our analysis might have emphasized fast fluctuations in neural

signals.

Moreover, we took into account the propagation patterns of neural activity not only in V1

but also in V2 for analysis. Although V2 is unique in the function compared to the V1 [46], we

mixed the electrophysiological signals in V1 and V2 together for analysis, because we intended

to investigate interregional (i.e., V1 and V2) propagation of the neural signals. Secondary sen-

sory (e.g., visual, auditory, and somatosensory) cortical neurons are generally innervated by

neurons in the primary sensory cortex [47]. Specifically, corticocortical projections from V1 to
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V2 (medial V2 (V2M)) have been reported, and vice versa [48]. Nevertheless, how neural sig-

nals are propagated over the two regions is poorly understood. Thus, we collectively, not sepa-

rately, analyzed the data of V1 and V2.

Spontaneous neural activity encompasses the stability and switching of cortical states.

Apparently, state-to-state transitions seem to be a random jump caused by a high level of

noises because we did not present rats with any specific visual stimuli [8, 49, 50]. Although we

cannot exclude the possibility, we have come up with other plausible mechanisms for the state

transitions in the visual cortex: (i) neuromodulatory signals and (ii) vestibular signals. First, we

consider that such visual cortical state dynamics (i.e., stability and switching) is associated with

neuromodulatory functions such as noradrenergic and cholinergic neural activities. The locus

coeruleus neurons innervate V1, modulate V1 activity by releasing noradrenaline [51], and

exhibit tonic and phasic activity [52]. Since increased tonic (baseline) activity in the locus coe-

ruleus is linked with less effective engagement in behavioral tasks [52], the tonic activity may

dominate the locus coeruleus when the rat is sedated during our task. Thus, such robust activ-

ity in the locus coeruleus may gradually evolve visual cortical neural activity in a fluid, not

abrupt manner. Furthermore, another possible mechanism underlying the evolution of the

cortical state dynamics is intermittent and sustained modulation of cortical activity associated

with rapid and long-lasting dilations of the pupil, respectively [53, 54], although we cannot

completely exclude the possibility that the distinct patterns of neural activity might stem from

the discrete periods of time during recording. Pupil size is assumed to be reliably indicative of

neural activity in the locus coeruleus, a principal brain region for synthesis of noradrenaline.

In addition to noradrenaline, the release of acetylcholine strongly controls cortical states [53–

55]. A recent study demonstrated that the rapid dilations of the pupil were tracked by the pha-

sic noradrenergic activity, whereas the sustained changes in pupil diameter (e.g., during loco-

motion) were associated with the tonic cholinergic activation [53]. These multiple

neuromodulatory transmitter systems could exert an influence on the cortical state dynamics

and trigger the state transition in behaving rats. Moreover, in the current study, rats were freely

behaving and thus ascending vestibular signals were incessantly transmitted to various [56].

Not only the neuromodulators but also the vestibular signals may contribute to the visual cor-

tical activity. Still, how the states determined by extracellular oscillations are correlated with

visual functions such as orientation and direction selectivity has yet to be investigated [57]. We

assume that the variety in spontaneously switching cortical dynamics is determined by extra

and intracortical connectivity and variable synaptic inputs. The ongoing cortical activity may

be associated with intrinsic default states to prepare flexible responses to various sensory sti-

muli in line with the winnerless competition dynamics [58] and the temporal patterns of syn-

chronized neural activity [59, 60].

Supporting information

S1 Fig. The percentage of episodes in each state for all rats. Fraction of episodes classified

into each state for rats named #8907, #8908, #8909, #8934, #8939, #9041, #9589, and #9640.

(PDF)

S2 Fig. The number of state-to-state transitions for all of two sequential episodes for all

rats. The number of transitions from the Nth episode (i.e., episode(N)) to the next was trans-

formed into a state-to-state matrix, where a state to which the episode(N) belonged was repre-

sented as a stateepisode(N). For each animal, episodes in each cluster were sampled with

replacement, which generated a random sequence of episodes. This process was repeated

10,000 times. The randomization produced 10,000 matrices, each cell of which contained the

number of the transitions. The average of the matrices was displayed as the surrogate. A-H,
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Matrices for the real (top) and the surrogate (bottom) data for the rats named #8907, #8908,

#8909, #8934, #8939, #9041, #9589, and #9640, respectively.

(PDF)
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42. Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004; 7: 446–451. https://doi.

org/10.1038/nn1233 PMID: 15114356
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