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Abstract
The diagnosis of dilated cardiomyopathy (DCM) remains a challenge in clinical radiology. This study aimed to investigate whether
texture analysis (TA) parameters on magnetic resonance T1 mapping can be helpful for the diagnosis of DCM.
A total of 50 DCM cases were retrospectively screened and 24 healthy controls were prospectively recruited between March 2015

and July 2017. T1 maps were acquired using the Modified Look-Locker Inversion Recovery (MOLLI) sequence at a 3.0 T MR
scanner. The endocardium and epicardiumwere drawn on the short-axis slices of the T1maps by an experienced radiologist. Twelve
histogram parameters and 5 gray-level co-occurrence matrix (GLCM) features were extracted during the TA. Differences in texture
features between DCM patients and healthy controls were evaluated by t test. Support vector machine (SVM) was used to calculate
the diagnostic accuracy of those texture parameters.
Most histogram features were higher in the DCM group when compared to healthy controls, and 9 of these had significant

differences between the DCM group and healthy controls. In terms of GLCM features, energy, correlation, and homogeneity were
higher in the DCM group, when compared with healthy controls. In addition, entropy and contrast were lower in the DCM group.
Moreover, entropy, contrast, and homogeneity had significant differences between these 2 groups. The diagnostic accuracy when
using the SVM classifier with all these histogram and GLCM features was 0.85±0.07.
A computer-based TA and machine learning approach of T1 mapping can provide an objective tool for the diagnosis of DCM.

Abbreviations: CMR = cardiovascular magnetic resonance, DCM = dilated cardiomyopathy, ECG = electrocardiogram, , GLCM
= gray-level co-occurrence matrix, LGE = late gadolinium enhancement, MF = myocardial fibrosis, MOLLI = modified look-locker
inversion recovery, ROI = region of interest, SVM = support vector machine, TA = texture analysis.

Keywords: cardiovascular magnetic resonance (CMR), dilated Cardiomyopathy (DCM), support vector machine (SVM), T1
mapping, texture analysis (TA)
1. Introduction

Dilated cardiomyopathy (DCM) is a very common type of
primary cardiomyopathy, which manifests as left ventricle and
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(or) right ventricular enlargement and contraction dysfunction,
with or without heart failure. The pathology mainly follows the
myocardial cell degeneration, hypertrophy and interstitial
fibrosis in the whole heart. Furthermore, this disease is
progressive, and can cause death at any stage of the disease.[1]

The prevalence for DCM in the common population remains
unknown. In the adult population, men are more affected than
women.[2] Furthermore, there are no diagnostic criteria for
DCM, other than 1 of that excludes the other disease states. The
early diagnosis of DCM is crucial. Myocardial fibrosis (MF) leads
to increased stiffness of the myocardium, which is also associated
with heart failure.[3] Histological results have shown that diffuse
MF is common in DCM. Recent studies have found that MF can
predict DCM.[4] Traditionally, late gadolinium enhancement
(LGE) has been considered as the evaluation criterion for
fibrosis.[5] Recent studies have shown that T1-mapping techni-
ques provide new insight into the quantification of fibrosis, which
may be superior to LGE techniques.[6,7]
1.1. Potential of texture analysis (TA) in DCM

Texture is a certain visual feature that represents image patterns,
which may reflect roughness and regularity. In medical images,
the frequency of random patterns is higher than that of regular
patterns, which is hard for human observation. Texture features
can reflect the intensity distribution and frequency domain
characteristics of images that are beyond the examination of a
human eye.[8] In addition, texture can be quantified using
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different algorithms. To date, the TA of cardiovascular
magnetic resonance (CMR) T1 mapping has not been reported.
The value of T1 mapping in the diagnosis of diffuse MF in DCM
has been recognized. Through the TA of T1 mapping, more
subtle characteristics could be shown, especially those beyond the
human visual system. The objective of the present study was to
determine the diagnostic value of TA in T1 maps for DCM.
1.2. Potential of machine learning in DCM

Support vector machine (SVM) is a mature and effective
algorithm in machine learning. This makes SVM an objective
tool to complement the present clinical diagnosis of DCM.
The early diagnosis of DCM remains challenging. T1-mapping

techniques provide a new method for quantifying myocardial
fibrosis, which may be better than LGE techniques. The present
results revealed that through the TA of T1 mapping, more subtle
characteristics can be identified. The TA of T1 mapping may be
helpful for the diagnosis of DCM.
2. Methods

The study was approved by the Ethics Committee. All written
informed consents were signed by the study subjects or their legal
authorized representatives. The flow chart for the present study is
illustrated in Figure 1. First, a region of interest (ROI) from the
original T1-mapping was defined by 1 co-author, who was
blinded to the study at this stage. Then, TA was performed to
obtain the histogram and gray-level co-occurrence matrix
(GLCM) parameters. Finally, The SVM classifier was used to
determine whether these texture parameters can be helpful in
differentiating patients from controls. The sensitivity, specificity,
false positive rate and false negative rates were calculated.

2.1. Study subjects

A total of 74 subjects were included in the study. Among these
subjects, 50 DCM patients (mean age: 47.56±13.57 years old;
40 males and 10 females) were retrospectively recruited and 24
healthy controls (mean age: 47.67±13.15 years old; 14 males
and 10 females) were prospectively recruited between March
2015 and July 2017. The diagnosis of DCM was based on the
clinical examination, blood analysis and echocardiography of
patients, who presented with symptoms of heart failure. The
inclusion criteria were as follows:
(i) the calculated left ventricular end diastolic diameter to the

body surface area was >2.7cm/m2,
(ii) the left ventricular ejection fraction was<45%, or
(iii) the left ventricular shortening rate was<25%.
The exclusion criteria were as follows: hypertension, coronary

heart disease, valvular disease, congenital heart disease, systemic
diseases, and pulmonary heart disease. CMR data were collected
from those patients for further evaluation before the study.
Furthermore, 24 healthy controls without systemic illness or
history of cardiovascular problems underwent 12-lead electro-
cardiogram (ECG), echocardiography and CMR. All these
examinations revealed no abnormalities.
2.2. Magnetic resonance (MR) protocol

The CMR scans were performed on a 3.0 Tesla scanner (Siemens,
Skyra, Erlangen, Germany) with a 16-channel cardiac receiver
coil. Four magnetic compatibility electrodes were placed on the
2

patients’ chest to obtain the ECG trigger. T1 mapping was
collected using pre-Gadopentetate Dimeglumine (Gd-DTPA)
contrast. The cine images of 3 long-axis and short-axis views
(8–11 slices, depending on the size of the heart) were acquired. A
MOLLI sequence (TR=324.96ms, TE=1.12ms, Flip angle=
35°, type 5 [3] 3) was used during breath-hold at 3 short axis views
near the base, middle and apex, respectively. All T1 maps were
used for TA. The principle and accuracy of the MOLLI sequence
were reported in the studies conducted by Neville D. Gai and
Peter Kellman.[10,11]
2.3. Texture feature analysis

Based on the different methods of evaluating the relationship
between pixels, there are 4 main categories of TA methods:
model, structure, transformation, and statistics. For medical
image processing, there are mainly 6 kinds of texture features:
histogram (statistical class), co-occurrence matrix (statistical
class), absolute gradient (statistical class), run-length matrix
(statistical class), auto-regressive model (model class), and
wavelets (transform class).[12] Histogram reflects the frequency
of a voxels’ gray level in the image. The histogram is 1 of the most
commonly used texture parameters. Many features including
mean, variance, mode, and percentiles can be obtained from the
histogram analysis. Since only T1 relaxation time can be
measured from T1 mapping, the investigators aimed to search
for other parameters that can reflect the statistical features of T1
mapping by TA. Those parameters may have a potential to
provide more information to diagnose DCM.
A histogram analysis included the following features: mean

standard deviation (SD), minimum, maximum, the 10th, 25th,
50th, 75th and, 90th percentiles, mode, skewness, and kurtosis.
The analysis was performed by using our in-house software
under the MATLAB R2011b environment (MathWorks, Natick,
MA). The calculation formula of the parameters was based on the
study conducted by Choi, M. H.[13]

GLCM is a commonly used method to describe texture by
studying the spatial correlation characteristics of gray scale. The
gray level histogram is the result of the statistics of a pixel on the
image with a gray level, and the GLCM is the statistics of 2 pixels
with a certain distance to maintain a certain gray level.[14] Five
kinds of GLCM features were calculated: energy, entropy,
contrast, correlation, and homogeneity. The calculation formula
for those features was referred to the studies conducted by Robert
M [15] and Chaddad A.[16] Energy is the sum of squares of each
matrix element in the GLCM. Energy reflects the distribution
uniformity and texture smoothness of an image. Entropy reflects
the degree of the system chaotic. Contrast directly reflects the
contrast of luminance between a pixel value and nearby pixels.
Correlation reflects the consistency of the image texture.
Homogeneity reflects the homogeneity of the image texture to
measure the local change of the image.
2.4. SVM classifier

SVM, as a mature and effective learning model in machine
learning, was used to identify the classification accuracy of the
histogram andGLCM features. SVMwas performed by using the
toolbox of MATLAB R2011b (MathWorks, Natick, MA).
Among the total subjects, 35 DCM patients and 17 healthy
controls were randomly chosen by the program as the training set
for the SVMclassifier. The trained classifier classified the other 15
DCM patients and 7 healthy controls.



Figure 1. Schematic diagram of this study.
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2.5. Statistical analysis
Statistical analysis was performed by using SPSS (V22; SPSS,
Chicago, IL). The texture features derived from the T1 mapping
of the heart were compared between DCM patients and healthy
controls. Student t tests were performed. A P-value< .01 was
considered statistically significant when comparing between
3

DCM and healthy controls. Bonferroni correction was used to
correct multiple comparisons. The accuracy of the SVM classifier
was calculated using the SVM tool-box of MATLAB R2011b
(MathWorks, Natick, MA). Furthermore, 35 patients and 17
controls were randomly selected as the training set. Since the
training set and test set were randomly selected, the accuracies
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Table 1

Characteristics of DCM patients and healthy controls.

Characteristics DCM patients Healthy controls
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may change with the different combinations of subjects in these
sets. The program was run for 100 times, and the average
accuracy was considered as the overall accuracy.
Age in years (mean±SD) 47.56±13.57 47.67±13.15
Gender, n (male/female) 40/10 14/10
Height in meter (mean±SD) 1.66±0.23 1.67±0.09
Weight in kg (mean±SD) 75.67±22.15 69.21±12.49
EF in percentage (mean±SD) 21.75±9.21 55.22±7.23
Heart Rate in bpm (mean±SD) 72.90±6.40 73.79±8.92

DCM=dilated cardiomyopathy, SD= standard deviation.
3. Results

Seventy-four subjects were analyzed. Among these subjects, 50
DCM patients were retrospectively recruited and 24 healthy
controls were prospectively recruited. The diagnosis of DCMwas
based on the clinical examination, blood analysis and echocardi-
ography of patients who presented symptom of heart failure.
Furthermore, 24 healthy controls without systemic disease or
history of cardiovascular events underwent 12-lead ECG,
echocardiography and CMR. All those examinations revealed
no abnormalities. Table 1 shows the characteristics of DCM
patients and healthy controls. There was no group difference in
the subject demographics.
3.1. TA: histogram features

Figure 2 shows the T1mapping (A1) of a 46-year oldmale patient
with the segmented myocardial (B1) and the T1 mapping of a 32-
year old male healthy control (A2) with the segmented
myocardial (B2). The histogram of the myocardial of DCM
Figure 2. Example cases. DCM patient, M, 46Y A1 T1 mapping at middle level, B1
of myocardial. DCM==dilated cardiomyopathy.
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patients (blue) and healthy controls (orange) is presented in
Figure 3.
The histogram features derived from the T1 mapping obtained

fromDCMpatients and healthy controls are shown in Table 2. In
addition, the results of the independent-samples t test re-listed in
Table 2. The minimum of the T1 value was lower in DCM
patients, when compared with that of healthy controls.
Furthermore, the other 11 features were apparently higher in
the DCM group, when compared with that of healthy controls.
Most of the histogram features, except for the minimum, kurtosis
and skewness, had significant variations between DCM and
healthy controls.
outline of myocardial Control, M, 32Y A2 T1 mapping at middle level, B2 outline



Figure 3. Histogram of myocardial of DCM patients (blue) and healthy control (orange). DCM=dilated cardiomyopathy.

Table 2

Histogram features of DCM patients and healthy controls.

DCM (n=50) Healthy controls (n=24) Sig

Mean 1280.99±53.91 1211.39±41.32 <0.01
Maximum 1578.26±91.50 1439.88±62.74 <0.01
Minimum 996.86±121.02 1007.09±73.76 0.71
SD 85.50±21.22 70.00±14.61 <0.01
Kurtosis 4.49±1.57 4.01±1.78 0.25
Skewness 0.04±0.47 0.02±0.47 0.87
P10 1174.58±58.05 1121.72±47.87 <0.01
P25 1229.66±53.31 1168.44±42.56 <0.01
P50 1282.49±54.41 1213.51±39.42 <0.01
P75 1332.88±58.72 1254.12±41.69 <0.01
P90 1383.49±63.99 1296.12±47.20 <0.01
Mode 1276.11±57.99 1205.05±42.33 <0.01

DCM=dilated cardiomyopathy, SD= standard deviation, P10=10th percentiles, P25=25th
percentiles, P50=50th percentiles, P75=75th percentiles, P90=90th percentiles.
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3.2. TA: GLCM features

TheGLCM features and results of the independent-samples t tests
are presented in Table 3. Energy, correlatio, and homogeneity
were higher in the DCM group when compared to healthy
Table 3

GLCM features of DCM and healthy controls.

DCM Healthy controls Sig

Energy 1.96±1.07 1.50±0.87 0.07
Entropy 2.78±0.21 2.94±0.15 <0.01
Contrast 1.52±0.35 1.84±0.32 <0.01
Correlation 0.45±0.07 0.42±0.08 0.15
Homogeneity 0.64±0.45 0.60±0.37 <0.01

DCM=dilated cardiomyopathy, GLCM=gray-level co-occurrence matrix.
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controls. Furthermore, entropy and contrast were lower in the
DCM group. Entropy, contrast, and homogeneity had statisti-
cally significant differences between these 2 groups.
3.3. Machine learning: SVM classifier

The test set, which included 15 DCM patients and 7 healthy
controls, were randomly sorted out and classified using the SVM
classifier. All 17 texture features were used as the training feature
for the SVM classifier. The diagnostic efficacy of SVM has been
tested for 100 times. The result was quite steady and the averaged
value of those 100 tests is considered to be the final result. The
accuracy was 0.85±0.07. Table 4 shows the accuracy of the
SVM classifier using all 17 texture features as the training feature.
4. Discussion

In the present study, TA and the machine learning approach were
used to diagnose DCM. The present results demonstrated that
most of the texture parameters, including histogram parameters
and GLCM parameters, could significantly differentiate DCM
patients from controls. In the present study, the diagnostic
accuracy of DCM using the proposed texture parameters and
Table 4

Accuracy of SVM classifier using all texture features as training
features.

Clinical diagnosis

summation+ _

SVM classifier + 0.60±0.06 0.06±0.05 0.66±0.09
� 0.09±0.06 0.25±0.05 0.34±0.09

summation 0.68 0.32 accuracy
0.85±0.07

SVM= support vector machine.

http://www.md-journal.com
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SVM classifier could reach 0.85±0.07. The present results
suggest the clinical utility of the machine learning approach to
DCM, which has never been reported before. This could have a
significant impact in the future clinical diagnosis of DCM due to
the high repeatability and efficiency of this computer-based
method when compared with the traditional approach.
4.1. Advantage of the computer-based approach

Presently, the diagnosis of DCM mainly depends on clinical
symptoms, such as ejection fraction (EF) decrease and ventricular
enlargement. As a developing technique, CMR provides more
useful information for DCM diagnosis. Cardiac cine sequences
help to observe the movement of the myocardium, LGE indicates
the localized FM, and T1 maps have the potential to reflect the
biochemical changes of the myocardium. However, all those
techniques are easily affected by the observer. Machine learning
approach for DCM makes the result more objective.
4.2. Features of TA

Diffuse MF has been frequently discovered in the histology of
DCM. Recent studies have found that MF can predict the
prognosis of DCM.[4] The techniques for T1 mapping have
rapidly been developed,[10,11,17–19] and the diagnostic value of T1
mapping for MF has been validated.[6,7,20–23] Image texture is a
type of local characteristic of the image. The image texture feature
of a pixel is correlated to the gray level of this pixel and pixels
around it. The histogram and GCLM can be used as a measure of
image texture. As medical images have a smooth texture,
statistical features, such as histogram and GLCM features, were
used as the main characters.
4.3. Histogram analysis

A histogram reflects the distribution of gray image levels, and can
be used to evaluate the efficacy of the chemotherapy and tumor
gradation.[13,24,25] Histogram parameters mainly reflect first-
order information which mainly indicated the gray variation.
Mean, SD, minimum, maximum, the 10th, 25th, 50th, 75th, and
90th percentiles, mode, skewness, and kurtosis, on behalf of the
different features of histogram distribution, can be calculated.
The present study shows that most of the histogram features have
significant differences between the DCM group and healthy
controls, except for minimum, skewness, and kurtosis. This
demonstrates the clinical utility of the histogram analysis.
Literature suggests that T1 value has a moderate correlation
with the histological percentage of fibrosis.[26] Because MF
commonly occurs in DCM, T1 value also increased in the DCM
group. The present study shows that mean, SD, maximum, 5
percentiles and mode are significantly higher in the DCM group
than in healthy controls.Mean reflects the average T1 value of the
myocardium. Mean increases in DCM patients as MF occurs.
Maximum and the 5 percentiles reflect the distribution of the T1
value. The T1 value is correlated to the degree of fibrosis.[23] The
significant difference of the 10th percentiles and 25th percentiles
between DCM and healthy controls may indicate that the
histogram analysis has the potential of track mild fibrosis. SD
reflects the degree of dispersion of a data set. Since the
distribution of MF is irregular, SD increases in DCM patients.
Mode is the most frequent value of a data set, which represents
the general level of the data. Mode increases as T1 value
6

increases. The increase of these 9 parameters may indicate the
occurrence of MF.
4.4. GLCM analysis

GLCM is an effective method for analyzing the texture features of
an image based on the second order combination of the
conditional probability density function of the image.[27,28]

GLCM parameters reflect the second-order information which
shows the adjacency relationship between pixels and surrounding
pixels. Direction, interval, and rangeability can be determined by
calculating the correlation of separate gray levels. When the
image is meticulous and uniform, energy is abundant. Otherwise,
the energy is low. The higher the degree of chaos, the greater of
the entropy value becomes. Contrast reflects the contrast of
adjacent pixels. The greater the difference in texture pixels, the
greater the contrast becomes. The correlation equals to 1 for a
positively correlated image and �1 for a negatively correlated
image. The correlation of a constant image is none. Homogeneity
indicates the local change of the image. Homogeneity equals to 1
for a diagonal GLCM. In the present result, energy and
correlation had no significant differences between DCM and
controls. Entropy and contrast were obviously lower in the DCM
group. Meanwhile, homogeneity was higher in the DCM group
than in healthy controls. The main reason for this phenomenon is
that MF was common and evenly distributed.[3] The location of
MF is not typical, in which some were in the middle of the
interventricular septum, and some were near the ventricular wall.
The distribution of the area where the T1 value increased was
dispersed. Another possible reason is that the myocardial wall of
DCM was very thin, which may introduce errors in the
calculation of GLCM. As the spatial resolution of magnetic
resonance is not high enough, there are only 2 to 3 pixels at the
thinnest place of the myocardial wall. The GLCM parameters
depend on the relationship between adjacent pixels. The number
of pixels is too small to make the GLCM parameters accurate.
4.5. Machine learning and SVM classifier

With the development of image processing technology, image
analysis, andmachine learning are applied more andmore widely
in medical image processing.[29–32] SVM has been used as the
main and efficient classifier over years.[33,34] Recently, SVM has
been used in medical image processing for computer-assisted
diagnosis.[35–37] The present study shows that the accuracy of the
SVM classifier could be 0.85±0.07. This makes SVM an
objective tool to complement the present clinical diagnosis of
DCM. To date, there is no gold standard for the clinical diagnosis
of DCM. The only way to diagnose DCM is to exclude other
potential reasons based on all medical evidence. The availability
of an objective and complementary tool could significantly boost
the confidence of clinicians.
4.6. Limitations and future work

One limitation of the present study was that the T1mapping after
contrast agent injection was not analyzed. T1 value changes after
the injection of contrast agent. Most of the healthy controls
refused to be injected with a contrast agent. Hence, merely T1
mapping before contrast was analyzed. In addition, the sample
size was small, especially for healthy controls. DCM patients
have different symptoms at different stages. The factor of disease
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staging was not considered in the present study. More studies
should be performed to convert these findings into clinical use.
5. Conclusion

In summary, the technique of combining TA with the machine
learning approach offers a novel, repeatable and automated
approach for differentiating DCM patients from healthy
controls. This approach could be used as an assisted screening
tool in the clinical setting for the diagnosis of DCM.
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