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Abstract

There are over 100 known species of cultivated potatoes and their wild relatives. Many of these species, including cultivated potatoes,
share the A genome; these species are mainly distributed in South America and are reproductively isolated from Mexican diploid species.
The only diploid A-genome species distributed in Mexico is Solanum verrucosum Schlechtendal, which is also a maternal progenitor of
Mexican polyploid species. In this study, we constructed a high-quality de novo assembly of the S. verrucosum genome using PacBio
long-read sequencing and Hi-C scaffolding technologies. A monohaploid clone (2n ¼ x¼ 12) of S. verrucosum was used to reduce assem-
bly difficulty due to the heterozygous nature of the species. The final sequence assembly consisted of 780.2 Mb of sequence, 684.0 Mb of
which were anchored to the 12 chromosomes, with a scaffold N50 of 55.2 Mb. Putative centromeres were identified using publicly avail-
able data obtained via chromatin immunoprecipitation sequencing against a centromere-specific histone 3 protein. Transposable elements
accounted for approximately 61.8% (482.1 Mb) of the genome, and 46,904 genes were functionally annotated. High gene synteny and
similarity were revealed among the genomes of S. verrucosum, Solanum commersonii, Solanum chacoense, Solanum phureja, Solanum
tuberosum, and Solanum lycopersicum. The reference-quality S. verrucosum genome will provide new insights into the evolution of
Mexican polyploid species and contribute to potato breeding programs.
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Introduction
Potato (Solanum tuberosum L., 2n¼ 4x¼ 48) is the most important
noncereal food crop in the world. High genetic diversity is ob-
served among primitive cultivated potatoes and the over 100

wild potato species distributed from North and Central
America to South America (Hawkes 1990; Spooner et al. 2014).
These species are classified into 2 reproductively isolated
groups: (1) a group including all Mexican diploid species except

for S. verrucosum Schlechtendal and (2) a group including all
Mexican polyploid species, S. verrucosum, and all South
American species (Hawkes 1958). Based on the meiotic chromo-
some pairing of interspecific hybrids, the A genome is assigned

to the species in the second group (Matsubayashi 1991). Since
sexual hybrids between Mexican diploid species and A-genome
species are extremely difficult to obtain, their genome affinity
has long been debated (Matsubayashi 1991; Pendinen et al.

2008).

S. verrucosum is the only diploid A-genome species from

Mexico and is assumed to contribute the A genome of Mexican

polyploid species (Hosaka et al. 1984). Most diploid tuber-bearing

Solanum species are self-incompatible (Pushkarnath 1942),

whereas S. verrucosum is self-compatible (Hawkes 1990). S. verru-

cosum is cross-compatible with most South American species as

the female parent (Eijlander et al. 2000) and with some Mexican

diploid species, which provides an opportunity to transfer useful

traits from Mexican diploid species to cultivated potatoes as a

bridging species (Hermsen and Ramanna 1976; Jansky and

Hamernik 2009). The Mexican species, including S. verrucosum,

are valuable sources of disease and pest resistance in potato

breeding (Hein et al. 2009; Chen et al. 2018).
The first potato genome was sequenced from the DM 1-3 516

R44 clone (hereafter referred to as DM) (Potato Genome

Sequencing Consortium 2011). DM resulted from the chromo-

some doubling of a monoploid derived via anther culture of the
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cultivated diploid species Solanum phureja Juz. et Buk. (Lightbourn
and Veilleux 2007). The homozygous nature of the clone facili-
tated genome sequencing. Since then, potato whole genomes
have been sequenced mainly from cultivated potato species
(Kyriakidou, Achakkagari, et al. 2020; Kyriakidou, Anglin, et al.
2020; van Lieshout et al. 2020; Zhou et al. 2020; Yan et al. 2021).
Recent advances such as long-read sequencing coupled with high-
throughput chromosome conformation capture (Hi-C) scaffolding
technologies have resulted in great improvements in the DM ge-
nome (DM v6.1; Pham et al. 2020), and chromosome-scale phased
assemblies have been obtained from heterozygous diploid and tet-
raploid potatoes (Zhou et al. 2020; Yan et al. 2021; Hoopes et al.
2022; Sun et al. 2022). However, whole-genome sequencing in wild
species has been limited to Solanum commersonii Dun. (Aversano
et al. 2015) and Solanum chacoense Bitt. (Leisner et al. 2018), both of
which are distributed in the southern marginal distribution area
of the South American A-genome species (Hawkes and Hjerting
1969). Only a draft genome sequence has been reported for the
Mexican diploid species S. pinnatisectum Dunal (Tiwari et al. 2021).

In this study, we generate a chromosome-scale assembly of
the genome of the Mexican diploid species S. verrucosum using
PacBio long-read sequencing and Hi-C scaffolding technologies. A
monohaploid S. verrucosum clone (2n ¼ x¼ 12) was used to reduce
complexity caused by the heterozygous nature of the species.
The constructed reference-quality genome will provide new
insights into the evolutionary process in Mexican polyploid spe-
cies and contribute to potato breeding programs.

Materials and methods
Plant material
A monohaploid clone of S. verrucosum (11H23, available as PI
666968 from the U.S. Potato Genebank) that was derived from an-
ther culture (Irikura and Sakaguchi 1972) and maintained in vitro
in our laboratory (Sanetomo and Hosaka 2021) was used for se-
quencing.

DNA extraction
A plant grown in vitro was transferred to a pot filled with soil and
further grown for DNA extraction. Fresh leaves were collected,
frozen in liquid nitrogen, and ground into powder with a mortar
and pestle. The powder was suspended in 7 ml of 2� CTAB buffer
(100 mM Tris-Cl buffer pH 8.0, 20 mM EDTA pH 8.0, 1.4 M NaCl,
2% CTAB, 1% PVP-40, and 0.2% 2-mercaptoethanol) and incu-
bated at 60�C for 30 min. The suspension was gently mixed with
5 ml of chloroform: isoamyl alcohol (24:1) and centrifuged at
10,000 rpm for 5 min at 20�C. Using a wide-bore pipet tip, the su-
pernatant was transferred to a 50-ml tube containing 5 ml of iso-
propanol and mixed gently by inverting the tube. Aggregated
DNA strands were hooked and drawn up using a Pasteur pipet
modified by flaming the tip and bending it into a U shape, after
which they were transferred to a tube containing 10 ml of 75%
ethanol washed for 30 min. Then, the aggregated DNA was dis-
solved in 2 ml of TE buffer (10 mM Tris-Cl buffer pH 8.0 and 1 mM
EDTA pH 8.0) and incubated with 5 ll of RNase (10 mg/ml) for 3 h
at room temperature. After complete dissolution, 100 ll of 5 M
NaCl and 700 ll of 99.9% ethanol were added, followed by mixing
and incubation at 4�C overnight to precipitate polysaccharides.
After centrifugation at 10,000 rpm for 5 min at 4 �C, the superna-
tant was collected and mixed gently with 9 ml of 75% ethanol
with 10 mM ammonium acetate. The aggregated DNA strands
were hooked and drawn up using a U-shaped Pasteur pipet,
transferred to a tube containing 10 ml of 75% ethanol, and

washed for 30 min. Then, the DNA was dried completely while
hanging on the U-shaped Pasteur pipet and dissolved in 100 ll of
sterile water.

Genome sequencing and assembly
The quality of the extracted DNA was measured with a Genomic
DNA ScreenTape System (Agilent) and a Qubit Fluorometer
(Thermo Fisher Scientific). A long-read DNA library was prepared
with the SMRTbell Express Template Prep Kit 2.0 (PacBio) and se-
quenced using the PacBio Sequel lle system in CCS mode (PacBio).
The resulting raw data were converted to FASTQ format using
BAM2fastx 1.3.1 (PacBio). Reads longer than 5 kb were extracted
with SeqKit 0.15.0 (Shen et al. 2016) and used for genome assem-
bly with the Hifiasm 0.15.5-r350 assembler (Cheng et al. 2021).The
-l 0 option was specified to disable the purge haplotigs function
since the plant was monohaploid.

Hi-C sequencing and scaffolding
The Hi-C library was prepared using the Dovetail Omni-C Kit
(Dovetail Genomics) following the Proximity Ligation Assay
Nonmammalian Samples Protocol version 1.0. The prepared li-
brary was sequenced on the NovaSeq 6000 (Illumina) platform.
The read quality was assessed using FastQC 0.11.8 (Andrews
2010) and MultiQC v1.8 (Ewels et al. 2016) and then filtered using
Trimmomatic 0.39 (Bolger et al. 2014) with the “ILLUMINACLIP:
TruSeq3-PE.fa : 2:30:10 TRAILING : 20 SLIDINGWINDOW : 4:15
HEADCROP : 10 MINLEN : 50” options. The trimmed reads were
aligned to the contigs using Juicer 1.6 (Durand et al. 2016). Since
DNase I was used to digest fixed nucleosomes, the “-s none -y
none” options were specified. The generated contact maps were
then used for scaffolding with a 3D-DNA pipeline (Dudchenko
et al. 2017) with the default parameters. The scaffolds were man-
ually corrected using JuiceBox 1.11.08 (https://github.com/aiden
lab/Juicebox). The corrected scaffolds were aligned to the DM
v6.1 reference genome using D-GENIES (Cabanettes and Klopp
2018). The identities and directions of the scaffolds were deter-
mined based on the alignment.

Identification of organelle sequences
To identify regions or contigs derived from organelle genomes,
sequences of chloroplast genome of S. verrucosum (MH021593.1;
Huang et al. 2019) and mitochondrial genome of S. tuberosum cultivar
Désirée (MN104801, MN104802, and MN104803; Varré et al. 2019)
were obtained from the National Center for Biotechnology
Information (NCBI), and a nucleotide homology search was per-
formed against S. verrucosum contigs using BLASTN 2.12.0 (Altschul
et al. 1990) with the “-outfmt 6 -evalue 0.0001” options. Regions with
more than 10 kb of alignment length and with more than 90% ho-
mology were selected and reformatted to BED files. Overlapped
regions were merged using BEDTools 2.30.0 (Quinlan and Hall 2010).

Identification of putative centromeres
To identify centromeres, sequence reads generated via chromatin
immunoprecipitation sequencing (ChIP-seq) against a centromere-
specific histone 3 (CENH3) protein that were publicly available
from NCBI were obtained for S. verrucosum (SRR18548893; Zhang
et al. 2014) and S. phureja (SRR18548894; Gong et al. 2012) and
aligned to their genomes using Bowtie2 (Langmead and Salzberg
2012) in single-end mode. The resulting BAM files were converted
to BigWig files using DeepTools 3.5.1 (Ram�ırez et al. 2016) for visu-
alization on the IGV 2.11.0 genome browser (Robinson et al. 2011).
Centromeric regions of chromosomes were manually identified
with IGV.
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Annotation
Transposable elements (TEs) were identified using EDTA 1.9.6 (Ou
et al. 2019), and the defined TE regions were hard masked. To evalu-
ate assembly completeness, the long terminal repeat (LTR) assem-
bly index (LAI) score (Ou et al. 2018) was calculated using the EDTA
output files. Tandem repeats were defined using Tandem Repeats
Finder v4.09 (Benson 1999) with the default parameters, and the de-
fined repeats were soft masked using BEDTools. The masked scaf-
folds were subjected to gene prediction using the MAKER 3.01.03
(Cantarel et al. 2008) annotation pipeline by providing mRNA and
protein sequences of DM v6.1 (Pham et al. 2020) and pretrained
AUGUSTUS (Stanke et al. 2004) gene models of tomato. The func-
tional annotation of the predicted proteins was performed using
Hayai-Annotation Plants v.2 (Ghelfi et al. 2019). The density of the
annotated TE families, Miniature Inverted-repeat Transposable
Element (MITE) derivatives, genes, and CENH3 ChIP-seq reads

within every 1 Mb segment was calculated using BEDTools and
visualized in a circular heatmap generated by Circos (Krzywinski
et al. 2009).

Genome synteny and orthologs
The genome of S. verrucosum was compared with those of S. phur-
eja (DM v6.1; Pham et al. 2020), diploid S. tuberosum (Solyntus v1.1;
van Lieshout et al. 2020), S. chacoense (M6; Leisner et al. 2018), S.
commersonii (Aversano et al. 2015), and Solanum lycopersicum L.
(Hosmani et al. 2019). Syntenic gene pairs were searched using
MCScan (python version) (Tang et al. 2008) with the default
parameters, and syntenic blocks containing more than 30 genes
were visualized. The orthologous relationships of S. verrucosum
genes were assessed using OrthoFinder (Emms and Kelly 2015,
2019). All protein-coding genes except for those encoding iso-
forms or sequences shorter than 10 amino acids were compared.
Intersections of orthogroups were visualized with UpSetR 1.4.0
(Lex et al. 2014; Conway et al. 2017).

Results and discussion
Genome assembly
We obtained 46.5 Gb of HiFi reads using a PacBio Sequel IIe sys-
tem with an N50 read size of 15.6 kb and an average read size of
14.9 kb. Reads longer than 5 kb were used for assembly with
Hifiasm. The resulting assembly consisted of 1,437 contigs with
an N50 contig size of 21.0 Mb (Table 1). The contigs were error

Table 1. Assembly statistics.

Primary contigs
with PacBio
reads

Final scaffolded
contigs after
Hi-C sequencing

Number of contigs 1,437 1,547
Total size, bp 779,910,189 780,238,689
Longest size, bp 55,137,318 84,109,000
Mean size, bp 542,735 504,356
N50 size, bp 20,992,750 55,157,000

1

0.5

0.75

0.25

0

Identity

U
nanchored

S. phureja (DM 1-3 516 R44 v6.1)

S
.verrucosum

Fig. 1. Dot plot analysis between S. verrucosum and S. phureja using D-GENIES with the “hide noise” option.
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corrected and scaffolded with 101 million Omni-C read pairs us-
ing Juicer and a 3D-DNA pipeline (Supplementary Fig. 1). The fi-
nal sequence assembly consisted of 780.2 Mb, among which
684.0 Mb were anchored to the 12 chromosomes, with a scaffold

N50 of 55.2 Mb (Table 1). Of the remaining 1,535 unanchored con-
tigs (a total of 96.3 Mb in size), 688 contigs (33.3 Mb) and 102 con-
tigs (3.6 Mb) showed high homology to the chloroplast and
mitochondrial genomes, respectively (Supplementary File 1). The
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Fig. 2. Putative centromeres. a) Distribution of CENH3 ChIP-seq signals in every 100 kb window in S. verrucosum and S. phureja. b) Dot plot between S.
verrucosum and S. phureja for chromosome 12. ChIP-seq signals against the CENH3 proteins of S. verrucosum and S. phureja are shown on the right and at
the top of the plot, respectively, and are highlighted on the plot.
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dot plot analysis using these contigs against the organelle

genomes indicated that these contigs were fragments of the or-

ganelle genomes (Supplementary Fig. 2). This is in accordance

with previous studies that most of smaller contigs from Hifiasm

assembly corresponded to small portions of the chloroplast and

mitochondrial genomes (Sharma et al. 2022; Sun et al. 2022). The

other unanchored contigs (59.4 Mb) consisted mostly of TEs

(88.6%) and showed homology to localized regions in the chromo-

somes (Supplementary File 1 and Fig. 1).

Putative centromeres
The dot plot analysis performed between the genome of

S. verrucosum and that of S. phureja DM v6.1 using D-GENIES

showed significant consistency in the distal regions of each chro-
mosome, while the central regions diverged considerably (Fig. 1).
This is because centromere sequences evolve rapidly (Henikoff
et al. 2001) and might be distinct between S. verrucosum and S.
phureja (Gong et al. 2012; Zhang et al. 2014). To precisely determine
the centromeres and compare these structures between the 2
species, we used publicly available ChIP-seq data generated
against the CENH3 protein. The sequence reads from S. verruco-
sum (SRR18548893) and S. phureja (SRR18548894) were aligned to
their genomes. Strong signals were observed on each chromo-
some, and the mapping rates were high (>97%) and comparable
between the genomes of the 2 species, indicating that the centro-
mere sequences were properly assembled in both genomes

(b) MITE
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hAT_TIR_transposon
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Gene
PIF_Harbinger_TIR_transposon
Copia_LTR_retrotransposon
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Mutator_TIR_transposon
LTR_retrotransposon
Gypsy_LTR_retrotransposon

correlation coffecient

−1
−0.5
0
0.5
1

(a)

Fig. 3. Chromosomal distribution of genes and transposons (a) and the correlations of their locations (b).
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(Supplementary Table 1, Supplementary Fig. 3 and Fig. 2a). It
was noted that 17.2% of the mapped reads were aligned to unan-
chored contigs, suggesting that some centromere sequences
could not be assembled into chromosomes, possibly due to their
highly repetitive nature.

In accordance with a previous report (Zhang et al. 2014), cen-
tromere regions showed little conservation between the
sequences of S. verrucosum and S. phureja (Supplementary Fig.
4). In particular, the centromere position on chromosome 12
differed between S. verrucosum and S. phureja indicating that a
massive rearrangement occurred during their speciation
(Fig. 2b).

Gene prediction
Since TEs are one of the major forces driving genome evolution
(Hosaka and Kakutani 2018), the quantity and diversity of TEs
were analyzed using the EDTA transposon annotation pipeline.
TEs accounted for approximately 61.8% (482.1 Mb) of the
S. verrucosum genome, among which LTR-type retrotransposons
accounted for 39.9%, and terminal inverted repeat (TIR)-type
transposons accounted for 9.7% (Supplementary Table 2).
MITEs, which are nonautonomous derivatives of TIR-type trans-
posons, were identified in 20.5% of the TIR-type transposons.
The most abundant TEs were Gypsy elements (24.2%), as
reported previously in other Solanum species (Aversano et al.
2015; Gaiero et al. 2019; Hosmani et al. 2019). Putative protein-
coding genes were searched in the genome using the MAKER

pipeline, and their functions were predicted using the Hayai-
Annotation Plants v2 pipeline. As a result, 64,294 genes were pre-
dicted, and 46,904 genes were functionally annotated. Their
chromosomal distributions and the correlations of their loca-
tions are shown in Fig. 3. The genes were densely distributed in
telomeric and subtelomeric regions. Some class II transposons,
such as Tc1_Mariner, hAT, helitron, and MITEs, were distributed
in a pattern similar to that of genes. In contrast, Gypsy and un-
known LTR retrotransposons were densely distributed in peri-
centromeric and centromeric regions. Similar distribution
patterns have been reported in S. phureja DM v4.03 (Zavallo et al.
2020).

Assembly completeness and quality assessment
The LAI score used to measure assembly completeness was
11.97, which was slightly lower than that of DM v6.1 but much
higher than that of DM v4.04 (LAI scores of 13.56 and 7.87, respec-
tively; Pham et al. 2020). Higher LAI scores correspond to more
complete genome assemblies, and genome LAI scores between 10
and 20 are considered to indicate reference genome quality (Ou
et al. 2018). Thus, the S. verrucosum genome was highly contiguous
and is categorized as showing reference genome quality.

The quality of the gene predictions was assessed using the
Benchmarking Universal Single-Copy Orthologs (BUSCO) data-
base. Among 5,950 BUSCOs that are conserved in Solanales spe-
cies, the number of complete BUSCOs identified was 5,759
(96.8%) in genome mode and 5,490 (92.3%) in protein mode. The

S. verrucosum
S. chacoense
S. phureja
S. tuberosum
S. commersonii
S. lycopersicum

Mb

Chromosome

(a)

(b) S. chacoense

S. verrucosum

S. tuberosum

S. phureja

S. verrucosum

S. commersonii

S. lycopersicum

Intrachromosomal 
inversion

Interchromosomal 
translocation

Fig. 4. Size and structural differences among 6 species genomes. a) Chromosome size in Mb. b) Synteny plot between S. verrucosum and the other
species.
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number of missing BUSCOs identified in protein mode was 272

(4.6%), which was almost equivalent to the numbers found in the

genomes of the other 5 species, ranging from 2.6% in S. phureja to

15.4% in S. tuberosum (Supplementary Table 3). Thus, most of

the known BUSCOs were identified in the S. verrucosum genome,

demonstrating robust representation of protein-coding genes.

Synteny and phylogenetic analyses
Structural variation and gene similarity were compared between

the S. verrucosum genome and the other 5 genomes. The chromo-

some lengths varied by species (Supplementary Table 4 and

Fig. 4a). Each of the S. chacoense chromosomes except for the

chromosome 7 was shorter than the corresponding chromo-

somes of the 5 other species, likely because S. chacoense showed

the largest number of unanchored sequences (Leisner et al. 2018).

The highest size similarity was observed between S. verrucosum

and S. phureja, with a Pearson’s correlation coefficient of 0.978.
The gene collinearity analyses between S. verrucosum and the

other 5 species showed putative inversions and interchromoso-

mal translocations, indicating that genome rearrangements have

occurred (Fig. 4b). The S. verrucosum genome was most syntenic

to the S. phureja genome. Furthermore, all genomes except
for that of S. commersonii showed similar gene synteny. The

S. commersonii genome showed a large translocated segment on

chromosome 2, which might indicate that a unique genome rear-

rangement occurred in this species, or this could be a result of
simple misassembly.

The analysis of orthologous relationships using OrthoFinder

showed that 288,020 genes (90.1%) among the 319,562 genes iden-

tified in the 6 species were assigned to 38,937 orthogroups
(Supplementary Table 5). Among the 38,937 orthogroups, 16,964

(43.6%) were present in all the species analyzed, while only 1,027

(2.6%) were present in S. verrucosum (Fig. 5a). These S. verrucosum-

specific orthogroups included 7,103 genes, of which 77.4% lacked
functional annotations and 8.9% had similarities to the genes

encoded in TEs based on the Hayai-Annotation Plants v2 pipeline.

S. verrucosum presented the second largest number of shared
orthogoups (28,568) after S. commersonii.

The species phylogeny was inferred from the similarity of the

16,964 orthogroups present in all the 6 species using OrthoFinder

with the Species Tree inference from All Genes (STAG) algorithm

(Emms and Kelly 2018). S. commersonii was distantly related
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among tuber-bearing species (Fig. 5b). In tuber-bearing Solanum

species, the interspecific crossing barrier is explained by the

Endosperm Balance Number (EBN) hypothesis (Johnston et al.

1980; Ehlenfeldt and Ortiz 1995). According to this hypothesis, a

2:1 ratio of maternal to paternal EBN in the endosperm is neces-

sary for normal endosperm development (Johnston et al. 1980).

S. commersonii shows an EBN of 1, whereas most of the other

A-genome diploid species show an EBN of 2 (Ehlenfeldt and

Hanneman 1988; Hanneman 1994). An imbalanced EBN causes

endosperm abortion following interspecific hybridization, which

is one of the major reproductive barriers among potato species

(Johnston et al. 1980; Hawkes and Jackson 1992; Hanneman 1999).

S. verrucosum was observed to be most closely related to S. cha-

coense, indicating that the 2 species have relatively similar gene

sequences while frequent rearrangements by intrachromosomal

inversions were observed (Fig. 4b). Interestingly, geographical dis-

tributions of the 2 species are most distant among the A-genome

species (Hawkes 1990).

Conclusions
We constructed a high-quality de novo assembly of the geograph-

ically isolated A-genome species S. verrucosum with a scaffold N50

of 55.2 Mb. The evaluation of variability within the A genome, in-

cluding that of S. verrucosum, encompassed the geographic range

of these species from the north (S. verrucosum in Mexico) to the

south (S. chacoense in Argentina), which will be useful for under-

standing genomic differentiation among A-genome species. Since

S. verrucosum has been considered a maternal progenitor of

Mexican polyploid species (Hosaka et al. 1984; Spooner et al. 1991;

Rodr�ıguez and Spooner 2009; Sanetomo and Hosaka 2013), this

whole-genome sequence will be a valuable resource for under-

standing polyploid evolution. Furthermore, the whole-genome

sequence of S. verrucosum will facilitate the exploration of its

unique crossing behaviors, such as self-compatibility and unilat-

eral cross-compatibility (Hawkes 1990; Eijlander et al. 2000),

which will help us understand its function as a bridging species

(Hermsen and Ramanna 1976; Hamernik et al. 2001; Dinu et al.

2005; Jansky and Hamernik 2009; Bamberg et al. 2021) and will

promote the introgression of useful traits from reproductively

isolated Mexican diploid species into cultivated potatoes.

Data availability
The raw DNA sequencing reads, genome assembly, and

annotation have been deposited into the National Center

for Biotechnology Information under BioProject Number

PRJNA820895.
Supplemental material is available at G3 online.
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