
Citation: Ginebaugh, S.P.; Badawi, Y.;

Tarr, T.B.; Meriney, S.D.

Neuromuscular Active Zone

Structure and Function in Healthy

and Lambert-Eaton Myasthenic

Syndrome States. Biomolecules 2022,

12, 740. https://doi.org/10.3390/

biom12060740

Academic Editors: Lucia Tabares and

Saravanan Arumugam

Received: 8 April 2022

Accepted: 18 May 2022

Published: 24 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Neuromuscular Active Zone Structure and Function in Healthy
and Lambert-Eaton Myasthenic Syndrome States
Scott P. Ginebaugh , Yomna Badawi , Tyler B. Tarr and Stephen D. Meriney *

Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA;
spginebaugh@gmail.com (S.P.G.); y.badawi@pitt.edu (Y.B.); tbt9@pitt.edu (T.B.T.)
* Correspondence: meriney@pitt.edu; Tel.: +1-412-624-4925

Abstract: The mouse neuromuscular junction (NMJ) has long been used as a model synapse for the
study of neurotransmission in both healthy and disease states of the NMJ. Neurotransmission from
these neuromuscular nerve terminals occurs at highly organized structures called active zones (AZs).
Within AZs, the relationships between the voltage-gated calcium channels and docked synaptic
vesicles govern the probability of acetylcholine release during single action potentials, and the short-
term plasticity characteristics during short, high frequency trains of action potentials. Understanding
these relationships is important not only for healthy synapses, but also to better understand the
pathophysiology of neuromuscular diseases. In particular, we are interested in Lambert-Eaton
myasthenic syndrome (LEMS), an autoimmune disorder in which neurotransmitter release from
the NMJ decreases, leading to severe muscle weakness. In LEMS, the reduced neurotransmission is
traditionally thought to be caused by the antibody-mediated removal of presynaptic voltage-gated
calcium channels. However, recent experimental data and AZ computer simulations have predicted
that a disruption in the normally highly organized active zone structure, and perhaps autoantibodies
to other presynaptic proteins, contribute significantly to pathological effects in the active zone and
the characteristics of chemical transmitters.

Keywords: active zone; neuromuscular junction; Lambert-Eaton myasthenic syndrome; computational
modeling

1. Introduction

Neuromuscular junctions (NMJs) are essential for movement, and thus are essential
for normal function. Because of the importance of NMJs to normal functioning, NMJs have
evolved a variety of properties that allow them to function under a wide range of conditions.
Two such properties are the strength and reliability of NMJs. Here, strength refers to the
fact that a typical presynaptic action potential (AP) causes a release of transmitters in excess
of what is necessary to lead to the contraction of the postsynaptic muscle fibers. Reliability
refers to the fact that the NMJ can repeatedly stimulate, or cause the sustained contraction
of, the postsynaptic muscle fibers [1,2].

The release of neurotransmitters from the presynaptic terminals of neurons occurs
at specialized regions of the presynaptic membrane called active zones (AZs), which
contain docked synaptic vesicles, voltage-gated calcium channels (VGCC), and a variety
of structural, membrane-fusion facilitating, and calcium-sensing proteins [3]. The overall
function of the NMJ is governed by the probability of chemical transmitter release from
hundreds of AZs within each motor nerve terminal. The probability of transmitter release
is determined by the presynaptic AP waveform, the gating of presynaptic VGCCs, the
sensitivity of calcium sensors on docked synaptic vesicles, and the spatial relationship
between VGCCs and docked synaptic vesicles [4–6].

Lambert-Eaton Myasthenic Syndrome (LEMS) is a rare autoimmune neuromuscular
disease in which the immune system attacks proteins in the AZ structure of the NMJ [7,8].
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This attack is thought to reduce the number and organization of VGCCs and other proteins
associated with the AZ [9,10]. As a result of this attack, LEMS results in a reduction in
the magnitude of neurotransmitter release from the NMJ, which leads to severe muscle
weakness for LEMS patients [11].

2. Action Potential Triggered Calcium Entry

The AP is often considered as a binary signal that propagates down the motor axon to
the nerve terminal, causing a release of neurotransmitters into the synapse upon reaching
the nerve terminal [12–14]. However, it is clear even from early work on the squid giant
axon AP [15–21] that the size, shape, and conduction velocity of the AP play an important
role in regulating communication. Neurons regulate the propagation and shape of the
AP with a heterogeneous distribution of ion channels, and the shape of the AP waveform
can vary greatly between different neuron types [22] and within different regions of the
same neuron [12,23–25].

Despite the importance of the AP waveform to the function of nerves and synapses,
the shape of the AP waveform and how changes in this waveform impact the function of
synapses are relatively understudied. This is primarily due to the fact that presynaptic nerve
terminals at most synapses are too small to probe with an electrode (with a few notable
exceptions). Regarding the mammalian motor nerve terminal, recently, Ojala et al. [26]
used voltage imaging to characterize the presynaptic AP waveform. In these studies,
they reported that motor-nerve-terminal APs are exceptionally brief, with a full width of
250–350 µs at half maximal amplitude (Figure 1). The brief duration of these AP waveforms
is thought to be due in part to the selective expression of voltage-gated potassium channels
of the Kv3.3 and 3.4 type [27], and calcium-activated potassium channels [28] within AZs
which can increase the rate of repolarization.
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calcium channels within AZs. Research using a single pixel optical fluctuation analysis on 
calcium imaging at the frog NMJ suggests a one-to-one relationship between docked syn-
aptic vesicles and voltage-gated calcium channels in the AZ. Furthermore, calcium imag-
ing found that these AZ voltage-gated calcium channels have only a 0.2 probability of 
opening during an AP [29,30]. Thus, only a small fraction of voltage-gated calcium chan-
nels would be expected to open in each AZ during an AP. This paucity in the total number 
of voltage-gated calcium channels in each AZ, combined with the low probability that 
these channels would open during the very brief presynaptic AP provides a mechanism 
which can explain the low probability of release for synaptic vesicles. The resulting unre-
liable synaptic vesicle release per AZ is hypothesized to contribute to the reliability of the 
synapse as a whole by ensuring that, even during repeated stimulation, the synapse will 
only use a small fraction of the available docked synaptic vesicles and not become 

Figure 1. The presynaptic AP waveform at the mouse NMJ is very brief. (A) BeRST 1 dye-stained
image of a mammalian presynaptic motor nerve terminal. (B) Alexa Fluor 488 α-BTX stained image
of the same terminal as in A. (C) normalized spline of the average presynaptic AP waveform recorded
from 11 mouse motor nerve terminals. Adapted from Ojala et al. [26].

These very brief APs are thought to only activate a small fraction of the available
calcium channels within AZs. Research using a single pixel optical fluctuation analysis
on calcium imaging at the frog NMJ suggests a one-to-one relationship between docked
synaptic vesicles and voltage-gated calcium channels in the AZ. Furthermore, calcium
imaging found that these AZ voltage-gated calcium channels have only a 0.2 probability of
opening during an AP [29,30]. Thus, only a small fraction of voltage-gated calcium channels
would be expected to open in each AZ during an AP. This paucity in the total number of
voltage-gated calcium channels in each AZ, combined with the low probability that these
channels would open during the very brief presynaptic AP provides a mechanism which
can explain the low probability of release for synaptic vesicles. The resulting unreliable
synaptic vesicle release per AZ is hypothesized to contribute to the reliability of the synapse
as a whole by ensuring that, even during repeated stimulation, the synapse will only use a
small fraction of the available docked synaptic vesicles and not become depleted of these
synaptic vesicles during prolonged and repeated activity [31]. Although this hypothesis is
generally accepted, it should be noted that it has not yet been tested experimentally.
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3. Active Zone Structure and Organization at Healthy Synapses

Active zones (AZs) are specialized structures on the presynaptic plasma membrane of
synapses where neurotransmitter release occurs [3,32]. Early imaging studies showed
that AZs contain docked synaptic vesicles and numerous intramembranous particles
(Figure 2) [33–36]. These intramembranous proteins are hypothesized to include struc-
tural and functional proteins necessary for synaptic vesicle exocytosis; most prominently,
the voltage-gated calcium channels. The mouse NMJ has a “pretzel” shape with small
AZs (Figure 2). Each AZ contains, on average, a single row of two docked synaptic vesi-
cles surrounded on both sides by double rows of intramembranous particles, containing
approximately 20 particles in total (Figure 2) [10,36]. The average mouse NMJ contains
approximately 700 of these AZs [5,37,38], each placed approximately 500 nm apart [37].
During a single AP, the mouse NMJ releases approximately 160 vesicles of neurotransmit-
ters (Figure 2). This corresponds to a 0.22 probability of release from any given AZ during
an AP, and, assuming two docked synaptic vesicles per AZ, a 0.11 probability of release per
docked synaptic vesicle [5].
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Figure 2. The structure and protein distribution of mouse NMJ AZs. (A) A mouse NMJ stained with
Alexa-594 α-bungarotoxin (BTX; red) to demonstrate the shape of the NMJ and an Alexa-488 conjugated
antibody to identify the bassoon protein the AZs (BSN; green). Inset shows an enlargement of one part
of the NMJ to make it easier to visualize the distribution of AZs (green spots). Image adapted from [5].
(B) A freeze-fracture replica of an AZ from a mouse NMJ. The hypothesized locations of synaptic vesicles
are superimposed as white circles. Scale bar = 50 nm. Adapted from [10,36]. (C) Diagram of a single
AZ from a mouse NMJ based on electron microscope tomography data [36]. Diagram shows docked
synaptic vesicles (gray spheres), along with AZ structures termed “pegs” (orange), “beams” (purple),
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and “ribs” (green). (D) The distribution of the AZ proteins bassoon (green) and P/Q-type VGCCs
(magenta) at the mouse NMJ as revealed by STED super-resolution microscopy. (E) The distribution
of the AZ proteins bassoon (green) and piccolo (magenta) at the mouse NMJ as revealed by STED
super resolution microscopy. (F) A combined proposed overlay of all three AZ proteins (Bassoon,
Piccolo, and P/Q-type VGCCs) onto the AZ fine structure based on STED super-resolution imaging.
These data lead to the hypothesis that the “pegs” identified in electron microscopy tomography
models from panel C represent P/Q-type VGCCs (orange), the “ribs” represent Bassoon (green), and
the “beams” represent Piccolo (purple). C-F are adapted from [39] (G) The distribution of quantal
content values determined from a population of mouse NMJs. Inset shows a sample miniature
endplate current (mEPC; left) and a sample AP-triggered endplate current (EPC; right). (H) The
distribution of AZ numbers counted from a population of mouse NMJs. Adapted from [5].

Super-resolution microscopy was used to study the distribution of active zone-specific
proteins at mammalian NMJs. Stimulated emission depletion (STED) microscopy revealed
the punctate staining of P/Q-type VGCC and Bassoon in nerve terminals, with the two
proteins co-localizing together (Figure 2D) [39], consistent with their direct interaction [40].
Bassoon is a large scaffolding protein that contributes to the cytomatrix assembled at the AZ.
The P/Q-type VGCC and Bassoon puncta aligned with bright linear areas of α-BTX staining
representing junctional folds [41], which is consistent with the alignment of pre-synaptic
AZs with junctional folds using electron microscopy and electron tomography [36,42].
The active zone protein Piccolo (another large scaffold-like cytomatrix protein at AZs)
shares structural and functional similarities to Bassoon [43–46] and also overlaps with
post-synaptic junctional folds [39]. STED microscopy demonstrated that Bassoon and
Piccolo did not overlap in their distribution within adult mouse NMJs but instead were
localized side-by-side in a Piccolo-Bassoon-Piccolo sandwich pattern (Figure 2E) [39]. This
can represent a functional unit in the AZ structure characterized by electron microscope
tomography [36]. Hypothetically, the AZ material macromolecules visualized in models
based on electron tomography described as “pegs” are transmembrane proteins and may
include P/Q-type VGCCs, while the “ribs” include Bassoon, and the “beams” represent
Piccolo [39,47] (Figure 2F). Further speculation on the possible protein identities and
contributions to the AZ macromolecules at the NMJ has been recently reviewed [48]. The
additional mapping of super-resolution microscopy results onto AZ models developed
based on EM tomography may yield important insights into AZ organization in both
healthy and disease states.

4. Structure-Function Relationships in the NMJ

It is clear from a comparison of AZ structures across many synaptic types that there
are many ways to assemble the components required to couple presynaptic AP activity
with chemical transmitter release [49]. One important question is as follows: How does the
synaptic function depend on the particular manner by which AZs are organized or built?

At the frog NMJ, Propst and Ko [50] combined electrophysiological recordings with
the freeze fracture of identified NMJs and concluded that AZ size and spacing are better
indicators of transmitter release than total NMJ size. Furthermore, Herrera et al. [51]
used freeze fracture techniques to compare naturally occurring differences in synaptic
strength between different types of muscles and found that NMJs with stronger transmitter
release have significantly larger active zones. In addition, Herrera et al. [52] experimentally
altered the magnitude of transmitter release in a long-lasting manner using contralateral
denervation and concluded that changes in AZ size act as the structural basis for long-term
changes in synaptic function. In addition to the total size of these AZ structures being
important for synaptic function, there is also evidence that acutely disrupting the highly
ordered structure can have a significant effects on transmitter release characteristics. After
a three-hour exposure to a very low level of extracellular calcium (0.1 nM, which breaks
divalent-dependent adhesion interactions in the synaptic cleft that are hypothesized to
help hold AZ components in place), Meriney et al. [53] used freeze fracture to show that
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frog NMJ AZs broke into pieces and also displayed some dispersion of AZ proteins. When
these disrupted AZs were returned to normal extracellular calcium to measure transmitter
release, the AZ disruption was maintained for a long enough period to document a slight
reduction in the magnitude of transmitter release, and a strong increase in short-term
synaptic facilitation. These experiments demonstrated that disrupting AZ organization
can profoundly affect synaptic function. Furthermore, these experiments isolate the effects
of AZ-zone disruption on synaptic function, which is relevant in the consideration of
the impact of various effects of the neuromuscular disease pathology of Lambert-Eaton
Myasthenic syndrome (LEMS) on synaptic functions (see below).

5. Computer Modeling of Active Zone Structure and Function

The impact of AZ organization has also been predicted using Monte Carlo Cell (MCell)
to simulate diffusion and reaction events within the motor nerve terminal to model synaptic
AZ anatomy and microphysiology. MCell is a stochastic particle-based diffusion-reaction
simulator that can model biological systems with arbitrarily complex 3D geometries [54–56].
In MCell models of the NMJ AZs, an AP waveform is used to cause VGCCs to open
according to a Markov-chain ion channel gating scheme. Calcium ions emanating from
open VGCCs then diffuse into the nerve terminal space and can bind to the calcium buffer
or calcium sensor proteins on synaptic vesicles.

Homan et al. [57] varied the density and distribution of VGCCs in a refined MCell
model of the frog AZ (based on previously developed models of the frog AZ [58,59])
and demonstrated that these manipulations were predicted to significantly alter synaptic
function (including the magnitude of transmitter release and the synaptic delay). By
studying the impact of specific and systematic changes in AZ organization and VGCC
density, Homan et al. [57] provided a foundation for further MCell modeling studies
investigating the importance of AZ organization on synaptic function. Subsequently,
Laghaei et al. [5] used MCell to compare the AZ organization in frog and mouse NMJs,
each of which use similar AZ elements, but arrange them in different patterns. Frogs
possess a very long (~1 µm) double row of proteins in their AZ array with 20–40 docked
synaptic vesicles on the sides of these long arrays of proteins, while mice have very
short arrays of AZ proteins (~150 nm) and two docked synaptic vesicles between the
AZ protein arrays (see Figure 2). By simply rearranging the frog AZ elements into a
mouse AZ organization (without changing any of the properties of the elements), Laghaei
et al. [5] showed that their MCell models could recapitulate the known differences in
short-term synaptic plasticity between these two synapses (frog NMJs facilitate strongly,
while mouse NMJs have very little short-term synaptic plasticity). Furthermore, MCell
models of the mouse AZs models are able to match many experimental electrophysiological
results, including the probability of release per AZ of 0.22, a paired pulse facilitation
that is relatively unchanged by changes in the inter-spike interval, and the log–log ratio
between extracellular calcium and transmitter release (also known as the calcium-release
ratio) [5]. These studies highlight the importance of AZ organization and structure in
synapse functions.

6. Lambert-Eaton Myasthenic Syndrome

LEMS is an autoimmune-mediated neuromuscular disease in which the immune
system attacks proteins in the NMJ AZ (especially the AZ voltage-gated calcium channels).
LEMS is a rare disease with a prevalence of 3.4 cases per million people [8], and is often
considered as a paraneoplastic syndrome because 50–60% of cases are associated with small-
cell lung carcinoma [60]. In rare cases, LEMS has been associated with other malignancies
such as non-small cell lung carcinoma [61] and prostate carcinoma [62]. Paraneoplastic
instances of LEMS tend to be associated with older, male patients with a long-term history
of smoking, whereas idiopathic LEMS patients tend to be younger and are more likely to be
female. In almost all paraneoplastic LEMS cases, LEMS symptoms precede the diagnosis of
small-cell lung carcinoma, and LEMS patients are routinely screened for lung cancer after
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their LEMS diagnosis [8]. The paraneoplastic relationship of LEMS with small-cell lung
carcinoma is due to the fact that small-cell lung carcinomas are neuroendocrine in origin [63]
and tend to overexpress VGCCs as well as other AZ proteins [64]. Thus, paraneoplastic
LEMS is a result of the immune system response to the tumor [65].

The LEMS-mediated decrease in the number of voltage-gated calcium channels leads
to a reduced calcium influx during an AP, and a subsequent reduction in the amount of
neurotransmitters released [66]. This reduction in transmitter release results in muscle
weakness which significantly limits the daily living-related activities of patients. Specific
changes to the AZ structure and function in the LEMS disease state underlies the root
pathophysiological cause of the disease symptoms. The presence of antibodies targeting
AZ P/Q-type VGCCs is thought to support a LEMS diagnosis [7], but is not a complete
explanation of the immune nature of LEMS. Although anti-P/Q-type VGCCs are the most
common antibody reported, they are not present in 5–20% of LEMS patients [67–70]. This
suggests that the immune nature of LEMS is more complicated than simply the presence or
absence of P/Q-type VGCC antibodies. In fact, LEMS patients have been shown to produce
auto-antibodies to a variety of presynaptic proteins, including synaptotagmin [68] and
M1-type presynaptic muscarinic acetylcholine receptors [71].

7. The Passive Transfer Mouse Model for LEMS

Because LEMS is an antibody-mediated disease, and because many of the proteins
targeted by LEMS are well-conserved between species, LEMS can be passively transferred
to mice by repeatedly injecting them with serum from human LEMS patients [9,72]. The
creation of these LEMS mice has facilitated a wide variety of investigations into the neuro-
muscular pathophysiology of LEMS.

Early freeze fracture electron microscopy studies of biopsied muscle tissue from human
LEMS patients showed a decrease in the number of presynaptic AZs and a disorganization
of particles in the remaining AZs (Figure 3) [73]. Similar results were found using freeze
fracture electron microscopy in presynaptic terminals of LEMS-model mouse NMJs [9,10].
This disruption of the AZ structure was interpreted to be due to the antibody-mediated
loss of P/Q-type VGCCs, which could explain the muscle weakness seen in LEMS patients.
This hypothesis is further supported by evidence that the P/Q-type calcium current in
LEMS mice is 30–40% less than in controls [66,74]. However, the lateral displacement of
the remaining P/Q-type calcium channels may cause a further reduction in transmitter
release, as the movement of VGCCs away from the calcium-sensing protein reduces their
effectiveness. Therefore, disruptions in AZ organization may also play an important role in
LEMS pathophysiology.
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Figure 3. Freeze fracture of control and LEMS NMJs AZs showing AZ disruption after LEMS passive
transfer to mice. (A) Representative control mouse AZ organization (left: diagram, right: freeze
fracture replica, scale = 50 nm). (B) Representative LEMS-modified AZ organization (left: diagram
of protein organization, right: two example AZs from nerve terminals of mice passively transferred
with LEMS serum) Adapted from Nagel et al. [75]; Fukuoka et al. [10]; Fukunaga et al. [9].

Blocking the P/Q-type VGCCs in a healthy mouse NMJ will normally completely
block neurotransmitter release [76,77], suggesting that under healthy conditions, P/Q-type
VGCCs are the only type of VGCC close enough to the vesicles in the AZ to induce trans-
mitter release. However, in LEMS mice, other VGCC types (primarily L-type) were found
to contribute to transmitter release [66,74,78]. This is generally thought to be a compen-
satory attempt by the motoneuron to increase transmitter release by overexpressing VGCC



Biomolecules 2022, 12, 740 7 of 11

types. Despite this compensation, LEMS mouse NMJs release 60–75% less neurotransmitter
than healthy controls [9,78–81]. Since L-type VCGGs do not contain the synaptic protein
interaction (synprint) site that is necessary to associate with AZs, they are likely positioned
outside of the AZ [82–84]. Indeed, preliminary experiments on LEMS passive-transfer
mice found that the contribution of the L-type channel to the release of transmitters is
blocked by the addition of low concentrations of the fast-acting calcium buffer BAPTA
(1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid), suggesting that the L-type
channels are not within close proximity to the calcium-sensing proteins in the AZs [85].

Interestingly, the injection of serum into mice from LEMS patients without detectable
P/Q-type antibodies was successful in passively transferring LEMS symptoms to these
mice, indicating that seronegative LEMS antibodies can still mediate the passive transfer
of disease symptoms [86]. Furthermore, anti-VGCC antibody titers were not found to
be predictive of long-term disease outcomes [87]. Therefore, LEMS auto-antibodies are
likely to target antigens other than simply P/Q-type VGCCs, and the effects of these other
antigens (i.e., synaptotagmin and muscarinic receptors; [68,71]) may contribute to the
pathophysiology of LEMS.

8. Conclusions and Future Directions

There remains limited information on the structure and function of AZs within human
NMJs. The few reports that have been published document that human NMJs are smaller
than mouse NMJs, but possess many of the same features, proteins, and overall organiza-
tion [88,89]. The development of mouse AZ models provides the background for exploring
neurological disease states, and the pathophysiology of LEMS lends itself to exploration
using MCell models. LEMS is often characterized as a disease of presynaptic VGCCs [66,74].
However, because it is known that other AZ changes occur in LEMS, including disruptions
in the organization and alignment of AZ proteins [10], a compensatory upregulation of
L-type VGCC subtypes outside of the AZs [74,78], and a reduction in the number of AZs [9],
MCell modeling will be a useful tool to explore the impact of these changes (see Figure 4).
If AZ changes beyond the removal of VGCCs from the AZ were to be implicated in LEMS
pathophysiology, an in-depth characterization of autoantibody diversity in LEMS patient
serum would be warranted, as well as super-resolution microscopy of the disruption of
other proteins in LEMS-modified AZs. LEMS presents a unique opportunity to better
understand the AZ structure and function in a pathological framework. A detailed under-
standing with regard to the range of autoantibodies generated across a range of patients
and their impact on AZs is still required, as well as an investigation of the specific changes
in AZs that lead to particular features of LEMS. In both healthy and diseased states, a more
detailed understanding of the relationships between AZ composition, AZ organization,
and synaptic functions would be beneficial.

Beyond pathological studies of neurological disease, basic questions remain. Many
years of studying the mammalian NMJ AZ have led to an appreciation for some of the
proteins that are expressed, and the functional consequences of the highly ordered structure
of this transmitter release site. It is now clear that the strength and reliability of the neuro-
muscular synapses derive from the collective function of a very large number of individual
release sites. However, there remain several very important unresolved issues. These
include (1) how different individual AZs contribute to transmitter release under different
conditions—both physiological and pathological, (2) a more detailed understanding of
the specific proteins that underlie the ordered structure revealed by electron microscopy
tomography studies, and (3) a better understanding of the potential heterogeneity in the
protein make-up of individual AZs that might lead to heterogeneity in function.
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