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Abstract
Background: Reliable molecular markers are much needed for early prediction 
of recurrence in muscle-invasive bladder cancer (MIBC) patients. We aimed to 
build a long-noncoding RNA (lncRNA) signature to improve recurrence predic-
tion and lncRNA-based molecular classification of MIBC.
Methods: LncRNAs of 320 MIBC patients from the Cancer Genome Atlas 
(TCGA) database were analyzed, and a nomogram was established. A molecu-
lar classification system was created, and immunotherapy and chemotherapy 
response predictions, immune score analysis, immune infiltration analysis, and 
mutational data analysis were conducted. Survival analysis validation was also 
performed.
Results: An eight-lncRNA signature classifed the patients into high- and low-
risk subgroups, and these groups had significantly different (disease-free sur-
vival) DFS. The ability of the eight-lncRNA signature to make an accurate 
prognosis was tested using a validation dataset from our samples. The nomogram 
achieved a C-index of 0.719 (95% CI, 0.674–0.764). Time-dependent receiver op-
erating characteristic curve (ROC) analysis indicated the superior prognostic ac-
curacy of nomograms for DFS prediction (0.76, 95% CI, 0.697–0.807). Further, 
the four clusters (median DFS = 11.8, 15.3, 17.9, and 18.9 months, respectively) 
showed a high frequency of TTN (cluster 1), fibroblast growth factor receptor-3 
(cluster 2), TP53 (cluster 3), and TP53 mutations (cluster 4), respectively. They 
were enriched with M2 macrophages (cluster 1), CD8+ T cells (cluster 2), M0 
macrophages (cluster 3), and M0 macrophages (cluster 4), respectively. Clusters 
2 and 3 demonstrated potential sensitivity to immunotherapy and insensitivity 
to chemotherapy, whereas cluster 4 showed potential insensitivity to immuno-
therapy and sensitivity to chemotherapy.
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1   |   INTRODUCTION

Bladder cancer is one of the most frequently diagnosed 
cancers globally and the second most common cancer of 
the genitourinary tract.1,2 Muscle-invasive bladder cancer 
(MIBC) is associated with a 5-year survival rate of 60% in 
case of patients with localized disease and <10% in cases 
with distant metastases.3 Radical cystectomy (RC) is the 
standard method of treatment. However, a “surgery only” 
study reported that the 5-year recurrence-free survival was 
74%, 52%, and 36% in case of patients with pT2, pT3, and 
pT4, respectively.4 More than 20% patients with bladder 
cancer experience postoperative recurrence, leading to 
poor survival.2 Although the use of adjuvant chemother-
apy after RC for patients with pT3/4 and/or (lymph node) 
LN-positive disease without clinically detectable metasta-
ses is still under debate, it is effective for treating patients 
with MIBC with a high risk of recurrence.5–7 However, 
clinicopathological risk factors and TNM staging cannot 
adequately classify patients into high- or low risk of dis-
ease recurrence groups, and thus, they cannot indicate 
which patients are likely to benefit from postoperative 
chemotherapy. Consequently, there is an urgent need to 
identify novel, and reliable recurrence-associated molec-
ular biomarkers that allow for better prognostic stratifica-
tion and can provide better guidance on therapy selection 
for patients with bladder cancer.

MIBC is a heterogeneous condition that is character-
ized by genomic instability and a high mutation rate.8 
Bladder cancer can be stratified into different molecular 
subtypes for predicting outcome and treatment response; 
however, most previous studies have focused on the ex-
pression levels of mRNA to differentiate among molecu-
lar subtypes.9,10 Long noncoding RNAs (lncRNAs) lack 
the protein-coding function and are usually >200 bp in 
length.4,11 Their aberrant expression has been closely asso-
ciated with various types of cancers; moreover, lncRNAs 
have been experimentally validated to be involved in 
the etiology, pathogenesis, and progression of cancers.12 
Furthermore, lncRNAs are a novel biomarker and ther-
apeutic target for bladder cancer.13 For example, a recent 
study showed that as a novel regulator, lnc-LBCS plays an 
important tumor suppressor role in bladder cancer stem 
cells’ self-renewal and chemoresistance, contributing to 
weak tumorigenesis and enhanced chemosensitivity.14 

Another study indicated that lncRNA DANCR induces 
bladder cancer lymph node metastasis and proliferation 
via an leucine-rich pentatricopeptide repeat containing-
mediated mRNA stabilization mechanism.15 However, the 
potential of lncRNA-based signatures and using lncRNAs 
for the molecular classification of bladder cancer has not 
been sufficiently explored.

In this study, we aimed to assess the ability of lncRNA 
expression profiles to predict disease recurrence; further, 
we attempted to use lncRNAs for the molecular classifi-
cation of MIBC, which could guide clinical treatment in 
patients with MIBC.

2   |   METHODS

2.1  |  Patients with MIBC

We downloaded a TCGA–BLCA RNA sequencing dataset 
and corresponding clinical characteristics of patients from 
TCGA website (https://cance​rgeno​me.nih.gov/). In total, 
430 BLCA tissues were identified, but the clinical charac-
teristics of only 413 patients could be obtained. We then 
selected 320 patients with MIBC who either showed re-
currence/progression or were disease free. Furthermore, 
mutational data pertaining to BLCA samples were down-
loaded from TCGA database.

2.2  |  Data processing

The downloaded BLCA data were normalized using 
the robust multichip average method for background 
correction, quantile normalization, and log2 trans-
formation.16 The data were then annotated using the 
GENCODE (v26) GTF file. On using the DESeq2 R pack-
age, we identified 104 differentially expressed lncRNAs 
(DElncRNAs) with |logFC| >1 and adjusted p < 0.05 
between patients with recurrence and non-recurrence 
(Figure S1A). The samples were then randomly classi-
fied into training and validation groups at a 1:1 ratio. 
The LASSO Cox selection method was used to select the 
most appropriate number of lncRNAs to categorize 
the samples into those with recurrence/progression and 
those that were disease free.

Conclusions: The eight-lncRNA signature risk model may be a reliable prognos-
tic signature for MIBC, which provides new insights into prediction of recurrence 
of MIBC. The model may help clinical decision and eventually benefit patients.

K E Y W O R D S
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2.3  |  Construction of a 
recurrence-associated lncRNA 
signature and nomogram building

Univariate Cox regression survival analysis was used for 
selecting DElncRNAs associated with survival in blad-
der cancer. We constructed a disease-free survival (DFS) 
risk-score formula by including eight genes, weighted by 
their estimated regression coefficients in the univariable 
Cox regression analysis. Each patient was subjected to 
the risk-score model and classified into a high- or low-risk 
group using the median risk score of as the cut off point. A 
Kaplan–Meier curve and log-rank test were used to assess 
DFS between the high- and low-risk groups. Multivariate 
analysis with Cox regression proportional hazards regres-
sion were performed on lncRNA risk score, stage, age, inva-
sion depth, grade, and gender. Hazard ratio (HR) and 95% 
confidence interval (CI) were also calculated. Furthermore, 
ROC analyses were performed to assess the sensitivity and 
specificity of recurrence prediction based on the lncRNA 
risk score (lncScore), stage, and invasion depth. In the 
log-rank test, Cox regression analysis, and ROC analysis, 
p < 0.05 was considered statistically significant.

2.4  |  Cluster classification using lncRNAs

Using the differential expression profiles of lncRNAs of 
patients with and without recurrence, bladder cancer sub-
types were obtained with unsupervised clustering analy-
sis (using the R package “ConsensusClusterPlus”). After 
critically evaluating the obtained output (tracking plots, 
delta plots, and consensus cumulative distribution func-
tion [CDF] plots), a four-cluster solution was found to be 
the most appropriate and informative. We then performed 
expression clustering analyses using the consensus parti-
tioning around k-medoids approach, with Pearson corre-
lations, and 10,000 iterations with a 0.95 random fraction 
of lncRNAs in each iteration. Survival analyses were per-
formed for the four bladder cancer subtypes.

2.5  |  Immunotherapy and chemotherapy 
response prediction, immune score 
analysis, immune infiltration analysis, and 
mutational data analysis

Tumor immune dysfunction and exclusion (TIDE) were 
used to predict immunotherapy response of the four 
clusters. To compute the TIDE scores, the TIDE web ap-
plication (http://tide.dfci.harva​rd.edu/) was used. The 
R package “pRRophetic” was applied for to predict the 
chemotherapy responses of the four clusters.

The R package “ESTIMATE” was used to score the 
bladder cancer samples. The gene expression data of the 
samples were used to evaluate the stromal and immune 
scores of each sample through ESTIMATE; further, differ-
ences in scores were compared. The R package “maxstat” 
was used to determine the optimal cut off point for contin-
uous variables, and the rank sum test was used to test the 
significance of survival between the high-  and low-risk 
groups. The relationships between score, stage, and clini-
cal characteristics were assessed.

CIBERSORT was used to evaluate the different tumor-
infiltrating immune cells of bladder cancer samples of 
different subtypes. By inputting the expression data of 
bladder cancer samples, the proportions of 22 tumor-
infiltrating immune cells in each sample were obtained, 
and the samples with p < 0.05 were selected for subse-
quent analysis. We then determined the proportions of 
different tumor-infiltrating immune cells subtypes. The 
relationship between the different tumor-infiltrating im-
mune cells ratios and survival within the four clusters and 
the median DFS of each cluster was assessed.

Mutational data pertaining to bladder cancer samples 
were downloaded from TCGA database, and the muta-
tion load was calculated using this information. Based on 
the clinicopathological data, a mutation map of bladder 
cancer subtypes was constructed to study the types and 
clinical characteristics of gene mutations. The R package 
“maftools” and somatic signature were applied for analyz-
ing the mutations and mapping the mutational spectrum 
and characteristics.

2.6  |  Statistical analysis

Statistical analyses were performed with the R statistical 
software (R Foundation for Statistical Computing). The 
primary endpoint for the survival analysis was disease-free 
survival (DFS). DFS was defined as the date of radical cys-
tectomy until the date of recurrence or death due to any 
cause. Patients who were lost to follow-up were censored at 
the date of last contact. We used the Kaplan–Meier method 
to assess the statistical significance of differences between 
survival curves for patients in different lncRNA signature 
groups and molecular subtypes, with the log-rank test.

3   |   RESULTS

3.1  |  Acquisition of lncRNA expression 
datasets

Datasets and correlated clinical data were downloaded 
from TCGA database. In total, 320 patients with bladder 

http://tide.dfci.harvard.edu/
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cancer and follow-up data were included (142 patients with 
recurrence and 178 with non-recurrence). The flow chart is 
shown in Figure 1A. We compared the expression data per-
taining to bladder cancer with the genome of the human 
v22 version of the GENCODE database, which led to the 
identification of 7648 lncRNAs. We then used the R pack-
age DESeq2 and applied the significance analysis of micro-
arrays method with |logFC| >1 and p < 0.05; consequently, 
from the 7648 lncRNAs, 104 were found to be differentially 
expressed between patients with and without recurrence. 
We then randomly categorized the 320 patients with blad-
der cancer into training (n = 160) and validation sets (n = 
160). The LASSO Cox selection method was applied and 
selected 86 differential expressed lncRNAs (DElncRNASs; 
Figure S1B). An ROC curve was constructed to evaluate the 
classification effect. The area under the ROC curve (AUC) 
was 1 for the training set and 0.792 for the validation set 
(Figure S1C,D). Therefore, these DElncRNAs were consid-
ered to be candidate recurrence-associated lncRNAs.

3.2  |  Development and 
identification of the lncRNA-
based recurrence prediction 
model and nomogram building

Using the 86 DElncRNAs, we performed univariable Cox 
regression proportional hazards analysis. Eight lncR-
NAs related to prognosis were screened out (LINC01449, 
MGC39584, CTD-2008P7.1, RP5-907D15.4, RP11-789C1.2, 
RP11-44D19.1, CTC-296K1.4, and AF015262.2; p < 0.05). 
A risk-score formula was derived based on the expression 
of these eight lncRNAs for DFS prediction: (0.03589833) × 
LINC01449 + (0.002352983) × MGC39584 + (−3.231363e-
05) × CTD-2008P7.1 + (0.001964683) × RP5-907D15.4 + 
(−0.01417278) × RP11-789C1.2 + (0.02019916) × RP11-
44D19.1 + (−0.000741376) × CTC-296K1.4 + (0.01122571) 
× AF015262.2. We then calculated the eight-lncRNA sig-
nature risk score for each patient with bladder cancer and 
ranked them according to their risk scores. The median 
risk score (0.023) was the cut off point used to classify 
the patients into high-  (n = 160) and low-risk (n = 160) 
groups. The patients in the low-risk group showed sig-
nificantly longer median DFS than those in the high-risk 
group (log-rank test p = 0.0054; Figure 1B). To further test 
the prediction value of the eight‑lncRNA signature in an-
other cohort, 35 patients from our hospital were used as 
an external validation dataset. Patients in the validation 
cohorts were divided into a high-risk group and a low-risk 
group based on the median value. Patients with a high-
risk score had a shorter DFS than those with a low-risk 
score in samples from our hospital (HR = 3.03, 95% CI 
1.06–8.64, p = 0.039; Figure S2A).

Through a stepwise backward selection process based 
on the AUC value, lncScore, stage, and pT remained in 
the final Cox model for DFS (Figure 1C). To develop a 
clinically applicable tool that could provide individual-
ized estimation of 1-, 3-, or 5-year DFS, a nomogram was 
constructed on the basis of the final Cox model for DFS 
(Figure 1D). The nomogram achieved a C-index of 0.719 
(95% CI, 0.674–0.764), and the calibration plots showed 
good consistency between the actual DFS probabilities 
and the predicted DFS (Figure 1E,F). Time-dependent 
ROC analysis also indicated the superior prognostic accu-
racy of the nomograms (AUC, 0.760; 95% CI, 0.697–0.807; 
Figure 1G). These findings validated the importance of 
the proposed nomograms for DFS prediction.

3.3  |  Consensus classification 
construction using lncRNAs

Using the differential expression profiles of the 104 lncR-
NAs, unsupervised consensus clustering was used to 
derive a robust four-cluster consensus solution (Figure 
2A–C, Figure S2B–D). Survival analysis of the lncRNA-
based consensus clusters revealed significant survival dif-
ferences among the four subtypes (Figure 2D).

The four clusters have different biological functions 
(Figure S3A–D). Cluster 1 was related to nicotine ad-
diction, olfactory transduction, and taste transduction. 
Cluster 1 was related to nicotine addiction, olfactory trans-
duction, and taste transduction. Cluster 2 was related to 
alpha-linolenic acid metabolism, linolenic acid metabo-
lism, and ribosome. Cluster 3 was related to linolenic acid 
metabolism, maturity onset diabetes of the young, and ol-
factory transduction. Cluster 4 was related to graft-versus-
host disease, Staphylococcus aureus infection, and viral 
protein interaction with cytokine and cytokine receptor.

3.4  |  Prediction of immunotherapy and 
chemotherapy response for the new 
molecular classification system

TIDE was used to assess the clinical effects of immuno-
therapy in the four different subtypes of bladder cancer 
patients; significant differences were found in TIDE val-
ues among them (p = 1.2e−14; Figure 3A), which suggested 
that there were differences in the sensitivity of the four 
subtypes to immunotherapy. A high TIDE predictive score 
is associated with a poor effect of immune checkpoint sup-
pression therapy. Cluster 4 showed a higher TIDE predic-
tive score and thus appeared resistant to immunotherapy. 
In contrast, clusters 2 and 3 showed lower TIDE predictive 
scores and thus appeared sensitive to immunotherapy. 
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F I G U R E  1   (A) Flowchart of study. (B) Kaplan–Meier curves of DFS based on the lncScore in MIBC patients. (C) Construction of a Cox 
model for DFS. (D) Nomogram to predict the DFS of MIBC patients. (E) Calibration curves of the nomogram to predict the 3-year DFS. (F) 
Calibration curves of the nomogram to predict the 5-year DFS. (G) Prediction of DFS by time-dependent ROC analysis
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Thus, depending on the subtype, we could determine 
when immunotherapy would be effective.

“pRRophetic” was used to predict the half maximal in-
hibitory concentration (IC50) values, which reflect the sensi-
tivity of a sample to a drug, of the two most commonly used 
chemotherapy drugs (cisplatin and gemcitabine) for the four 
subtypes. The sensitivities of the four subtypes to cisplatin 
(Figure 3B) and gemcitabine (Figure 3C) were found to be 

significantly different. Cluster 4 was sensitive to cisplatin and 
gemcitabine, while clusters 2 and 3 were resistant to them.

3.5  |  Immune score analysis

The gene expression data of bladder cancer samples were 
used to evaluate the stromal and immune scores, which 

F I G U R E  2   (A) Optimal k-value selection graph for consistent clustering. (B) Consistent clustering CDF graph. (C) Sample clustering 
heatmap for k = 4. (D) Kaplan–Meier curves among the four subtypes of bladder cancer
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represent tumor purity and can be used as indicators of 
tumor prognosis, using ESTIMATE. A significant differ-
ence was found between the scores among the four subtypes 
(Figure 4A,B). Cluster 2 showed a high stromal score and was 
thus associated with low tumor purity and poor prognosis. 
Cluster 4 showed a low stromal score and was accordingly 

associated with high tumor purity and favorable prognosis. 
Stromal score also increased with stage, consistent with high 
score, low purity, and poor prognosis (Figure 4C). Immune 
score also increased with an increase in stage (Figure 4D).

Using the “maxstat” R package to determine the best cut 
off point of continuous variables, patients were classified 

F I G U R E  3   (A) Prediction of ICI therapy for four subtypes of bladder cancer. (B) Prediction of cisplatin for four subtypes of bladder 
cancer. (C) Prediction of gemcitabine for four subtypes of bladder cancer
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F I G U R E  4   (A) Stromal scores of the four subtypes of bladder cancer. (B) Immune Scores of the four subtypes of bladder cancer. (C) 
Stromal scores of the different stages of bladder cancer. (D) Immune Scores of the different stages of bladder cancer. (E) Kaplan–Meier curves 
among high and low Stromal score groups. (F) Kaplan–Meier curves among high and low Immune score groups. (G) Heatmap of grade, 
gender, age, stromal score, and immune Score. (H) Proportions of tumor-infiltrating immune cells among the four subtypes of bladder cancer
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into high- and low stromal and immune score groups. A 
significant difference was found between these groups 
(p = 0.079 and 0.037, respectively; Figure 4E,F). The pa-
tients with a high stromal score showed worse prognosis. 
Figure 4G depicts a heatmap that reflects the relevant data.

3.6  |  Immune infiltration analysis

Using the expression (TPM) data, we predicted tumor-
infiltrating immune cells in different subtypes of bladder 
cancer with CIBERSORT; consequently, the proportion of 
22 tumor-infiltrating immune cells in each subtype of blad-
der cancer was obtained (Figure 4H). M2 Macrophages, 
CD8+ T cells, M0 macrophages, and M0 macrophages ac-
counted for the largest proportion in clusters 1, 2, 3, and 
4, respectively.

To understand the relationship between survival and 
the proportion of immune cells in the four clusters, we 
performed Cox regression analyses. In cluster 1, activated 
mast cells were related with survival. According to the 
median proportion of infiltrating cells, the samples were 
classified into high- and low-expression groups, and signif-
icant differences in survival were found (Figure S4A). In 
cluster 2, resting mast cells and M1 and M0 macrophages 
were related to survival (Figure S4B–D). According to the 
median proportion of infiltrating cells, the samples were 
classified into high- and low-risk groups, and significant 
differences in survival were only found for M0 macro-
phages. In cluster 3, resting memory CD4+ T cells, plasma 
cells, and resting mast cells were related to survival (Figure 
S4E–G). According to the median proportion of infiltrat-
ing cells, the samples were classified into high- and low-
expression groups, and significant differences in survival 
were found for resting memory CD4+ T cells and resting 
mast cells. Finally, in cluster 4, activated mast cells, M0 
macrophages, naïve CD4+ T cells, and resting mast cells 
were related to survival (Figure S4H–K). According to the 
median proportion of infiltrating cells, the samples were 
classified into high- and low-expression groups, and sig-
nificant differences in survival were found for activated 
mast cells, M0 macrophages, and naïve CD4+ T cells.

3.7  |  Mutational data analysis

Using the mutational data from the TCGA database, we 
performed statistical analysis of the bladder cancer sam-
ples, including the type of mutation annotation, propor-
tion of different types of base changes, and the top 10 
mutated genes (Figure 5A). Missense mutations were the 
main type of mutation in bladder cancer; single nucleo-
tide polymorphisms were the main source of mutation, 

followed by deletion (DEL) and insertion (INS). C>T was 
the most common single nucleotide polymorphism. TTN, 
TP53, and MUC16 were among the top 10 genes with 
highest incidences of mutations. The distribution, mu-
tation annotation, survival status (overall survival [OS], 
DFS), and tumor mutation load of the four BLCA subtypes 
(clusters 1–4) are shown in Figure 5B–E. TTN was the 
gene with the highest mutation rate in cluster 1, fibroblast 
growth factor receptor (FGFR)-3 had the highest muta-
tion rate in cluster 2, and TP53 had the highest mutation 
rate in clusters 3 and 4. As evident from Figure S5A–D, the 
frequency of mutant genes (e.g., TP53 and KDM6A) was 
different in the four subtypes.

Based on the mutation site of each sample, we consid-
ered the bases at the 1-bp position upstream and down-
stream of the mutation site, divided the mutations sites 
into 96 types, and counted the frequency of the 96 mu-
tation types in tumor samples belonging to the four sub-
types (Figure 6A–D).

To determine the relationship between the mutation 
frequency distribution and signatures collected from 
COSMIC, we performed nonnegative matrix decomposi-
tion on the frequency matrix with rows as samples and 
columns with the 96 mutation types to extract 2 and 3 
somatic point mutation characteristics. The similarity 
analysis of the extracted features and collected signatures 
revealed that the BLCA mutation spectrum of the bladder 
cancer subtype 1 (cluster 1) was mainly related to signa-
tures 13, 2, 1, 10, and 5; subtype 2 (cluster 2) was mainly 
related to signatures 10, 2, and 1; subtype 3 (cluster 3) was 
mainly related to signatures 13, 2, and 1; and subtype 4 
(cluster 4) was mainly related to signatures 13, 2, 6, and 5 
(Figure 6E–H). Signatures 13 and 2 were mainly related to 
adenosine deaminase, 1 was mainly related to the sponta-
neous deamination reaction of 5-methylcytosine, 10 was 
mainly related to polymerase defects, and 6 was mainly 
related to DNA mismatch repair.

4   |   DISCUSSION

In this study, we developed a novel tool based on eight 
lncRNAs to improve the prediction of recurrence in pa-
tients with MIBC. The tool effectively stratified the pa-
tients into groups with a low- or high risk of recurrence. 
Furthermore, based on the differential expression of lncR-
NAs between patients with and without recurrence, four 
clusters with different DFS and molecular features were 
identified. To the best of our knowledge, this is the first 
study to demonstrate the clinical utility of an lncRNA sig-
nature for the postoperative prediction of recurrence in 
patients with MIBC and to establish an lncRNA-associated 
cluster with molecular features.
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F I G U R E  5   (A) Bladder cancer mutational profile. (B) Distribution of common gene mutations in bladder cancer cluster 1. (C) 
Distribution of common gene mutations in bladder cancer cluster 2. (D) Distribution of common gene mutations in bladder cancer cluster 3. 
(E) Distribution of common gene mutations in bladder cancer cluster 4
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In patients with MIBC, RC, and pelvic lymph node 
dissection are the standard methods of treatment.2 The 
effectiveness of adjuvant chemotherapy after RC for pa-
tients with pT3/4 and/or lymph node-positive (N+) dis-
ease is still under debate.17 Local recurrence takes place in 
soft tissues of the original surgical site or in lymph nodes. 
Cystectomy is associated with 5%–15% probability of pel-
vic recurrence, which usually occurs during the first 24 
months (most often within 6–18 months) after surgery.18 
Distant recurrence is observed in up to 50% of patients 
with MIBC treated using RC.2 Most importantly, patients 
generally shows poor prognosis in post-recurrence.19 Even 
with treatment, median survival ranges between 4 and 8 
months after diagnosis. Thus, it is vital to identify high-
risk relapse patients and treat them as early as possible. 
Pertinent risk factors reportedly include pathological 
stage, positive lymph nodes, positive margins, extent of 
lymph node dissection, and perioperative chemotherapy 
without any molecular biological features.20 However, 
these factors cannot effectively predict the risk of post-
operative recurrence in patients with bladder cancer. 
Although the TNM staging system and clinical factors 
are widely used to predict prognoses and guide treatment 
decisions in such patients, clinical factors are associated 
with some critical limitations because of the molecular 
heterogeneity of bladder cancer. Thus, we herein aimed 
to develop a molecular classification system that used 
lncScore to categorize samples into subsets with distinct 
outcomes, facilitating the development of treatment strat-
egies and avoiding of overtreatment or undertreatment. 
Moreover, we developed a nomogram for the individual-
ized assessment of 1-, 3-, and 5-year DFS probabilities in 
patients with MIBC after RC. Our findings suggest that 
lncScore and recurrence-associated nomogram can be 
used for predicting the risk of recurrence after RC and for 
guiding the use of adjuvant chemotherapy to reduce the 
risk of recurrence.

It has recently been reported that the expression pat-
terns of functional lncRNAs are associated with human 
cancers.21,22 These lncRNAs have been implicated in var-
ious tumorigenesis processes, including proliferation, in-
vasion, and apoptosis.23–25 Some lncRNA-based signatures 
have been used to predict the risk of cancer progression in 
patients with renal cell carcinoma and colon cancer.26,27 
Moreover, prognostic lncRNAs have previously been re-
ported in bladder cancer; four lncRNAs—AC145124.1, 
AC010168.2, MIR200CHG, and AC098613.1—were re-
ported to form a signature to predict survival in BLCA.28 
Another study reported that a 12-lncRNA-based classifier 
was related to recurrence in all patients with bladder can-
cer.29 As for prediction of recurrence, the article's AUC 
value of lncRNA signature combining stage was 0.739, 
while AUC value of our nomogram was 0.760. Their 

lncRNA signature consist of 12 lncRNAs. Our lncRNA 
signature consist of 8 lncRNAs, with fewer numbers and 
similar prediction efficiency. As for novel approaches to 
monitor the recurrence and risk stratification of bladder 
cancer, a recent study showed that urine tumor DNA 
methylation had a high sensitivity of 89.5% to detect recur-
rence, achieving a great improvement in sensitivity over 
urine cytology and FISH.30 Furthermore, another study 
found that the urine-based DNA methylation with a five-
marker stratification model identified high-risk NMIBC 
and MIBC with 90.5% sensitivity and 86.8% specificity, 
representing a highly sensitive and specific approach for 
bladder cancer risk stratification.31 However, such stud-
ies have been limited by the small number of screened 
lncRNAs and the lack of prediction of recurrence risk in 
MIBC cases. These studies have chiefly focused on both 
non-muscle invasive bladder cancer and MIBC. In this 
study, for the first time, we successfully identified an eight-
lncRNA signature to predict the risk of recurrence in pa-
tients with MIBC. Among the eight lncRNAs, MGC39584 
may play a key role in lung squamous cell carcinoma.32 
Furthermore, DNA hypermethylation of the promoter re-
gion of GJC1 (CTC-296K1.4), encoding connexin 45, is an 
important mechanism in silencing gene expression in col-
orectal cancer.33 Unfortunately, the other novel lncRNAs 
have not yet been investigated in cancer.

Molecular subtyping plays a pivotal role in the study 
of diseases and for developing personalized therapeutics. 
The molecular characterization of MIBC by transcrip-
tome profiling has revealed a range of subtypes with dis-
tinct clinicopathological characteristics, prognosis, and 
response to therapeutic regimens. Significant endeavors 
have been made in the molecular subtyping of MIBC to 
guide clinical treatment.34–36 However, previous studies 
have mainly focused on mRNA-based molecular subtyp-
ing; it is noteworthy that mRNA transcripts only represent 
1%–2% of the transcriptome, which is primarily domi-
nated by ribosomal RNAs and ncRNAs.21 Thus, we herein 
selected a list of highly differentially expressed lncRNAs 
for consensus clustering and identified four clusters with 
different DFS and molecular features. We found a biolog-
ically distinct MIBC subgroup with potential clinical util-
ity. Cluster 1 showed a high frequency of TTN mutation 
and enriched M2 macrophages. Cluster 2 demonstrated 
potential sensitivity to immunotherapy and insensitivity 
to chemotherapy, with a high frequency of FGFR-3 mu-
tations and enriched CD8+ T cells. The high frequency 
of FGFR-3 mutations suggested that cluster 2 may re-
spond to FGFR inhibitors. Novel FGFR inhibitors have 
been reported to clinically benefit 20% of patients with 
MIBC that have tumors harboring mutations or translo-
cations in the tyrosine kinase receptor FGFR-3 and 40% 
of those having tumors overexpressing FGFR-3. Cluster 3 
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demonstrated potential sensitivity to immunotherapy and 
insensitivity to chemotherapy, with a high frequency of 
TP53 mutations and enriched M0 macrophages. Cluster 
4 demonstrated potential insensitivity to immunotherapy 
and sensitivity to chemotherapy, with a high frequency 
of TP53 mutations and enriched M0 macrophages. PD-
1–PD-L1 immune checkpoint blockade is becoming 
standard in patients with locally advanced or metastatic 
urothelial cancer who relapse after cisplatin-based che-
motherapy or are considered cisplatin ineligible (objective 
response rate = 20%).

This study has some limitations. First, some clinical in-
formation was missing (details pertaining to, for example, 
neoadjuvant and adjuvant treatment). Second, the retro-
spective nature of this study made it susceptible to inher-
ent biases. Finally, because of the limited sample size, we 
could not use our lncRNA signature and nomogram to 
guide clinical treatment.

The eight-lncRNA signature risk model may be a re-
liable prognostic signature for MIBC, which provides 
new insights into prediction of recurrence of MIBC. The 
model may help clinical decision and eventually benefit 
patients. However, large-scale, multi-center, and prospec-
tive studies are necessary to confirm our results before the 
eight-lncRNA model-based signature can be applied in the 
clinic.
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