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Abstract
Myopia is a global healthcare concern and effective 
analyses of dioptric power are important in evaluating 
potential treatments involving surgery, orthokeratology, 
drugs such as low-dose (0.05%) atropine and gene 
therapy. This paper considers issues of concern when 
analysing refractive state such as data normality, 
transformations, outliers and anisometropia. A brief review 
of methods for analysing and representing dioptric power 
is included but the emphasis is on the optimal approach 
to understanding refractive state (and its variation) in 
addressing pertinent clinical and research questions.
Although there have been significant improvements 
in the analysis of refractive state, areas for critical 
consideration remain and the use of power matrices as 
opposed to power vectors is one such area. Another is 
effective identification of outliers in refractive data. The 
type of multivariate distribution present with samples 
of dioptric power is often not considered. Similarly, 
transformations of samples (of dioptric power) towards 
normality and the effects of such transformations are not 
thoroughly explored. These areas (outliers, normality and 
transformations) need further investigation for greater 
efficacy and proper inferences regarding refractive error. 
Although power vectors are better known, power matrices 
are accentuated herein due to potential advantages for 
statistical analyses of dioptric power such as greater 
simplicity, completeness, and improved facility for 
quantitative and graphical representation of refractive 
state.

Introduction
Instantaneous dioptric power (a 2×2 matrix, 
F) where variation over time is momentarily 
ignored is fundamentally a four-variate quan-
tity1 and any suitable analysis must take into 
consideration that power is quantifiable using 
four unique quantities or numbers. (eg, the 
instantaneous power of the human eye, a 
thick optical system, is four- dimensional).

Refractive behaviour or the variation over 
time of instantaneous refractive state (a 
three-dimensional quantity defined as the 
dioptric power of a thin lens with three df, ie, 
sphere, cylinder and its axis)2 is a multivariate 
concern. Factors such as age or visual acuity 
add dimensions in any analytical situation 
involving refractive behaviour. The logical 
mathematical approach for such multivar-
iate quantities is via matrices (asymmetric 

or sometimes symmetric) and the various 
operations of linear algebra.1 2 Sometimes 
symmetric matrices2 are applicable and in 
most clinical situations such as with refractive 
state this simplification applies. This review 
will apply experimental data to highlight a 
few critical issues for further investigation and 
theoretical development in the years to come 
concerning dioptric power and its analysis in 
scientific studies.

Early attempts to understand dioptric 
power involved the use of optometric vectors 
(by Gartner3) where the angles of the cylinder 
axes were doubled for a more mathematically 
appropriate Cartesian two-dimensional space 
with limits of 0°–360°. Gartner limited his 
analysis to cylinder only but Fick published 
three papers4–6 in 1972–1973 that introduced 
the ideas of applying matrices and linear 
algebra to dioptric power while Long7 and 
Keating,8 9 working independently, provided 
conversion equations from clinical notation 
(F

s
 F

c
 A) to power matrices and also for the 

necessary inverse operations.
Harris10 mentions the need for a system 

of analysis allowing for invariance of power 
under sphero-cylindrical transposition 
and also describes methods for calculating 
squares of a power10 and performing math-
ematical operations necessary for effective 
determination of quantities such as means 
and variances when analysing and comparing 
samples of dioptric power.10–16 Harris et al 
describe methods for ellipsoids or surfaces 
of constant probability density (SCPD) when 
comparing distributions17 18 and for testing 
samples of dioptric power for variance14 and 
departure from normality that involve profiles 
of skewness, kurtosis and standardised mean 
deviation (see Harris and Malan19 for further 
developments in that area and also trajecto-
ries for dioptric power.20 This foundation for 
understanding distributions of power and 
transformations towards normality is further 
developed by Harris and Blackie21 22 where 
concepts such as Mardia’s multivariate skew-
ness and kurtosis23 are employed including 
normality plots (marginal and χ2) for 
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refractive state.21 22 Hypothesis tests, integral to under-
standing experimental effects in the context of dioptric 
power, are described by Harris.12 13 15

Thibos et al referred to power vectors24 with three 
terms, namely M, J

0
 and J

45
 and an advantage of 

these vectors compared with those of Gartner is that 
they cope with the three-dimensional (3D) nature 
of symmetric power but not for four-dimensional 
asymmetric power.1 2 25 (Others such as Naeser and 
Hjortdal26 use KP(90) and KP(135) that are the same 
as J

0
 and J

45
.) See Harris for a comparison of power 

vectors and power matrices.27 Refractive behaviour28 in 
Euclidean three-space can be studied using such math-
ematical and graphical methods with trajectories,20 
comets (to link paired measurements),28 and other 
methods such as SCPD17 18 including also meridional 
profiles of various types.14 19 21 28 29 Polar plots for vari-
ance of dioptric power were first described by Harris 
and van Gool30 31 and van Gool used them (and much 
of the aforementioned methodology) for an analysis 
that involved ocular accommodation and leads or lags 
of accommodation to near stimuli.31 (Some of these 
methods will be illustrated later.)

Other methods to analyse and understand refractive 
behaviour include that of Alpins32 33 where vectors are 
similarly applied to, for example, investigate changes in 
specifically astigmatism after corneal surgery.34–36 Vector 
magnitudes and directions are represented using polar 
plots and surgical outcomes can be expressed in terms 
of difference vectors, and target induced and surgically 
induced astigmatism vectors.

Researchers have applied the concepts of a more 
effective analytical and scientific approach to studies 
of refractive behaviour and examples include Raasch,37 
Kaye et al38 39 and others concerned with reproducibility 
of measures of refractive state40 and issues relating 
to intraocular lens (IOL) implants.41–44 See also 
MacKenzie and Harris45 and MacKenzie46 for the appli-
cation of multivariate methods and power matrices to 
intraocular implants and their uses in ameliorating 
refractive errors and cataract. Harris1 16 47 48 and MacK-
enzie,45 46 van Gool,49 Evans50 51 and others52 53 applied 
these theoretical ideas for linear optical systems (and 
ray behaviour through such systems). Since this area 
is the subject for another review they are not further 
described here.

Possible relationships between refractive behaviour 
and visual acuity are explored by Harris and Rubin but 
this multidimensional topic is not further considered 
here.54 55 Power vectors and power matrices and the 
analytical methods as explained and described mathe-
matically below have been applied to a diverse range of 
clinical and experimental topics20–74 including autore-
fraction in adults,28–31 56 57 children,58 66 keratometric 
variation,59–61 comparisons of methods to measure refrac-
tive behaviour in relation to age62 63 and other factors 
including also luminance of targets within autorefrac-
tors65 and wavefront aberrometry,66 interocular mirror 

symmetry,67 cycloplegia,64 68 keratoconus,69 70 measure-
ment error and uncertainty,64 71 72 anisometropia73 and 
refractive surgery.74

Dioptric power and refractive behaviour
Refractive state has three quantities; the powers of a 
sphere (F

s
 or S) and cylinder (F

c
 or C) and its axis (A) 

and the combination of quantities F
s
 F

c
 A (or S C A) is 

frequently referred to as clinical or conventional nota-
tion. In this paper, we shall describe the dioptric power 
matrix as well as two coordinate power vectors and their 
relationship to the power matrix. Transformations from 
clinical notation to power matrices1 2 7–9 27 37–39 or power 
vectors1–6 24 26 27 32–39 is relatively simple. The 2×2 dioptric 
power matrix1 4–9 is given by:

	﻿‍
F=

(
f11 f12
f21 f22

)
.
‍�

(1)

Throughout the paper, bold letters are used to indicate 
matrices (capital letters) or vectors (lowercase letters), 
while scalar variables are indicated with italics. For thin 
optical systems, the entries for the 2×2 symmetric power 
matrix F in equation 1 are determined via equations from 
Long7 (or equations from Fick4–6):

	﻿‍ f11 = Fs + Fcsin2A,‍� (2)

	﻿‍ f22 = Fs + Fccos2A‍� (3)

and

	﻿‍ f12 = f21 = −0.5Fcsin2A = −FcsinA cosA‍.� (4)
The entry f

11
 in F is effectively the power in the refer-

ence meridian (usually horizontal for quantification 
of cylinder axis) while f

22
 is the power in the meridian 

perpendicular to the reference meridian (usually the 
vertical meridian).7 The off-diagonal entries f

12
 and f

21
 are 

the torsional powers8 in the reference meridian (usually 
but not always horizontal) and meridian perpendicular to 
that reference meridian (usually but not always vertical). 
For thin systems and symmetric F, ﻿‍f12 = f21‍ and there are 
effectively only three coefficients of power; two (f

11
 and 

f
12

) are referred to as the curvital coefficients and one 
(﻿‍f12 = f21‍) as the torsional coefficient of power. Conven-
tionally, the reference meridian is horizontal, however, it 
is possible to take any other meridian as reference2 16 and 
this can be useful with meridional plots14 19 28–31 such as 
will be included later.

To perform the inverse operation (from F to clinical 
notation) equations 7–9 from Keating8 (or equations 
from Fick6 can be used after first determining the trace 
(t) and determinant (d) of F

2×2
:

	﻿‍ t = f11 + f22‍� (5)

	﻿‍ d = f11f22 − f12f21‍� (6)

	﻿‍ Fc = ±
√(

t2 − 4d
)
‍� (7)

	﻿‍ Fs = t−Fc
2 ‍� (8)



3Rubin A, et al. BMJ Open Ophth 2022;7:e000929. doi:10.1136/bmjophth-2021-000929

Open access

	﻿‍ tan A = Fs−f11
f12 ‍.� (9)

For an astigmatic system, the eigenvalues of F are the 
powers (F

1
 and F

2
) along the principal meridians and 

the eigenvectors correspond to the principal directions 
or meridians (A

1
 and A

2
) for those powers.1 7 9 For a 

symmetric matrix, the eigenvectors are perpendicular 
to each other, however, for an asymmetric matrix, such 
as may be found with the power of thick optical systems, 
the eigenvalues are not perpendicular. Power obtained 
from the eigenstructure conforms to common merid-
ional representations of power in ophthalmology and 
optometry, such as the optical or power cross used to 
represent powers of thin lenses or surfaces, for example, 
the corneal via central keratometric values.1 Any powers 
(F

1
 and F

2
) along principal meridians (A

1
 and A

2
) can be 

represented using principal meridional representation 
where F

1
{along A

1
} F

2
{along A

2
} is used. (Given that the 

meridians are always orthogonal one can exclude the last 
part, that is, {along A

2
}.)75

Two coordinate vectors have been proposed, each with 
a different basis. For symmetric dioptric power, the basis 
will always have three components. Historically, the first, 
coordinate vector h, was proposed by Harris2 10–13 in 1990 
to graphically represent power and the second, power 
vector t, by Thibos et al24 in 1997. While vector t has 
gained popularity, both coordinate vectors are useful for 
analysing dioptric power and both represent symmetric 
dioptric power space (SDPS).

Coordinate vector h as a 3×1 column vector is2 10–13:

	﻿‍

h =




h1

h2

h3


 =




f11√
2f21

f22




‍�

(10)

with basis:

	﻿‍

γ =




(
1 0

0 0

)
,


 0 1√

2
1√
2

0


 ,

(
0 0

0 1

) 


‍�
such that

‍

F = h1

(
1 0

0 0

)
+ h2


 0 1√

2
1√
2

0


 + h3

(
0 0

0 1

)

‍,
is the symmetric dioptric power. The coefficients are 

the coordinates of F with respect to the basis ﻿‍γ‍.1

There are two interpretations for coordinate vector 
h, that is, the meridional and component interpre-
tations.2 20 In the meridional interpretation, h

1
 and h

3
 

are, respectively, curvital powers in the reference (or 
usually horizontal meridian) and in the meridian 
perpendicular to the reference meridian while h

2
 is 

the scaled (f
21

 is multiplied by the factor ﻿‍
√
2 ‍) torsional 

power along the reference meridian. Thus, within any 
meridian there are two types of power (curvital and 
torsional). In the component interpretation, h

1
 and h

3
 

are respectively two component cylinder powers, also 
in the reference or horizontal meridian and in the 

meridian perpendicular to the reference meridian 
while h

2
 is the scaled power of a Jackson cross 

cylinder (JCC) with principal axes at 45° and 135°. 
Harris refers to spherical powers as scalar or stigmatic 
powers16 75 and JCC or Jacksonian powers are referred 
to by Harris (and coworkers) as antiscalar or antistig-
matic powers.76

The terms curvital and torsional can best be described 
using a single refracting surface, such as the anterior 
cornea, where each meridian of that corneal surface 
has curvature (think of bending a thin strip of paper 
along or in the direction of the meridian) but also twist 
or torsion (think of twisting a thin strip of paper where 
each hand at the ends of the strip rotates in an oppo-
site direction). Instead of a sphere and cylinder with its 
corresponding axis as in clinical notation, coordinate 
vector h in the component interpretation can be thought 
of as the powers of two orthogonal cylinder powers with 
axis parallel (h

3
) or perpendicular (h

3
) to the reference 

meridian and one JCC or antiscalar power (h
2
), with prin-

cipal meridians at 45° and 135°.
For one or more powers, it is possible then to use 

these coordinates (ie, h
1
, h

2
 and h

3
 in equation 10) 

for plots in SDPS, a Euclidean 3-space2 where each 
symmetric power is represented as a point in SDPS. 
Figure 1A is an example where the three axes represent 
h

1
, h

2
 and h

3
 and the use of the stereo-pair enhances 

graphical representation and more effective under-
standing and statistical interpretation of the data. 
Alternatives to stereo-pairs are available such as incor-
porating anaglyphs and coloured plots (red and green 
or red and blue depending on the anaglyphs and type 
of representation, that is, on paper or digital device). 
However, stereo-pairs are preferred as they generally 
avoid the need for auxiliary devices, although some 
readers might find it easier to view such 3D plots using 
positive powered lenses (≈ 2 D OU), sometimes with 
suitable decentration of the lenses or a small amount 
of base in prism also added.

In this paper, power matrix F and power vector f rather 
than coordinate h-vectors will be mostly used; f is the 
power vector of Harris1 25 27 (obtained from F) and t 
(from clinical notation) is the power vector from Thibos 
et al24 and they are equivalent such that:

	﻿‍

f =




FI
FJ
FK


 =




M
J0
J45


 = t

‍�

(11)

where

	﻿‍

f=t=




Fs + 0.5Fc

−0.5Fccos2A
−0.5Fcsin2A




‍�

(12)

Unlike coordinate vector h, vectors f or t are made 
up of the powers of the nearest equivalent sphere 
(M=F

I
 = F

ns
=NES) and two JCC with the meridians 

offset. That is, J
0
 or F

J
 for the JCC with principal axes 
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Figure 1  Stereo-pair scatter plot of symmetric dioptric 
power space (A) using coordinate vector h for the Near Eye 
Tool for Refractive Assessment (NETRA) refractive states 
for the right eyes of 279 participants, aged 9 to 63 years 
with a 95% surface of constant probability density (SCPD). 
The NETRA is a mobile phone-based method to measure 
refractive behaviour. Readers should fixate to an imaginary 
point beyond the figure to see the stereo-pair with an exo-
posture, (B) The same sample but using power matrices (F

i
), 

(C) the same sample but with axes rotated to look along the 
scalar axis (label ﻿‍5I‍ is obscured by data) to directly view the 
antiscalar plane, (D) Two pseudo-three-dimension plots using 
coordinate vector f to produce a stereo-pair for the same 
sample but without the SCPD. (Data courtesy of NH—see 
reference number 64).

at 0 and 90° and J
45

 or F
K
 being the JCC with principal 

axes at 45° and 135°.
Harris1 16 expands F as:

	﻿‍ F = FII+ FJJ+ FKK+ FLL‍� (13)

where the four coefficients ﻿‍ FI, FJ, FK, and FL‍ have the 
basis:

	﻿‍ β =
{

I, J, K, L
}

‍.� (14)

where

	﻿‍

I=


 1 0

0 1


 , J =


 1 0

0 −1


 ,

K =


 0 1

1 0


 and L =


 0 1

−1 0




‍�

(15)

The four coordinate coefficients of power are semisums 
and semidifferences of F (see equation 1) given by1:

	﻿‍ FI = 0.5 (f11 + f22)‍,� (16)

	﻿‍ FJ = 0.5 (f11 − f22)‍,� (17)

	﻿‍ FK = 0.5
(
f12 + f21

)
‍� (18)

and

	﻿‍ FL = 0.5
(
f12 − f21

)
‍� (19)

where F
I
, F

J,
F

K
 and F

L
 are, respectively, the scalar, 

ortho-antiscalar, oblique antiscalar and antisym-
metric coefficients of dioptric power.76 (In earlier 
papers,25 77 78 rather than ortho-antiscalar and oblique 
antiscalar, Harris uses ortho- and oblique astigma-
tism and then ortho and oblique antistigmatism as 
his thinking evolved on the topic.) Together, ﻿‍ FLL‍ 
contribute the stigmatic component of a power and 
‍FJJ + FKK ‍ the antiscalar or antistigmatic component 
of power in general.77 78 It may come as a surprise 
that ﻿‍ FLL‍ contributes towards the stigmatic compo-
nent, however, the definition for a stigmatic system 
is one where every object point maps to an image 
point through the system implying that ﻿‍ FLL‍ has the 
same effect on every ray traversing the system.77 78 For 
symmetric powers F

L
=0 D and we will not explore ﻿‍FLL‍ 

in further detail. As mentioned, antiscalar (or antistig-
matic) refers to powers of the JCC type while F

I
 is a 

scalar power (sometimes referred to as stigmatic or 
spherical). (The first three coefficients are the same 
as M, J

0
 and J

45
 from Thibos et al24 for symmetric F 

(thin systems) but F
L
 differentiates this approach by 

Harris1 10 11 27 that also accounts for situations where 
F involves asymmetric dioptric powers (such as with 
thick systems) and where F

L
and ﻿‍FLL‍ are not null.

Coordinate vectors h or f thus can be determined 
directly from clinical notation (see equations 10–12) 
or from the power matrix F (see equations 16–19). If 
the power is symmetric then F

L
 is zero and ﻿‍FLL = FL = O

‍, the 2×2 null matrix. Equation 13 then simplifies to

	﻿‍ F = FII + FJJ + FKK
(
= FI + FJ + FK

)
‍� (20)

and the power matrix F is symmetric. Equation 20 can 
represent any symmetric dioptric power in terms of a 
scalar (or spherical) power with two antiscalar powers. 
The coefficient vector for symmetric F according to the 
basis

	﻿‍
β =

{
I, J, K

}
D

‍� (21)

is f, given by equation 11.
The points in figure 1B are an example where equa-

tion 20 applies and this type of representation has the 
advantage that assumptions of data normality are not 
relevant to the distribution of points alone. Thus, using a 
stereo-pair scatter plot such as in figure 1B is one of the 
simplest and most powerful approaches to graphical and 
analytical understanding of dioptric power and refractive 
behaviour.
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Table 1  Means and variance–covariance matrices for the right and left eyes of 279 participants, aged 9–63 years (data 
courtesy of NH - see reference number 64)

MEANS
Clinical (Fs Fc A)
Vector f (= t)
Matrix F

 

 

VARIANCE–COVARIANCE 
MATRICES

Right Eyes
−1.87 –0.09 × 167
(−1.910 0.040 -0.020)T

	﻿‍

(
−1.875 0.02

0.02 −1.955

)
D

‍�

	﻿‍
SOD =




4.356 · ·

−0.097 0.169 ·

−0.088 0.016 0.086


D2

‍�

Left Eyes
−1.62 –0.12 × 19
(−1.684 0.049 0.039)T

	﻿‍

(
−1.633 0.037

0.037 −1.727

)
D

‍�

	﻿‍
SOS =




4.149 · ·

−0.080 0.167 ·

0.010 −0.009 0.061


D2

‍�

For quadric SCPD,13 17 18 (see figure 1A–C) and esti-
mated confidence ellipsoids for the population mean 
‍
(
µf ‍) for trivariate quantities such as symmetric dioptric 

powers the following equations are used:

	﻿‍

(−
f − µf

)T
Σ−1

ff

(−
f − µf

)
= χ2

3
(
α
)
‍�

(22)

and

	﻿‍

(−
f−µf

)T
S−1

ff

(−
f−µf

)
N
(
N−3

)

3
(
N−1

) = Fα,3,N−3
‍�

(23)

The 3×1 unbiased sample mean (﻿‍
−
f ‍) and 3×3 unbiased 

sample variance–covariance matrix (﻿‍Sff‍) in equations 
22 and 23 are estimators of the population parameters 
(mean and variance–covariance) given by10 11 13 17 18

	﻿‍

−
f = 1

N

N∑
i=1

fi
‍�

(24)

	﻿‍
Sff =

N∑
i=1

(
fi −

−
f
)(

fi −
−
f
)T

/
(
N − 1

)
‍�

(25)

where ﻿‍fi‍ refers to the sample measurements in f-vector 
notation.

In equations 23–25 the sample size is N. ﻿‍Sff‍ (see equa-
tion 25) is also used indirectly in equation 22 as an 
estimate of the population variance–covariance (﻿‍Σff

‍). The population mean is ﻿‍ µf‍ and ﻿‍ χ
2
3
(
α
)
‍ and ﻿‍ Fα,3,N−3‍ 

refer to the usual χ2 and F-distributions. (The signifi-
cance value, ﻿‍α‍, provides the confidence level (1− ﻿‍α‍)). In 
equations 22–25, coordinate vectors h or t (see equations 
10–12) can be used in place of vector f.

Equations 22–25 are used to construct ellipsoids17 18 
that are 3D equivalents of two-dimensional confidence 
regions. To do this for any distribution, the sample mean 
(﻿‍
−
f ‍ in equation 24) and sample variance–covariance (﻿‍Sff‍ 

in equation 25) are required as estimators of the popula-
tion mean (﻿‍µf‍) and population variance–covariance (﻿‍Σff

‍) that typically are not known. An underlying assumption 
here is that the sample is normally distributed and thus 
the larger the sample size (n), the greater the proba-
bility that ellipsoids will be meaningful and a satisfactory 
representation of the necessary confidence regions in 3D 

SDPS for the distribution (raw data and the underlying 
population) or for the mean itself.13 17 18

The sample variance–covariance (﻿‍Sff‍ in equation 25) 
is a 3×3 symmetric matrix (see table  1 for examples of 
such matrices) that includes three variances along the 
diagonal of the matrix concerned and three covariances; 
either the upper or lower diagonal entries (because 
‍Sff‍ is symmetric).10 11 Unlike for an univariate quantity 
where only a single variance (or number) is necessary, 
with dioptric power and refractive behaviour six distinct 
numbers are needed to understand variation and covari-
ation of the data or distribution along the coordinate 
axes in the 3-space concerned.10 11 Even then, this is an 
incomplete picture of variation of the distribution and 
other methods (see later polar profiles of variance14 19 
are necessary to get a complete understanding of sample 
variation. In SDPS (such as represented in figure 1) there 
are an infinity of directions for variation of the data and 
the variance–covariance matrix only provides informa-
tion about variation along the three coordinate axes used 
in SDPS.

Critical analysis of power vectors versus power matrices
To compare the advantages and disadvantages of 
both power vectors and power matrices, we need to 
examine what power is. To illustrate this, we examine 
a few familiar equations. Gauss’s equation defines 
scalar power (F) as the increase in vergence (L) across 
a spherical refracting surface, that is ﻿‍L0 + F = L‍. F is a 
fixed value for thin systems. For a thin system where 
the thickness t is approximated to zero (﻿‍t → 0‍), the 
power is ﻿‍F = F1 + F2‍ where ﻿‍F1‍ and ﻿‍F2‍ are the front- and 
back-surface powers, respectively. For a thick system 
(﻿‍t > 0‍), this definition of power breaks down and 
there is no fixed value for F. However, one can obtain 
an equivalent power or choose to work with front- 
and back-vertex powers. The Gullstrand equation is 
commonly referred to as the equivalent power and is 
given as ﻿‍F = F1 + F2 − τF1F2‍ and the back-vertex power 

is given as ﻿‍ Fbv =
F1

1−τF1
+ F2‍, where ﻿‍ τ ‍ is the reduced 

thickness. Prentice’s equation is commonly given as 
‍p = cF‍ where c is the decentration. Of course, all these 
equations apply to Gaussian systems where surfaces 
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are rotationally symmetric (that is, scalar or spherical 
powers).

For systems that may have astigmatic powers, we 
need to work with dioptric power matrices. The 
above-mentioned relationships can be generalised 
for astigmatic systems and are given in terms of the 
dioptric power matrix F.2 27 The generalised Gauss 
equation becomes
	﻿‍ L0 + F = L‍,� (26)

the power of a thin astigmatic lens is

	﻿‍ F = F1 + F2‍,� (27)
the back-vertex power is given as

	﻿‍ Fbv = F1
(
I − τF1

)−1 + F2‍,� (28)

the power of a thick lens system is

	﻿‍ F = F1 + F2 − τF2F1‍� (29)
and Prentice’s equation generalises to79

	﻿‍ p = −Fy‍� (30)
giving the prismatic effect (in radians) at position 

y with respect to the optical centre. Note the order of 
multiplication ﻿‍F2F1‍ and ﻿‍Fy‍ in equations 29 and 30, which 
must be respected, unlike for Gaussian systems and scalar 
values. We include the arithmetic mean of N powers of 
thin systems which is

	﻿‍

−
F = 1

N

N∑
i=1

Fi
‍�

(31)

Vectors are defined for operators that include addition 
and multiplication by a scalar. They are not defined for 
multiplication nor are they invertible. This implies that 
of the above equations 26–31, only equations 26, 27 and 
31 may work as vectors such that

	﻿‍ l0 + f = l‍� (32)

for vergence vector l obtained using the same basis ﻿‍β‍ as 
for f, the power of a thin lens becomes
	﻿‍ f = f1 + f2‍� (33)

and equation 24 gives the arithmetic mean of N power 
vectors. These vectors show that dioptric power defines a 
linear space or vector space that is referred to as dioptric 
power space1 27 (equations 24, 32 and 33 may be applied 
to coordinate vector h, provided l is obtained from basis 
‍γ‍). However, equations 28–30 make use of multiplication 
of matrices as well as inversion and corresponding vectors 
cannot be obtained for them, implying that power vectors 
have limitations and do not fully represent dioptric power. 
No equations exist to obtain the power of a thick system, 
the front-vertex and back-vertex powers or even the pris-
matic effect at any point on a lens using power vectors. 
Harris27 asserts that ‘power matrices are the natural 
mathematical representation of power in general’. Power 
vectors are useful for calculations that are linear in nature, 
including summing, subtracting and averaging of refrac-
tions, however, in general power matrices are needed 
to overcome the limitations that power vectors impose 
by their definition. Power matrices, on the other hand, 
represent the full character of dioptric power.

Power of thick systems and those that are not included 
in equations 26–30, such as the eye, are defined in an 
accompanying paper on linear optics. The power of thick 
systems may be asymmetric and may be represented by a 
four-component coefficient vector

	

‍

f =




FI

FJ

FK

FL




(34)

‍
�

with basis β (equation 14).27 This is useful for relation-
ships in dioptric power space and for statistical analyses 
of power in general but is limited because equations 
28–30 cannot be applied. For thin systems, F is symmetric 
resulting in, ﻿﻿‍ FL = 0‍ and f or t reduces to the first three 
components, represented by equation 11. Therefore, 
coordinate vector t or f (equation 11) can be obtained 
from the power matrix F, however, F cannot in general 
be obtained from the power vector.27

Dioptric powers F with orthonormal basis β (equation 
14) define a four-dimensional space that enables us to 
obtain an inner-product with lengths and angles defined 
in this dioptric power space.1 27 A 3D subspace with ortho-
normal basis β (equation 21) is defined for symmetric 
dioptric powers and forms the basis for graphical repre-
sentation of powers (figure 1B). SDPS is a vector space 
with operations of addition and multiplication by a scalar 
and along with its inner-product is an inner-product 
space.1 27

The effect of a thin optical system on the light 
traversing it is defined in terms of the change in vergence 
across the system and this generalises to thin astigmatic 
systems using symmetric dioptric powers (equations 26 
and 27). Vergence is defined as the reduced curvature 
of the wavefront and the vergence matrix L is, by defini-
tion, symmetric. However, for thick systems, where F is 
asymmetric in general, equation 26 fails and the effect 
of the thick astigmatic system is best described by the 
effect it has on rays traversing the system.1 27 This is 
discussed in detail in the accompanying paper on linear 
optics.

The advantages of power vectors lie in their simplicity 
and ability to represent thin powers graphically in SDPS. 
Power vectors can be used in calculations that require 
addition and multiplication by a scalar; that is, they are 
restricted to systems that are linear but are amenable to 
statistical analyses. The disadvantages of power vectors is, 
however, that they have limitations and are not adequate 
representations of dioptric power in general. The diop-
tric power matrix F overcomes these limitations and 
includes power for thick systems, which may be asym-
metric. It accounts for the four-dimensionality of dioptric 
power, of which familiar thin powers are members of the 
3D subspace.
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One critical issue in terms of using power vectors (h, 
f or t),2 24 27 power matrices (F)1 4–9 or other methods 
such as from Alpins32 33 for the analysis of dioptric power 
and refractive behaviour is that mathematical, statistical 
and graphical methods must be scientifically correct 
and preferably as complete as possible. Simplicity is also 
an advantage even where the mathematics and theory 
might seem difficult at first. As Harris2 13 asserts, different 
researchers should not interpret the same data differ-
ently depending on the methods used and, for example, 
confidence regions (and their shapes, sizes and orienta-
tions) for distributions about their means, should not be 
dependent on simply the scales used on graphical coor-
dinate axes whether in 2D or 3D.2 13 Refractive state and 
dioptric power when plotted, additionally, must remain 
invariant to change in the meridian from which cylinder 
axis is referenced. If one attempts to simply, and naively, 
plot refractive state using clinical notation (with F

s
, F

c
 and 

A along three orthogonal axes) such invariance does not 
exist. Other issues involving scaling along the axes (F

s
, 

F
c
 and A) also complicate this naïve approach and basic 

operations such as adding powers and then plotting the 
results become insensible. Simplifications such as only 
using nearest equivalent sphere (﻿‍Fns = NES‍), as derived 
from clinical notation, limit interpretation and can result 
in incomplete or invalid conclusions. Coordinate vector 
h from Harris2 10–13 in the years 1990 to 1991 was thus an 
early attempt at creating a theoretical methodology for 
dioptric power and a linear or vector space (Euclidean 
3-space) that would be invariant to change in cylinder 
form (from positive to negative) or change in meridian 
from which cylinder axis is referenced. The shapes of 
confidence ellipsoids (and examples are included herein 
for both h- and f- coordinates) are preserved or invariant 
where clinical powers are represented in SDPS. Equal 
powers (say, 1 -3×10 and −2 3×100 in clinical notation) 
are plotted at the same point in SDPS that is invariant to 
change in cylinder format, but this is not true for a naïve 
approach using clinical notation as the basis for the axes 
for graphical and quantitative representation. Distances 
between points are preserved in SDPS. However, as 
mentioned earlier, there are also powers (asymmetric) 
that are not 3D (or symmetric) such as above but rather 
4-dimensional and this necessitates a holistic mathemat-
ical approach that can handle such a situation and power 
matrices (F) as described by Harris1 can be used with 
either symmetric or asymmetric powers and the graph-
ical representation herein mainly emphases this more 
general approach even when plotting symmetric powers 
for refractive behaviour.

What then are the disadvantages of using power vectors 
(h, f, t or others) rather than power matrices? As Harris27 
indicates, power vectors (usually 3-variate but some-
times 2-variate as with Alpins32 33 are essentially fine for 
some basic statistical or mathematical operations such as 
adding, subtracting or averaging powers but they cannot 
completely characterise dioptric power that is funda-
mentally four-dimensional in nature2 27 and 3D power 

vectors such as h or t cannot be used with thick systems.27 
Harris argues2 that the dioptric power matrix F is the only 
method that does not fail when thick systems, prismatic 
effect and multiplication of powers are involved. Inverse 
operations also will work with power matrices but not 
power vectors.27

An advantage of F is that it also allows for the appli-
cation of the theory of linear optical systems and 
transferences (see accompanying paper by Evans and 
Rubin) and this is important in many ways including 
magnification, vergence and ray behaviour in first order 
optics. Corneal implants and intraocular lenses (IOLs) 
and their impact on the eye and vision cannot be fully 
understood without the application of some of these 
concepts that involve the dioptric power matrix F and 
thick systems. The same is also true for what clinicians in 
both ophthalmology and optometry generally define as 
astigmatism.

Comparison of the two coordinate vector bases
All the plots in figure 1 represent SDPS. It is tempting to 
compare the two bases ﻿‍γ‍ and β, however, it is important 
to realise that they both represent SDPS. ﻿‍γ‍, the basis for 
coordinate vector h is comprised of two cylinder powers 
‍h1‍ along the horizontal (﻿‍Fc × 90‍) and ﻿‍h3‍ along the vertical 
(﻿‍Fc × 180‍) and an antiscalar power ﻿‍h2‍ orientated at 45° and 
135° and which is scaled to be comparable to a cylinder 
power. The basis β for coordinate vector f is made up of a 
scalar power ﻿‍FI‍ and two antiscalar powers, ﻿‍FJ‍ and ﻿‍FK‍. ﻿‍FK‍ 
is therefore the same as ﻿‍h2‍, without the scaling factor and 
so the axes for ﻿‍FK‍ and ﻿‍h2‍coincide. Therefore, the plots in 
figure 1A,B are the same, with the ﻿‍h1-h3‍ plane coinciding 
with the ﻿‍FI-FJ‍ plane, simply rotated 45° about the ﻿‍h2-FK‍ 
axis. However, the scale of the two plots is related by the 
scaling factor ﻿‍h2 =

√
2FK‍ (compare equations 10 and 18, 

where ﻿‍f12 = f21‍ for symmetric powers) because a cylinder 
power is not equal to a scalar nor antiscalar power. There-
fore, figure  1A,B represents the same powers in SDPS, 
simply rotated about the ﻿‍h2-FK‍ axis, with a scaling factor. 
The two ellipsoids are the same and the spread of the 
scatter plots is the same, with the scaling factor taken into 
consideration.

It is possible to build any power, including asymmetric 
powers, using just cylinder powers1 and therefore it is 
tempting to think of cylinder powers as the most basic 
power providing a rationale for basis ﻿‍ γ‍. Coordinate 
vector h is a more direct measure of surface shape and 
thus is useful for analysis of both power and curvature 
of single refracting surfaces such as the anterior cornea.1 
However, symmetric dioptric power F and basis β ‘better 
reflects the inherent symmetry of SDPS’1 and is better 
aligned to understanding the nature of characteristic 
structures2 that one can define in SDPS. Coordinate 
vector f and basis β is used to study refractive behaviour 
as it easily allows for analysis of meridional variation in 
power (see figure 2).
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Figure 3  Stereo-pairs for 279 right and left eyes: (A) 
Comets OD to OS (non-reflected); dots at the start of 
comets represent OD while ends of comets represent OS, 
(B) excesses or differences for OD and OS (non- reflected) 
with a 95% confidence ellipsoid for the mean (CEM) (near 
origin) that cannot be seen as the dots are obscuring the 
very small CEM, (C) Distribution (95%) and confidence (95%) 
ellipsoids for the excesses (points not shown) of OD and OS. 
Black is used for ellipsoids before reflection and green for 
ellipsoids after reflection of the cylinder axes for OS. There 
are therefore four ellipsoids, that is, both with and without 
reflection of cylinder axes for OS. (Data64 courtesy of NH). 
OD is oculus dexter (right eye) and OS is oculus sinister (left 
eye).

Figure 2  Meridional profiles of dioptric power for the Near 
Eye Tool for Refractive Assessment refractive states for the 
right eyes of 279 participants, aged 9–63 years. Curvital 
powers are shown in the upper plot with torsional powers in 
the lower plot. This is the same sample as in figure 1. (Data 
courtesy of NH—see reference number 64).

Advantages of stereo-pairs
Why then is a stereo-pair an advantage over other 
methods of graphical representation of symmetric diop-
tric power or refractive behaviour? Symmetric dioptric 
power is 3D and thus is only fully represented graphically 
on a 3D plot. Stereo-pairs allow for the 3D plot to be 
viewed stereoscopically such that relationships between 
the three building blocks (or component parts) of power 
are easily seen; much detail is lost when viewing a 3D 
plot two-dimensionally (eg, looking at only one half of 
the stereo-pair in figure 1A). In addition, to plot only two 
axes and ignore one, for example, to view the antiscalar 
(antistigmatic) plane by viewing along the M-axis (such 
as in figure 1C) one loses the relationship of astigmatism 
to the scalar component.

The distributional plot (of data) alone without SCPD 
is the most fundamental, simple and holistic method 
for representation of the distributions of such data and 
is not really affected by data normality or sample size; 
data can be normal or non-normal and still fully under-
stood. Individual measurements (powers) can be seen 
in proper position relative to one another in 3D SDPS 
and magnitude, direction of variation and departures 
from normality and outliers are easily assessed; this 
is not always the case with other methods of graphical 
representation of power. Many methods in SDPS can be 
used to study pretreatment and post-treatment results 
or anisometropia such as the comets (figure  3A) and 
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excesses or differences (figure  3B) as illustrated later. 
In summary, power matrices F are complete and holistic 
while power vectors may provide only partial solutions to 
clinical and research questions.

A brief review of clinical applications using effective 
analysis of dioptric power
Over the last three decades general analyses for diop-
tric power globally have improved and it is now rare that 
journals will readily accept papers that do not use either 
power vectors2–6 10–22 24 26–39 (such as those of Harris2 
or Thibos et al24 or others such as Alpins32 33 or power 
matrices.1 10–22 25 27–31 41–74 This section will very briefly 
summarise applications where such methods are used 
in ophthalmology and optometry. The search strategy 
applied is explained in greater detail below.

Ophthalmic surgery and disease
There have been profound advances in ophthalmology 
and ophthalmic surgery in the late 20th and 21st centuries 
and particularly involving refractive surgeries and intra-
ocular implants41 for conditions such as cataract42–46 that 
has rapidly increased in prevalence80 as the world’s popu-
lation has also increased. Similarly, refractive surgery has 
become important for treatment of myopia, hyperopia, 
astigmatism and presbyopia. Many ophthalmic diseases 
and particularly astigmatism81–84 and corneal diseases 
such as keratoconus,85 86 have major implications for 
refractive behaviour and precision and predictability of 
surgery is important in improving surgical outcomes and 
patient satisfaction.

Thus, effective analysis of corneal and lenticular power 
and power of the eye itself has become paramount. 
Corneal surgeries,85–95 including for pterygia88 and 
implants89–92 and their effects, with or without other forms 
of ophthalmic surgery such as LASIK81 83 or SMILE,95 
have been studied using power vectors. The same applies 
to surgical treatment with IOL.96–109 Given the diversity 
of human response and healing, satisfactory statistical 
methods are necessary to make correct decisions and 
advance surgical and other methods of treatment (eg, 
genetic or drug-related) for such ophthalmic conditions 
and diseases. Surgical treatments for glaucoma110 or 
other retinal anomalies such as retinal detachment, stra-
bismus,111 112 or eyelid disorders113 also affect refractive 
behaviour with changes in astigmatism specifically.

Effective analyses of dioptric power, although mostly 
with power vectors or Alpins vector analysis32–35 104 rather 
than power matrices, have been applied to diverse 
topics including keratoconus and its surgical treatment 
via collagen cross-linking105 or methods such as LASIK 
or astigmatic keratotomy (AK), sometimes involving 
corneal grafts or IOL. Power vectors have also been used 
for analysis of postsurgical astigmatism and, for example, 
Mol and Van Dooren recently85 investigated 17 eyes of 
16 patients (mean age and SD; 60±11 years) with toric 
IOL implantation after phacoemulsification. These 
eyes all had pre-existing astigmatism of relatively large 

magnitude (mean cylinder of 6.7 D) relating to either 
keratoconus or surgery for pterygia or after keratoplasty. 
Twelve months after toric IOLs were implanted mean 
refractive cylinder power was 1.5 D as determined with 
vector analysis while mean scalar (spherical) power or 
nearest equivalent sphere (M=F

I
) and SD were 0.25±1.53 

D. So, surgery and toric IOL markedly reduced pre-
existing cylinder (F

c
) and spherical power (F

s
) in most 

eyes concerned but there were outliers or eyes where 
the treatment was less successful and postsurgical or 
residual astigmatism was still a concern. Among other 
factors such as visual acuity, they85 used astigmatic vectors 
to represent cylinder power before and after toric IOL 
implantation in the Jacksonian or antiscalar plane (the J

0
-

J
45

 or F
J
-F

K
 plane) but without confidence ellipses for the 

eyes concerned. A similar approach with power matrices 
would involve stereo-pairs, SCPD and comets from the 
presurgical to postsurgical refractive state; and examples 
of such plots are included herein; however, F

I
 (=M), or 

scalar coefficients of power are not excluded from these 
plots as in Mol and Van Dooren.85

Ophthalmic biometry and physiology
Power vectors and sometimes power matrices have 
been used to explore ophthalmic biometry such as axial 
length in relation to refractive state and also to study 
and quantify corneal power or curvature of both the 
anterior and posterior surfaces of the cornea and, for 
example, Liu et al114 used power vectors and bivariate 
confidence regions to investigate age and astigmatism 
as well as any association between internal astigmatism 
and lenticular opacification and they found only a 
weak but significant association (﻿‍p = 0.025‍) corrected 
for age, sex and type of cataract. They plotted distri-
butions of J

0
 and J

45
 with confidence ellipses for the 

right and left eyes of their sample. (Their ellipses are 
2-dimensional as against the three-dimensional SCPD 
as in figure  1A.) The antiscalar plane (that contains 
the two axes above) can be viewed directly by rotating 
stereo-pairs (see figure  1C) to look along the scalar 
axis. The advantage of the latter is that the scalar or 
spherical powers are directly included (in figure 1C) 
rather than excluded such as in Lui et al.114

Uncompensated refractive state (URE) is a world-
wide problem115 116 producing unnecessary visual 
impairment (VI) irrespective of age117–119 and power 
vectors and matrices and other methods herein are 
necessary in understanding and developing effective 
and optimal means to address URE. For example, 
a recent paper120 by Rampat et al uses artificial 
intelligence or machine learning and wavefront aber-
rometry to predict subjective refractions (SR) for 3729 
eyes. Power vectors are used in the initial stages of 
their analysis. One of their intentions was to develop 
methods for optimisation and objectively deciding 
on suitable spectacle prescriptions for patients based 
purely on wavefront aberrometry, and hence reduce 
the need for time-consuming SR that also requires a 
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higher level of skill than, say, simply using an aberrom-
eter for measurement of SR. There are also, naturally, 
concerns as to reliability and precision of SR whatever 
the method applied.114 120–124 So, Rampat et al were 
interested in establishing a new gold standard for 
clinical measurement of refractive error from lower 
order aberrations.120 Given the very large amount of 
unnecessary VI globally115 116 simply relating to URE 
(≈153 million in 2004116 and an estimated 1 billion in 
2020116 finding an alternative to SR could be helpful. 
Rampat et al compared their predictive models to raw 
data for SR and their results were displayed in the 
antiscalar plane with 95% confidence ellipses for the 
different methods and their prediction errors were 
of small magnitudes (≤0.5 D) for the antiscalar coef-
ficients at least.120 Whether this would also be true 
for M (=F

I
) for non-cycloplegic predictive refractions 

is another issue. However, their study certainly illus-
trates very effectively the usefulness of proper dioptric 
power analysis and its potential for incorporation into 
machine learning models and artificial intelligence 
for automated measurement of refractive behaviour.

Precision,121 reliability, reproducibility and agree-
ment122 123 for measures122–124 to understand refractive 
behaviour of the cornea125 or eye,126 whether subjective 
or objective and with127 or without cycloplegia are also 
of interest in addressing the global increase in myopia 
and URE with subsequent VI. Anisometropia38 44 73 and 
interocular symmetry67 128 of the eyes of individuals are 
part of these areas of investigation and these aspects will 
be briefly considered later.

Variation in refractive behaviour in relation to 
physiological factors such as pregnancy,129 ocular 
accommodation30 31 or ageing62 63 101 117–119 have been 
investigated to some extent with power vectors or 
matrices. Epidemiological studies of the relevant 
components of the eye in terms of refractive state 
(and meridional refraction130 have also improved 
our understanding of the nature and variation of 
the cornea, air-tear interface and even the retina 
itself. This is an area where further research with 
large samples remains necessary although there are 
studies21 22 28 56 58 62–64 66–70 73 81 82 96 97 117–120 where power 
vectors or matrices are used to investigate distribu-
tions of refractive behaviour but they remain relatively 
few in number. Often sampling is not random13 and 
thus clinical or other biases may be limiting factors for 
such studies.

Myopic astigmatism
We have isolated this topic from the previous sections 
due to the rapidly increasing global prevalence of myopia 
and the large impact, now and in the future, that myopia 
is likely to exert on the global public health system and 
individual quality of life also.131 Moderate to severe 
myopia are important for effects in relation to foveal 
integrity and retinal nerve fibre layer thickness as well 
as factors such as retinal detachment.131 Treatments for 

myopia (such as refractive surgery, low-dose atropine, 
gene therapy, lenses and others)132–136 need further study 
with power vectors and matrices but studies are available 
and more emerge each year.

Although the emphasis in studies of myopic astigma-
tism is towards understanding distributions of refractive 
behaviour and especially that relating to myopia, power 
vectors and matrices are also of interest when consid-
ering reliability, validity and precision of measurement 
instruments in relation to refractive behaviour. For 
example, Cervino et al137 used power vectors to study 
instrument myopia in adults (mean age: 20.8±2.5 years) 
with three different wavefront analysers and a binocular 
open-view autorefractor (SRW-5000). Their sample was 
relatively small at 80 eyes (21 women and 19 men) and 
measurements were obtained without cycloplegia. They 
considered outliers and concluded there was slightly 
more myopia on average (0.3 D) with the wavefront 
aberrometers than with binocular open view autore-
fraction but, overall, they found good agreement across 
the different instruments and there were no significant 
inter-instrumental differences for the antistigmatic 
coefficients (F

J
 =J

0
 and F

K
=J

45
). Detailed exploration of 

myopia is outside the scope of this paper but research 
over the last two decades has emphasised myopia and its 
consequences and management and power vectors and 
matrices are important in that regard.

Methods
Search strategy and study selection
A literature search for relevant papers was done mainly 
with MEDLINE via the Web of Science. The following 
general search strategy was used: (power vectors OR 
power matrices) AND (refractive state OR refractive 
error). This yielded 185 papers over the timespan 
(1970–2021) concerned. Further searches for more 
specific papers to the topics of eye surgery, eye disease 
or ocular disease and transformations of dioptric power 
and outliers were also performed. Titles and abstracts 
were screened for relevance and full-text manuscripts 
were obtained as required. We only included papers with 
appropriate methods for analysis of dioptric power and 
refractive state, namely either power vectors or power 
matrices. Papers where the methods for analysis of diop-
tric power and refractive state were unclear or other 
methods used, such as analysis of spherical equivalents 
only, were excluded.

Statistical analysis of dioptric power
One of the first considerations in statistical analysis must 
be an exploration of the nature of the sample under 
investigation. For example, is the data normally distrib-
uted and are there possible outliers present? Various 
methods (see figures  1, 2 and 4) are available for this 
initial assessment of refractive data. Thereafter trans-
formations of data and/or removal of outliers might be 
considered before proceeding with the analysis. Then 
a decision is made as to whether mainly parametric or 
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Figure 4  Mahalanobis distances (MD) for the same samples as in previous figures are provided for OD (black) and OS (red) 
bars in the upper rectangular plot with confidence levels as indicated at the top right of plot. The lower plot indicates that, 
irrespective of laterality (OD or OS), most eyes had MD <2. OD is oculus dexter (right eye) and OS is oculus sinister (left eye).

non-parametric methods should be applied. Hypotheses 
and their evaluation for refractive behaviour12 13 15 also 
become an important element in the analysis. Presently, 
although some methods (see later) are available, there 
remain uncertainties within the field of statistical anal-
ysis of dioptric power and consequently of refractive 
behaviour.

In terms of refractive behaviour and transformations 
of data that are not normally distributed, usually one 
begins with the weakest transformation (the square root 
transformation) and then proceeds towards the strongest 
transformation (the inverse or reciprocal transforma-
tion).21 22 Transformations are, however, not necessarily 
always advisable, and thus one needs to understand the 
effects of such transformations. Different approaches can 
be applied but for simplicity only Mardia’s23 multivariate 
skewness and kurtosis will be used here.

Results
Fundamental analysis of refractive behaviour
The specific aim below is to relate the analysis of diop-
tric power using both power vectors and matrices27 and 
to emphasise a few critical issues also such as departure 
from normality,21 22 138–141 outliers21 22 and transforma-
tions21 22 of data. These important issues are often ignored 
in analyses.64 The analysis is brief, but the key aspects, 
methodology and their relevance should become readily 
apparent. Included in the analysis are plots illustrating 
fundamental elements for analysis of refractive behaviour 
and figure 1A,B indicate the refractive states of 279 right 
eyes as measured using the Near Eye Tool for Refractive 
Assessment (NETRA) which is a cell-phone based, mixed 
subjective and objective method for determination of 
refractive behaviour. The methodology is described else-
where,64 but a few points will be included here to assist 
readers with the necessary context. The sample involves 
participants in the age range, 9 to 63 years (with mean 
age and SD of 22.6 ﻿‍±‍8.9 years), predominantly of African 

descent (49.1%) and female (66.7%) and measurements 
were obtained without cycloplegia.

With exclusion of the SCPD,13 17 18 the stereo-pair 
scatter plot (that is, the data points only) of figure  1A 
(using h-vectors) and 1b (using power matrices, F

i
 where 

i=1:279 here) are the most fundamental graphical repre-
sentation of dioptric power and assumptions of normality 
are not an issue with such representations (although 
SCPD assume data normality and are influenced by 
outliers). In figure 1C the axes are rotated to view along 
the scalar (spherical) axis (which advances towards the 
observer using an exo-posture during fusion). Effectively 
this orientation allows one to view the antiscalar plane 
(containing the two antiscalar axes with labels 5J and 5K 
here). This plane contains all possible powers that are 
antiscalar or Jacksonian (ie, JCC). Over the previous 
decade or two, many studies of refractive state have 
emphasised this plane using power vector t with axes J

0
 

and J
45

 and equating this plane with astigmatism. This 
method, however, ignores the fundamental multivariate 
nature of refractive state and while this approach is not 
incorrect, astigmatism cannot be simply equated with 
antiscalarism (or antistigmatism) and one also cannot 
ignore the scalar components of power as is sometimes 
the case. Powers are either scalar (spherical) or astig-
matic (anything that is not scalar including antiscalar 
powers) and they are respectively found on the scalar axis 
(with label 5I, for example, in figure 1B or are located 
away from the scalar axis and are astigmatic. Antiscalar 
(or antistigmatic) powers are simply JCC found within a 
single plane within the infinite 3-space of all symmetric 
powers concerned (ie, a subspace of four-dimensional 
dioptric power space).1

In table  1, means and variances and covariances for 
the right (figure  1) and left eyes for the NETRA are 
provided. The centre (or centroid) of each 95% SCPD 
(or distribution ellipsoid) in figure 1 is the sample mean 
for OD.
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If one instead uses power vectors (f or t) then one or 
more separate plots are required for coefficients, M, J

0
 

and J
45

, and this is commonly used in papers involving 
refractive state or coefficients are combined in a single 
plot, however such plots become quite cluttered as a 
result. Alternatively, we can use two pseudo-3D plots as in 
figure 1D to create a stereo-pair. Such plots can be rotated 
to view the antiscalar plane. So, stereo-pairs as in figure 1 
provide a single stereoscopic plot once fusion occurs and 
this greatly simplifies analysis and interpretation of the 
data. The axes in such figures represent the scalar and 
antiscalar powers and readers can think of the three axes 
as MI, J

0
J and J

45
K or as we prefer F

I
I, F

J
J and F

K
K where 

M=F
I
, J

0
=F

J
 and J

45
=F

K
. The crucial difference here is not 

what symbols are used to label the axes but rather that 
figure 1B, for example, is a representation of a small part 
of an infinite Euclidean 3-space where points each repre-
sent a unique 2×2 power matrix, F

i
 (see equation 20). The 

axis labelled F
I
I (=MI) is the scalar axis and here we can 

see that the NETRA refractive states cluster near this axis, 
mostly ranging from I (the first tick on the positive part 
of the vertical axis) to approximately −10I D (the contin-
uation of the axis in the negative power direction). That 
is, this sample contains refractive states that are mostly 
myopic with small amounts of astigmatism. The greater 
the cylinder (in clinical terms), the further away from the 
scalar axis is the point for that power matrix.

It may be difficult for some people to fuse stereo-pairs 
and so the same sample is shown in figure 2 using merid-
ional profiles of dioptric power. They are less satisfactory 
as each power is represented by three profiles (two are 
shown on one rectangular plot with displacement of 
90°) rather than a single point in the stereo-pairs in 
the previous figure. Nonetheless, they are often helpful 
to identify outliers and departures from normality and 
study the nature and magnitude of sample variation and 
they are in many ways supplemental and complimentary 
to the stereo-pairs. Both methods are complete represen-
tations of the distribution concerned.

Outliers and Mahalanobis distances
In figure 1B, there are three points (two near the label 
5I and one far beyond −5I) and these are respectively 
three eyes, in clinical terms, with refractive states near 5 
D of hyperopia and −10 D of myopia. Should we regard 
these eyes as outliers and perhaps remove them from the 
sample? Outliers and how to manage them in samples 
should always be considered prior to data collection and 
at the start of the analytical process. So, what should we do 
about possible outliers in samples such as in figure 1A,B 
and also figure  2 where atypical profiles can be identi-
fied? One approach is to use Mahalanobis distances (as in 
figure 4) where only 2–4 measurements (bars) reach the 
90% level of confidence; so, outliers are uncommon in 
the sample concerned. Mahalanobis distances (﻿‍MDi‍) are 
the distances between points in a distribution and their 
mean. The greater the distance the more probable a 
point is to be an outlier and the greater are the numbers 

of SD of that point away from the respective mean. Thus, 
Mahalanobis distances are useful in multivariate outlier 
detection. In terms of coordinate vector f:

	﻿‍
MDi =

√(
fi −

−
f
)T

S−1
(

fi −
−
f
)

‍
.
�

(35)

The subscript index i=1 to N is used for the sample 
measurements, ﻿‍

−
f ‍ and S are the sample mean and vari-

ance–covariance matrix, respectively. (Coordinate vector 
h could be used in equation 35 instead of vector f.)

Where the population distribution is not known, another 
method would be to use the Chebyshev inequality141 
to estimate the probability that specific measurements 
differ from their mean by more than a specified number 
of SD. Stellato et al141 also derive a multivariate form of 
the Chebyshev inequality that uses the Euclidean norm 
or Mahalanobis distance for outlier detection141 but, for 
simplicity here, the univariate Chebyshev inequality is141:

	﻿‍
P
(
|ξ − µ| ≥ λσ

)
≤ min

{
1, 1

λ2

}
‍� (36)

and equation 36 provides the probability (﻿‍P‍) that a 
scalar and random variable (﻿‍ξ‍) with distribution ﻿‍P‍ differs 
from its mean (µ) by more than a specified number (λ) of 
SDs (σ) with the condition ﻿‍λ ∈ R> 0‍, that is, the number 
of SD is real and positive, and that the probability is less 
than or equal to the minimum as specified in equation 
36. There are some difficulties with this inequality as we 
are usually not sure of the true values of the population 
means and variances, and thus they need to be estimated 
via sampling and this process might not always provide 
satisfactory estimates. Also, the inequality is sensitive to 
sample size and the number of samples concerned in esti-
mation of the means and SD. (These limitations would, 
however, apply also to that of figure 4 where Mahalanobis 
distances (equation 35) are provided for the sample 
concerned.

Data normality and transformations to normality
The nature of distributions and possible transformations 
of data for dioptric power and refractive behaviour are 
relatively unexplored in the literature although some 
work21 22 31 62 in this direction can be found. Normality 
of samples is important with statistical methodology such 
as SCPD17 18 and univariate or multivariate hypothesis 
tests.12 13 15 This paper will introduce the topic but will 
not include a detailed exploration. There are several 
methods to transform univariate or multivariate data 
and one of the most common is a square root transfor-
mation. However, if this is attempted for dioptric power 
data then we find that negative quantities (for myopes) 
produce results that need to be analysed in a complex 
space. Plotting results and analysing such transformed 
data then becomes interesting as one needs to use power 
components (F

I
, F

J
 and F

K
 or respectively, M, J

0
 and J

45
) 

in the complex plane and stereo-pairs of power matrices 
that involve complex numbers, which to the best of our 
knowledge has not been used previously with analyses of 
dioptric power. If, instead, to avoid such issues and leave 
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Figure 5  Meridional profiles of skewness (﻿‍B1‍) and kurtosis 
(﻿‍B2‍) for 279 right (in black) and left (in red) eyes of the same 
participants as for figure 1. The dotted lines represent the 
expected values for skewness (=0) and kurtosis (=3) for 
univariate normal distributions. Although vector ﻿‍h‍is used 
here, ﻿‍h1 = f11‍, ﻿‍h2 =

√
2f21‍ and ﻿‍h3 = f22‍. Thus, the top 

plot indicates these statistics for the curvital coefficients 
of power (h

1
 and ﻿‍h3‍) while the bottom plot is for the 

torsional coefficients (﻿‍h2‍) of power and they relate to the 
corresponding symmetric power matrices ﻿‍Fi ‍ where i =1:279 
here. (Data64 courtesy of NH).

Figure 6  Polar profiles of curvital (outer profiles for f
11

 and 
f
22

 (+90)) and torsional (f
21

 = f
12

) variances (inner profiles near 
polar origin) for the right (in black) and left (in red) eyes of 
279 participants, aged 9–63 years are provided. Variances 
for f

11
 and f

22
 are shown on the same profiles (red or black) 

but with a separation of 90° within profiles. There are four 
profiles but the two torsional profiles overlap and one cannot 
easily distinguish any differences between the black and red 
torsional profiles. The outer profiles are almost semicircles of 
constant radius and curvital variances are similar for the right 
and left eyes with respect to change across meridians. These 
profiles are used to understand the variation of power along 
meridians as well as to obtain quantities of interest such as 
meridians of maximum and minimum variance. The azimuthal 
scale is 0:180° and the radial scale is (0:1.5:6 ﻿‍D2‍) and small 
numbers at 3 and 6 ﻿‍D2‍ on the vertical meridian can be seen 
(data 64 courtesy of NH).

them for the future, we attempt a simple log transfor-
mation we encounter the same problem with imaginary 
numbers. One answer is to use shift transformations21 22 
to convert all negative values in the data to positive values. 
Where a value is added to the data different power 
transformations for different coefficients of power (F

I
, 

F
J
 and F

K
) can be used and, of course, the same applies 

with vector t. Alternatively, we might proceed with an 
inverse transformation where negative powers would 
not be a problem. Once such transformations have been 
applied and normality has been assessed with normality 
plots21 22 or other methods23 then a reverse transforma-
tion is necessary to move the data back towards its initial 
representation in SDPS.21 22 For a more comprehensive 
consideration of transformations of dioptric power, refer-
ences 21 and 22 are relevant.

An alternate approach is to calculate univariate or 
Mardia’s23 multivariate moments of skewness and kurtosis 
and use meridional profiles for skewness and kurtosis 
such as in figure 5 where the same data as for the previous 
figures are used. This approach is also useful to evaluate 
the effects of removal of possible outliers. In figure  5 
almost uniform leptokurtosis (B

2
>3) and mild nega-

tive skewing (B
1
<0) is noted for the curvital coefficients 

(h
1
 and h

3
) of power but both mild positive (B

1
>0) and 

negative skewing (B
1
<0) is seen for the torsional coeffi-

cients (h
2
) of power. Non-uniform meridional variation in 

leptokurtosis is obvious for h
2.
 Thus, the SCPD in figure 1 

and the variances and covariances in table 1 need to be 
treated with caution as they assume data normality which 
is not the case here. We could do transformations and/or 
remove possible outliers and then examine multivariate 
moments of skewness and kurtosis and perhaps replot 
figure 5 that might demonstrate greater normality (using 
univariate moments of skewness and kurtosis) but that 
and other procedures using normality and ﻿‍χ2‍ plots21 22 
are outside the scope for this paper. Nonetheless, effec-
tive analysis of dioptric power and refractive behaviour 
cannot be done without consideration of outliers and 
data normality.

Variances and covariances for refractive behaviour
For any sample of dioptric powers, measures of 
central tendency11 13 and dispersion or variation10–13 
are important and, for example, in table  1 variance–
covariance matrices10–12 are given. They are, however, 
incomplete in that they only provide an understanding 
of variation in relation to the three axes as illustrated, 
for example, in figure 1B. With dioptric power, the issues 
around variation are more complicated with an infinity 
of possible directions for variation in the Euclidean 
3-space (here SDPS). Consequently, meridional14 19 29–31 
or polar profiles30 31 (such as in figure 6) for variances 
and covariances are necessary and they inform us about 
variances in all meridians for the sample concerned. In 
figure 6, curvital variances are similar or uniform (≈4.5 
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D2 or equivalent to SD of ﻿‍
√

4.5 D2 = 2.12 D‍ for all merid-
ians but slightly less so for the right eyes (the outer black 
profile in figure 6). Torsional variances are almost zero 
(see the two profiles near the polar origin and although 
they are slightly variable across meridians the profiles 
are not significantly different and we would need to 
reduce the radial scale of 6 D2 to better observe these 
profiles.) The covariances (that indicate linear covari-
ation between pairs of coefficients for power) are not 
included in figure 6 but see references 30 and 31 by van 
Gool and Harris.

Anisometropia
Differences in refractive behaviour across eyes and 
between individuals38 39 44 67 73 114 128 are of importance 
in analyses of dioptric power and the following briefly 
considers some methods towards qualitatively and quan-
titatively analysing anisometropia.44 67 73 Anisometropia 
and aniso-astigmatism are often a consequence of condi-
tions such as keratoconus69 70 85 86 105 123 but can also be an 
important consideration in refractive42–44 74 87 125 or other 
surgeries42–44 87–113 sometimes involving IOL36 41–43 45 46 85 99–104 
or other implants.89–92 105 Reliability and reproducibility 
of measures of refractive behaviour are integral to 
understanding anisometropia.40 57–64 66 109 120–123 Ocular 
accommodation,21 22 28 30 31 54–58 62–68 70 73 127 outliers, depar-
tures from data normality, laterality and mirror symmetry67 95 
and reflection of cylinder axes2 11–13 15 17 18 28 67 73 74 must be 
considered in effective analyses of anisometropia.

Without going into too much detail here, in figure 3A 
comets are used to join the refractive states of the 
right and left eyes of each of the 279 participants. The 
shorter a comet the greater the agreement or similarity 
(isometropia) between the refractive states for the two 
eyes of a participant and if there was perfect isometropia 
for a participant a point would be seen instead of a comet. 
Although not included here, the Euclidean lengths of 
the comets can be used to determine measures such as 
mean length and SD and these can be applied to quanti-
fication of anisometropia. In figure 3A the cylinder axes 
for the left eyes are non-reflected. With mirror symmetry 
and anisometropia, reflection of axes of left eyes (180-A 
where A is the cylinder axis could be applied to each 
participant) when comparing the right and left eyes and 
that could affect directions and lengths of comets such 
as in the figure 3A. In figure 3B, matrices were used to 
determine excesses (or differences) between eyes of 
each participant. The origin is the null matrix, O D, that 
is, no difference or an excess of zero. If isometropia is 
present for a participant a point at the origin would be 
found. (Note the large excess above the label (5I) for 
the scalar axis; this point represents a participant where 
anisometropia was profound.) Although not obvious in 
figure  3A,B a 95% confidence ellipsoid for the mean18 
(CEM) is also included and its volume and centroid (the 
mean excess or difference) are important regarding clas-
sification of anisometropia. This CEM is more obvious in 
figure 3C where, for clarity, the points (excesses) are not 

included and the CEM is the very tiny black ellipsoid just 
below the origin of the three axes.

Figure  3C includes two larger distribution ellipsoids 
(or SCPD) for the excesses, before (in black) and after 
reflection (in green) of cylinder axes for OS while the 
two smaller ellipsoids are 95% CEM for the same data, 
again before (in black) and after reflection (the very 
small green ellipsoid with an almost vertical linear struc-
ture that is located about 1.5 D below the origin and that 
spans the central cross section - see the small green ellipse 
- of the larger green ellipsoid.) Although not within the 
scope of this review, quantification of the excesses can be 
applied to further understand anisometropia for the data 
concerned.

Discussion and conclusions
Although hypothesis tests for dioptric power and refrac-
tive behaviour were not included here for the explanatory 
analysis, means and variance–covariance matrices10 11 
can be compared using univariate11 13 15 or multivariate 
hypothesis tests11–13 15 138–141 and statistical conclusions for 
refractive behaviour can be made. For example, whether 
there is a statistically significant difference in means 
between the right and left eyes or whether the variance–
covariance matrices (for example, as in table  1) are 
equal or not. Various assumptions such as data normality 
and equality of population variance–covariances are 
important.10–13 15 17 18 21–23 141

This review has highlighted some potential weak-
nesses in the literature for analysis of dioptric power and 
refractive state and has used data to illustrate important 
concerns that should be considered in any analysis of 
dioptric power. Often analyses place emphasis on astig-
matism without due consideration for scalar powers or 
the holistic and multivariate nature of refractive state 
and its variation or behaviour. Similarly, sometimes 
scalar powers are emphasised without due attention to 
astigmatism. In general, the concepts of antistigmatism 
are confused with astigmatism and analysis is generally 
confined to the antistigmatic (antiscalar or Jacksonian) 
plane that is occasionally called the astigmatic plane, a 
phrase that is somewhat confusing. In this area of study, 
most papers in ophthalmology and optometry do not 
use stereo-pairs and this complicates interpretation and 
understanding of dioptric power and refractive behaviour. 
SCPD13 17 18 or other measures of uncertainty such as 
error cells around powers71 72 are often absent from anal-
yses. While bivariate CIs are sometimes used24 82 114 130 
they are not always applied with due regard to possible 
outliers and their significance or to the nature of distri-
butions and possible departure from normality.21–23 
Consideration of outliers21 22 28 30 31 56–70 73 74 138 and the 
use of trivariate CIs13 17 18 20–22 24 26 28 30 31 38 39 55–70 73 74 82 
that are fundamental to understanding symmetric diop-
tric power and refractive behaviour are not used as often 
as necessary. Hypothesis tests are sometimes included in 
papers but occasionally without due regard to assump-
tions underlying such statistical tests. This paper has 
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attempted to illustrate some of the necessary procedures 
and concerns that should be considered in effective anal-
yses of dioptric power and refractive behaviour. Many of 
the concerns about outliers21 22 and their proper identi-
fication and management in analyses remain for future 
investigation and the same applies to understanding 
distributions of refractive state and their normality or 
otherwise and where necessary possible transforma-
tions21 22 of data towards greater normality. Nonetheless, 
much of the methodology as applied here and elsewhere 
for the basic analysis of dioptric power and refractive 
behaviour has advanced significantly from that in the 
past. Recent papers142 143 use power vectors and second 
derivatives of dioptric power curves143 to study variation 
of power and thus imaging over the retina as induced 
by fractal contact lenses (basically a multizone bifocal 
design) and these lenses and similar spectacle144 lenses 
are likely to be important in reducing the progression 
of myopia in younger eyes that is an increasing problem 
possibly relating to insufficient time spent outdoors145 
and too much activity with tablets, mobile phones and 
other online media often with small screens, sometimes 
held at close distances for lengthy periods. New methods 
for objective and/or subjective ophthalmic refrac-
tion120 124 146–148 with some based on remote measurement 
of refraction via the internet148 and their analysis and 
understanding also use vectors124 147–153 or matrices64 68–70 
for dioptric power and astigmatism.149 150 Given the need 
to address the ever-increasing prevalence of myopia and 
its associations61–63 131 132 154 and potential risks to ocular 
and retinal health relating indirectly to changes in axial 
length147 over time and the consequent economic and 
social cost implications of myopic-related disorders 
such as maculopathy and retinal detachment, method-
ology to better understand and analyse data of this type 
and its management91 131–136 143–145 155 are important in 
preventing unnecessary vision impairment and human 
affliction and suffering.
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