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Introduction

The development of vertebrates is largely regulated by epi-
genetic events such as DNA methylation of specific cytosine 
residues in the genome, which is stably inherited through cell 
division.1 DNA cytosine methylation is performed by a group of 
DNA methyltransferases, known as Dnmts. Dnmt1 is involved 
in maintaining existing methylation patterns and has a direct 
role in histone methylation,2 whereas Dnmt3a and 3b are two 
functionally related proteins that are essential for de novo 
methylation.1,3,4

Myogenin (myog) belongs to a family of four myogenic regu-
latory factors (MRFs), which are critical regulators of myogenesis 
and highly conserved among vertebrates. It encodes a transcrip-
tion factor of the basic-helix-loop-helix (bHLH) protein family 
and plays an essential role in the specification and differentiation 
of myoblasts.5 In zebrafish embryos, muscle-specific expression 
of myog was shown to be controlled by MEF2 and MEF3 bind-
ing sites in the promoter and by two non-canonical Enhancer 
Boxes (E-box), which are the MRF protein binding sites confer-
ring muscle-specificity.6 Also in striped bass (Morone saxatilis), 
a 0.6 kb sequence of the myog promoter containing regulatory 
elements was enough to drive muscle-specific myog expression.7 

Myogenin (myog) encodes a highly conserved myogenic regulatory factor that is involved in terminal muscle 
differentiation. It has been shown in mammals that methylation of cytosines within the myog promoter plays a major 
role in regulating its transcription. In the present study, the senegalese sole (Solea senegalensis) myog putative proximal 
promoter was identified and found to be highly conserved among teleosts. Therefore, it is plausible that it plays a similar 
role in controlling myog expression. cytosine methylation of the myog promoter in skeletal muscle of senegalese sole 
larvae undergoing metamorphosis was influenced by rearing temperature. A lower temperature (15°c) significantly 
increased myog promoter methylation in skeletal muscle, particularly at specific cpG sites, relatively to higher rearing 
temperatures (18 and 21°c). Myog transcription was downregulated at 15°c, whereas expression of dnmt1 and dnmt3b 
was upregulated, consistently with the higher myog methylation observed at this temperature. Rearing temperature also 
affected growth and fast muscle cellularity, producing larger fibers at 21°c. Taken together, our data provide the first 
evidence of an epigenetic mechanism that may be underlying the temperature-induced phenotypic plasticity of muscle 
growth in teleosts.
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In the mouse embryo myog promoter, the Myocyte Enhancer 
Factor-2 (MEF2) (which is bound by elements of the MEF2 fam-
ily of transcription factors) and MEF3 binding sites were shown 
to be critical for the correct temporal and spatial expression of 
myog.8,9 Moreover, the E-box (E1) present between the TATA box 
and the transcription start site (TSS) was shown to be the bind-
ing site for myogenic bHLH protein complexes, and mutation of 
this E-box was shown to block myog expression in the myotome 
during development.10 The myog promoter has a relatively low 
density of CpG residues11 but methylation of cytosine nucleotides 
within this region plays a role in the negative regulation of tran-
scription,11,12 During mouse early development, myog promoter 
was shown to be initially methylated, but it becomes demethyl-
ated as development proceeds.12 Furthermore, in murine mesen-
chymal progenitor cell cultures treated with a DNA methylation 
inhibitor, myog was upregulated at the myoblast stage and myo-
genesis was promoted.13

Myog expression is known to vary with temperature in 
some teleost species. For example, in tiger pufferfish (Takifugu 
rubripes) embryos, the peak myog expression occurred later with 
respect to developmental stage at a higher incubation tempera-
ture.14 In early larvae of rainbow trout (Oncorhynchus mykiss) and 
seabass (Dicentrarchus labrax), myog expression increased toward 
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level across Acanthopterygii was 100%, 92% and 100% for the 
E-boxes, MEF3 and MEF2, respectively.

In muscle of Senegalese sole larvae, DNA methylation of the 
myog promoter is affected by temperature. To avoid any possible 
bias of the sequencing, the CpG site located in the reverse primer 
was not included in the analysis. Therefore, 21 CpG nucleotides 
up to 523 bp upstream of the ATG start codon were analyzed 
for global methylation patterns and total number of methylated 
cytosines (Fig. 1). A rearing temperature of 15°C significantly 
increased overall methylation levels of the myog putative pro-
moter (21.8 ± 4.9) in muscle of larvae undergoing metamorpho-
sis relatively to the 21°C (17.8 ± 6.0) (p < 0.05) (Fig. 2A). The 
methylation patterns proportions, expressed as percentage of the 
144 bisulfite patterns in all temperature groups (CG, CHG and 
CHH, where H = A, C or T) were similar among temperatures: 
around 15% for CGN (CpG methylation), 20% for CHG (non-
CpG methylation) and 65% for CHH (non-CpG methylation).

At several CpG sites, the cytosines were differentially methyl-
ated between temperature groups (Fig. 2B). Significant differ-
ences were observed at position -203 (located 4 bp downstream 
of a TAF binding site) (Fst = 0.122, p = 0.015), position -165 
(Fst = 0.221, p = 0.000) and position -72 from the TSS (located 
in a TAF binding site and separated by 1 bp from a MEF2 site) 
(Fst = 0.148, p = 0.013). CpG sites were also identified in the 
MEF3 (-88 bp) and in the TAF binding sites (-209 bp), even if no 
significant differences were observed between temperatures. In 
fact, the CpG located in this latter TAF motif was one of the less 
methylated across all temperatures. Analysis of myog methylation 
in a non-muscle tissue (gut, n = 6) revealed that all CpG sites 
located in critical binding sites for muscle myog expression, such 
as MEF2 or MEF3, were 100% methylated at all temperatures 
(Fig. S1).

Expression of myog and dnmts homologs in Senegalese sole 
larvae changes with temperature. During metamorphosis, myog 
expression in Senegalese sole larvae was affected by rearing tem-
perature (Fig. 3) and 1.8-fold higher at 21°C than at 15°C (p 
< 0.05). In contrast, dnmt1 expression was higher in the 15°C 
group than in the 21°C one (p < 0.05) and dnmt3b transcript 
levels were higher at 15°C than at either 18 or 21°C (p < 0.05). 
The dnmt3a paralogue had a uniform expression profile across 
temperatures (Fig. 3).

Phenotypic plasticity of muscle growth in Senegalese sole 
larvae. Rearing temperature significantly influenced Senegalese 
sole fast skeletal muscle growth (Fig. 4). Larvae reared at 21°C 
showed a 1.6-fold increase in fiber diameter (p < 0.001) (Fig. 4A) 
(6.0 ± 2.9, 6.1 ± 2.6 and 9.5 ± 3.8 μm at 15°C, 18°C and 21°C, 
respectively) and a 3.1-fold increase in total cross sectional area 
(A) (p < 0.05) (Fig. 4B), relatively to fish from the 15°C group. 
The mean number of fast fibers (N) was not significantly differ-
ent between temperatures, despite the moderately higher number 
of fibers of the 21°C treatment.

Discussion

The putative proximal promoter of Senegalese sole myog is 
highly conserved and its methylation levels in skeletal muscle 

the temperature to which these species are naturally exposed in 
the wild.15 Nevertheless, in spite of the vital importance of myog 
in muscle development and growth, virtually nothing is known 
about the molecular mechanisms underlying the epigenetic regu-
lation of myog expression by temperature. In natural conditions, 
the marine flatfish Senegalese sole (Solea senegalensis) faces tem-
perature fluctuations between 13 and 28°C,16 and large thermal 
variation have also been observed in aquaculture conditions.17 
Incubation temperature has been reported to influence muscle 
cellularity up to 30 d post-hatching (dph), as, for example, larvae 
initially incubated at 18 or 21°C had 11 and 9% more muscle 
fibers than those incubated at 15°C, respectively.18 An increase 
in muscle growth was observed particularly during and after 
metamorphosis. Rearing temperature was also found to highly 
influence protein metabolism in Senegalese sole larvae and post-
larvae (Campos C, Castanheira M.F, Engrola S., Valente L.M.P., 
Fernandes J.M.O and Conceição L.E.C., unpublished). In the 
present study, we hypothesized that rearing temperature post-
hatching could influence the muscle phenotype of Senegalese 
sole larvae and the methylation status of the myog promoter in 
skeletal muscle.

Results

Growth. Rearing temperature significantly affected dry weight 
(DW) and total length (L

T
) of Senegalese sole larvae at stage 2 of 

metamorphosis (Table 1). DW was 0.7 ± 0.2, 0.5 ± 0.2 and 0.3 ± 
0.2 mg at 21°C, 18°C and 15°C, respectively (p < 0.001).

Characterization of the putative promoter and 5' UTR of the 
myog gene in Senegalese sole. A sequence of 523 bp comprising 
187 bp of the putative myog 5' untranslated region (UTR) and 
336 bp of its proximal promoter has been identified in Senegalese 
sole (GenBank accession number KC404969). Binding sites for 
MEF2, MEF3, TATA, Sox6 and TAF (putative TATA box bind-
ing protein associated factor) were present in this sequence and 
two putative non-canonical, muscle-specific E-box binding sites 
(5'-CAGTTG-3') were found separated by 8 bp (Fig. 1). The most 
proximal elements to the translation initiation codon (ATG) are 
the two E-boxes in the 5' UTR. Putative binding sequences for 
MEF3 and MEF2 were located at positions -92 and at -70 from 
the transcription starting site (TSS), respectively, and three puta-
tive TATA box binding protein associated factors (TAF) were 
found at positions -213, -73 and +44 bp from the TSS.

The organization of putative E-boxes, MEF2 and MEF3-B 
binding sites in the Senegalese sole myog promoter was conserved 
among different fish species (Fig. 1). Identity at the nucleotide 

Table 1. Age, dry weight and total length of senegalese sole larvae 
reared at 15, 18 or 21°c

Metamorphosis 21°C 18°C 15°C

Days post hatching 12 15 23

DW (mg) (Mean ± SD) 0.7 ± 0.2a 0.5 ± 0.2b 0.3 ± 0.2c

LT (mm) (Mean ± SD) 6.9 ± 0.8a 6.7 ± 0.8a 5.5 ± 0.8b

Different superscript letters indicate statistically significant differences 
(p < 0.05) between treatments.
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Figure 1. comparison of the 5'-flanking UTR and putative promoter sequence of myog genes from senegalese sole and other fish sequences. sOX6, 
TAF, MEF3, MEF2, TATA binding sites and the two proximal E-boxes are indicated. The sequence and localization the E-boxes, MEF2, MEF3 and TATA 
are particularly conserved among myog promoters from all five fish species. The predicted transcription starting site is indicated (arrow). The location 
of the 22 cpG sites is indicated by bold, underlined cs. GenBank accession numbers for the sequences are: Kc404969 (Solea senegalensis), EF462192 
(Sparus aurata), EF144128 (Paralichthys olivaceus) and AY124482 (Danio rerio). The Ensembl accession number for Gasterosteus aculeatus is ENs-
GAcG00000000349.
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promoter in skeletal muscle was found to decrease the 
mitochondrial density in diabetics type 2, contribut-
ing to impaired fat oxidation and excess lipid stor-
age.19 In the Senegalese sole myog promoter, several 
CpC sites were also found dispersed throughout the 
sequence, raising the hypothesis that their differential 
methylation may influence myog transcription, along-
side with methylation at specific CpG sites. It has 
been suggested that CpG and non-CpG methylation 
are in a dynamic equilibrium controlling myog tran-
scription, and that active non-CpG demethylation 
during muscle differentiation occurs faster than CpG 
demethylation.11

The Senegalese sole myog promoter putative regula-
tory sequences were conserved relatively to other ver-
tebrate species and it is likely that they play a similar 
role in controlling transcriptional activity. This region 
of the myog promoter contains several conserved DNA 
binding elements, such as the E-boxes, MEF2 and 
MEF3 binding sites and the TATA box. In the pres-
ent study, three CpG sites were significantly hyper-
methylated at 15°C compared with 21°C, and most of 
the others CpGs also had higher methylation levels at 
15°C, albeit not statistically significant (Fig. 2B). One 
of the 15°C-hypermethylated CpGs was located in a 
TAF (putative TATA box binding protein associated 
factor) binding site, which is involved in establishing 

the transcription initiation factor TFIID multimeric protein 
complex and plays a central role in mediating promoter responses 
to activation and repression.20 Another 15°C-hypermethylated 
CpG was also located 4 bp downstream of a putative TAF motif 
(-209 bp), which is relevant for the regulation of myog transcrip-
tion. The putative TATA binding site was found to be highly 
conserved across species.

increase with lower rearing temperatures. A higher methyla-
tion level of the myog promoter in skeletal muscle of Senegalese 
sole larvae was observed at 15°C both in the global methylation 
of the promoter and specifically in CpG sites (Fig. 2A and B). 
Non-CpG methylation has been shown to play an important 
role in mammals. For example, non-CpG hypermethylation 
of the peroxisome proliferator-activated receptor-γ co-activator 

Figure 2. (A) Total number of methylated cytosines in the senegalese sole myog proximal promoter in muscle of larvae reared at 15, 18 and 21 ºc. Er-
ror bars indicate the standard error of the means for each treatment (N = 21). Different letters (and no common letters) indicate statistically significant 
differences between temperatures (p < 0.05) as determined by ANOVA. (B) percentage of cytosine methylation at 21 cpG sites in senegalese sole 
myog proximal promoter in muscle of larvae reared at different temperatures (15 ºc, 18 ºc and 21 ºc). Different letters indicate significant differences 
between temperatures at each cpG position (p < 0.05), as determined by AMOVA. Tss represents the transcription starting site.

Figure 3. Relative expression of myog, dnmt1, dnmt3a and dnmt3b in senegalese 
sole larvae reared at 15 ºc (blue bars), 18 ºc (green bars) and 21 ºc (red bars) until 
metamorphosis stage 2 (see main text for details). Transcript levels were deter-
mined by qpcR and normalised within each developmental stage, using eef1a1, 
rps4 and ubq as endogenous reference genes. Error bars indicate the standard 
error of the means for each treatment (N = 6). For each gene, significant differences 
between temperatures are indicated by different letters (without letters in com-
mon, p < 0.05). 
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in Senegalese sole larvae undergoing metamorphosis was lower at 
15°C compared with 21°C. This is consistent with the cytosine 
methylation pattern of the myog proximal promoter observed in 
muscle at different rearing temperatures, supporting the hypothesis 
that methylation of CpG sites and/or non-CpG methylation may 
influence myog expression in Senegalese sole larvae (Fig. 5).

Expression of dnmt1 and dnmt3b was significantly higher at 
15°C during metamorphosis, whereas lower mRNA levels were 
observed in larvae from the 18 and 21°C groups. This corrobo-
rates the methylation results discussed above, since Dnmts are 
directly involved in DNA methylation of cytosines. In mam-
mals, DNA methylation patterns are somatically heritable 

The MEF2 site, which is bound by elements of 
the MEF2 family of transcription factors (such as 
MEF2A, MEF2C or MEF2D), seems to be required 
for the activation of myog in some developmental 
contexts.21 In seabream (Sparus aurata) and zebraf-
ish, deletion of the MEF2 binding site significantly 
reduced muscle-specific expression of myog.6,22 
Given the known importance of the MEF2 regu-
latory motif, the status of cytosine methylation at 
this site is likely to interfere with the transcriptional 
activity of the myog promoter in Senegalese sole. 
The closest CpG site to the E-boxes significantly 
affected by temperature was the one located in a 
TAF and very close to the MEF2 motifs. It is plau-
sible that the methylation status of regions flanking 
E-boxes in the of Senegalese sole myog promoter 
affect the binding of bHLH complexes, since it has 
been reported that flanking sequences, methylation 
status and interaction with adjacent regulatory ele-
ments contribute to selection of particular protein 
complexes by the E-boxes.23,24

Myog and dnmt expression are affected by 
temperature in Senegalese sole larvae. In teleosts, 
myog transcripts are present during early develop-
ment from somitogenesis onwards14 and in post-embryonic stages 
its transcription is related to muscle growth by hyperplasia and 
hypertrophy.25 For example, in brown trout (Salmo trutta) larvae, 
myog expression persisted in zones of intense muscle hyperplasia 
at the dorsal and ventral apices of the myotome and next to the 
horizontal septum.26

In a previous study with Senegalese sole juveniles, myog expres-
sion in fast skeletal muscle was influenced by diet and positively 
correlated with growth parameters such as daily growth index or 
protein gain, which is indicative of myog importance in growth and 
protein accretion processes.27 We have found that expression of myog 

Figure 4. (A) Fiber diameter (μm) and (B) total cross-sectional muscle area A (μm2) of fast muscle in senegalese sole larvae reared at 15°c (blue bars), 
18°c (green bars) and 21°c (red bars). Error bars indicate the standard error of the means for each treatment (n = 6) and different letters indicate signifi-
cant differences between temperatures (p < 0.05).

Figure 5. simplified model of temperature-induced phenotypic plasticity of muscle 
growth in senegalese sole. A higher rearing temperature (21°c vs. 15°c) lead to lower 
methylation levels of the myog proximal promoter in fast muscle, which correlated 
with a decrease in dnmt1 and dnmt3b transcripts and an increase in myog expression 
and muscle growth. Blue and red indicate lower and higher levels of methylation, gene 
expression and muscle growth, respectively.
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tank at 20.2 ± 0.5°C. Newly hatched larvae were then transferred 
to 9 fiberglass conical tanks (100 L) tanks in a closed recirculation 
system with an initial density of 60 larvae L-1. Water temperature, 
salinity, O

2
, pH and nitrogenous compounds were monitored 

regularly and larvae were exposed to an artificial photoperiod of 
12 h light: 12 h dark. They were reared at three temperatures: 
15.2 ± 0.5, 18.3 ± 0.6 or 21.1 ± 0.4°C, in triplicate groups until 
complete metamorphosis. At mouth opening, larvae were fed 
rotifers (Brachionus sp) enriched with DHA Selco® (Inve) for 6 
h prior to harvesting. Artemia AF Strain nauplii (na) (Inve) were 
introduced between 5 dph and 8 dph and metanauplii between 
9 and 16 dph, according to rearing temperature. Artemia enrich-
ment was done at 250,000 nauplii/metanauplii L-1, with 0.4 gL-1 
supplementation of Easy DHA Selco® (Inve) and Micronised 
Fishmeal® (Ewos) added in two doses of a 1: 1 mixture (weight 
basis).

Metamorphic larvae (Met) at stage 2, according to the eye-
translocation stage,30 were sampled at 12 dph at 21°C, 15 dph at 
18°C and 23 dph at 15°C. Larvae were killed by over-anesthesia 
with MS-222 (400 mg·L-1). Samples for nucleic acid extraction 
were then snap-frozen in liquid nitrogen and stored at -80°C. 
Dry weight (DW, mg) was measured on -80°C freeze-dried sole 
larvae (n = 3 in pools of 25 larvae, ± 0.001 mg) and total length 
(L

T
, mm) was measured on 20–30 larvae per tank using an ana-

lytical scales.
Animal handling protocols were conducted according to 

the directive of November 24th, 1986 (86/609/EEC) from the 
European Economic Community concerning animal experimen-
tation guidelines.

RNA and genomic DNA extraction. Total RNA was 
extracted from 6 pools of 15 larvae per temperature group (2 
pools per tank) using Qiazol (Qiagen). Assessment of RNA 
quality was performed by agarose gel electrophoresis and its 
quantity determined with a Nanodrop spectrophotometer 
(Nanodrop Technologies/Saven Werner). Absorbance ratios 
(260/280 nm) were greater than 1.9, indicating high purity 
RNA. Genomic DNA was isolated from larvae skeletal muscle 
(6 larvae per temperature) using the DNeasy Blood and Tissue 
Kit (Qiagen), according to the manufacturer’s instructions. 
Quality and quantity of genomic DNA were determined as indi-
cated above for RNA. Genomic DNA was also extracted from 
Senegalese sole gut (n = 6), to serve as a control of methylation 
levels (see below).

Cloning and sequencing the putative 5'UTR and proxi-
mal promoter of the myog gene. Senegalese sole myog putative 
5' UTR and promoter were isolated by PCR as two overlapping 
DNA fragments from sole DNA libraries using the Genome 
Walker™ Universal Kit (Clontech). Briefly, Senegalese sole 
genomic DNA was completely digested with restriction enzymes 
(DraI, EcoRV, PvuII and StuI) to produce blunt-ended DNA 
fragments. The digested DNA was then ligated with a DNA 
adaptor (Clontech) and the resulting DNA fragments were used 
as templates for two rounds of primary and nested PCR ampli-
fications using two adaptor-specific primers together with two 
myog specific primers (GSPs) in the first exon (GenBank acces-
sion number EU934044). The remaining sequence of the first 

through the action of Dnmt1, which is the maintenance meth-
yltransferase.28 The Senegalese sole Dnmt1 putative partial pro-
tein was shown to be highly conserved (94% and 83% identity 
with zebrafish and human counterparts, respectively) and it is 
likely that it plays similar functions across different vertebrate 
taxa. Few studies on dnmt1 expression have been performed 
in fish but Rai et al.2 reported that zebrafish dnmt1 morphants 
exhibited a dramatic reduction of genomic cytosine methyla-
tion. Interestingly, expression patterns of dnmt3a and dnmt3b 
paralogues during zebrafish embryonic development were 
strikingly different. Moreover, temperature clearly influenced 
expression of these two genes in a different manner, suggest-
ing that dnmt3 paralogues are diverging and that dnmt3a and 
dnmt3b may play different roles in thermal epigenetic regula-
tion of gene expression during early development in zebrafish.29 
Given the higher similarity of zebrafish dnmt3a across vertebrate 
taxa and low non-synonymous/synonymous substitution ratios 
in the sequence, dnmt3a may have a more conserved function in 
vertebrate physiology than dnmt3b.29 It is not known if a specific 
Dnmt targets specific cytosines according to its location in a 
CpG or non-CpG context in the myog promoter. Nevertheless, 
such possibility should not be discarded given the distinct 
expression of dnmt3 genes in Senegalese sole larvae among 
temperatures.

Muscle cellularity and growth are affected by temperature 
in Senegalese sole larvae. The ultimate size of a fish is shaped 
by the balance between recruitment and enlargement of mus-
cle fibers and water temperature is one of the main constraints 
affecting muscle phenotype but the molecular basis of such phe-
notypic plasticity is still poorly understood.25 However, tempera-
ture impact on muscle growth depends largely on the species and 
on the temperatures to which they are exposed in their natural 
environment. For example, raising seabass larvae at 15°C induces 
a higher muscle growth than higher or lower temperatures, but 
in rainbow trout, optimal growth is observed at 4°C compared 
with 8°C.15

Senegalese sole is a species of relatively temperate waters and 
natural spawning of broodstock in captivity has been observed 
between 16°C and 22°C (for a review see ref. 17). In the pres-
ent study, fast muscle growth and cellularity in this species were 
largely affected by rearing temperature. To the best of our knowl-
edge, this is the first study indicating that an epigenetic mecha-
nism such as myog methylation in muscle of Senegalese sole larvae 
reared at different temperatures can affect gene expression and 
muscle growth (Fig. 5). It is plausible that developmental time 
difference, an indirect effect of temperature, also affected DNA 
methylation and myog expression. It remains to be seen if the 
epigenetic events herein reported are conserved in other temper-
ate-water fish species, with its implications for the aquaculture 
industry.

Material and Methods

Fish husbandry and sampling. The Senegalese sole incubation 
experiment took place at the LEOA facility, University of Algarve, 
Portugal. Embryos were incubated in a 200L cylindro-conical 
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regions of the sequences. Cloning and sequencing were essentially 
performed as previously reported.27 DNA sequences were ana-
lyzed with the CodonCode Aligner v.3.7.1 software (CodonCode 
Corporation) and their identity determined by BLASTN simi-
larity searches against the NCBI and Ensembl databases. Partial 
coding sequences of 259 bp, 750 bp and 469 bp were obtained 
for Senegalese sole dnmt1, dnmt3a and dnmt3b, respectively (See 
Table 2 for GenBank Accession numbers).

Quantitative real-time PCR (qPCR). One microgram of 
total RNA from each pool of larvae during metamorphosis was 
used to synthesize cDNA with the QuantiTect reverse tran-
scription kit (Qiagen), as reported elsewhere.31 Specific qPCR 
primers were designed for the sole myog and dnmts sequences. 
Whenever possible, primers were designed to span at least one 
intron/exon border to avoid amplification of potential con-
taminating genomic DNA, and then analyzed with Netprimer 
(http://www.premierbiosoft.com/), as previously described.31 
Elongation factor 1α (eef1a1), ribosomal protein 4 (rps4) and 
ubiquitin (ubq) were used as endogenous reference genes to 
normalize target gene expression. Primer sequences, amplicon 
sizes and qPCR amplification efficiencies are shown in Table 2. 
Quantification of gene expression was performed by qPCR with 
SYBR Green chemistry (Roche) on a LightCycler® 480 (Roche), 
as detailed elsewhere.29,31

Muscle morphometry. Two fish at stage 2 metamorpho-
sis were collected per tank and fixed in 4% paraformaldehyde 
(Sigma-Aldrich) in phosphate buffered saline (PBS tablets, 
Sigma-Aldrich) for 6–12 h, and washed in PBS. Samples were 
then dehydrated in a graded ethanol (AGA) series, cleared in xylol 
(Prolabo, VWR International LLC) and finally included in par-
affin Histosec® (Merck). Larvae were sectioned (10 μm) trans-
versely to the body axis just posterior to the anus. Sections were 
then mounted on slides coated with aminopropyltriethoxysilane 
(APES) (Sigma-Aldrich), to improve adhesion and then stained 
with hematoxylin-eosin (Merck). Total cross-sectional muscle 
area [A (mm2) (muscle)], the total number of fiber [N (fibers)] 
and the fiber cross-sectional area [ã (μm2) (muscle fiber)] were 
measured. The total cross-sectional muscle area [A (fast muscle)] 
was computed after tracing the physical limits of interest of the 
section on the monitor, at a 200 × magnification. The outlines 
of muscle fiber were traced using a 400 × magnification. The 
fiber diameter (μm) was estimated indirectly, as the diameter 

exon, the 5' flanking region and part of the promoter was isolated 
using the GSP1 5'-CGC CTC CAG ACA GAC TCG CAC ACA 
AG and GSP2 5'-CTG GTC AGG GAA GAA ATA GGG GTT 
GGT C; the remaining part of the promoter was isolated using 
the GSP1 5'- GGA CGG ATA ATC TCG GAT CAA ATA TGC 
C, GSP2 5'-TCT TGT CTC CCT CCA TGA CAC CAT ACA 
T. Cloning and sequencing were essentially performed as previ-
ously reported.27

DNA bisulfite treatment and sequencing. Bisulfite modifica-
tion of muscle genomic DNA extracted from stage 2 larvae was 
performed using the EpiTect Bisulfite Kit (Qiagen), according 
to the manufacturers’ instructions. Bisulfite treated DNA from 
each temperature group (15, 18 and 21°C) were pooled, and then 
amplified by PCR using the following primers: forward, 5'-ATG 
TAT GGT GTT ATG GAG GGA GA; reverse, 5'-ACT AAA 
CAA CGC TAT AAT CTA AAT TA). A 523 bp fragment of 
the putative 5' UTR and promoter of the Senegalese sole myog 
gene were obtained. PCR products were gel-purified using the 
QIAquick gel extraction kit (Qiagen) and cloned onto a pCR4-
TOPO® plasmid vector (Invitrogen), as reported.27 Twenty 
one individual colonies per temperature were picked and lysed 
in H

2
O at 99°C for 5 min. Following centrifugation at 16 x g 

for 3 min, 1 μl of the supernatant was used for PCR amplifica-
tion with M13 primers and an annealing temperature of 55°C. 
PCR products were visualized on agarose gel, purified with the 
ExoSAP-IT® PCR Product Cleanup (Affymetrix) and sequenced 
as described elsewhere.27

The efficiency of the bisulfite conversion step and methyla-
tion levels at each CpG site were evaluated with the Bisulfite 
Sequencing data Presentation and Compilation software (http://
biochem.jacobsuniversity.de/BDPC/) and the BiQ Analyzer 
(http://biq-analyzer.bioinf.mpi-inf.mpg.de/). The mean percent-
age of converted cytosines was 96.2, 96.4 and 96.6% for the 15, 
18 and 21°C group, respectively. The total number of methylated 
cytosines (CpG sites + non-CpG sites) was calculated as the aver-
age of total number of methylated cytosines across the 21 clones, 
for each temperature.

Dnmt cloning and sequencing. BLAST similarity searches 
against the nr database (http://blast.ncbi.nlm.nih.gov) and 
Ensembl (www.ensembl.org/) were performed to identify ortho-
logs of dnmt1, dnmt3a and dnmt3b in other teleost species. 
Degenerate primers were designed against the most conserved 

Table 2. primers used in qpcR

Gene Forward sequence (5'→3') Reverse sequence (5'→3')
Accession 
(GenBank)

Size (bp) E (%)

myog GTc AcA GGA AcA GAG GAc AAA G TGG TcA cTG TcT Tcc TTT TGc EU934044 118 92

dnmt1 GAT ccc AGT GAG GAG TAc GG AAG AAG GTc cTc ATA AGT AGc GTc Kc129104 117 93

dnmt3a AAc TGc TGT AGG TGT TTc TGT GTG cGc cGc AGT AAc ccG TAG Kc129105 134 90

dnmt3b ATc AAG cGA TGT GGc GAG c cGA TGc GGT GAA AGT cAG Tcc Kc129106 91 97

eef1a1 ATT GGc GGc ATT GGA AcA cAT cTc cAc AGA cTT GAc cTc AB326302 117 91

rps4 cTG cTG GAT TcA TGG ATG TG GGc AGT GAT GcG GTG GAc AB291557 101 90

ubq TcT GcG TGG TGG TcT cAT c TGA ccA cAc TTc TTc TTG cG AB291588 135 92

For each gene, its GenBank accession number, amplicon size (bp) and amplification efficiency (E) are indicated. The annealing temperature of all 
primer pairs is 60°c.
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of a circle having the same area of a fiber in a perfect cross-sec-
tion. This study was performed using an Olympus BX51 micro-
scope (Olympus Europa GmbH) with the Cell^B Basic imaging 
software.

Statistical analysis. The effects of the temperature on fast mus-
cle fibers were evaluated using a covariance analysis (ANCOVA), 
in which temperature was set as the independent variable while 
the total length was set as a covariate.

Evaluation of expression stability for the three reference genes 
was performed using the statistical application geNorm (http://
medgen.ugent.be/), as previously reported.31 Expression of tar-
get genes was evaluated by the relative quantification method.31 
Differences in the expression of target genes with temperature 
were examined by a one-way ANOVA with Holm-Sidak post-
hoc tests using the SigmaPlot 11.0 statistical package (Systat 
software). When the data did not meet the normality or equal 
variance requirements, a Kruskal-Wallis one-way ANOVA on 
ranks with a median test was performed instead. Significance 
levels were set at p < 0.05.

To check for differences in methylation levels at specific CpG 
positions of the myog putative promoter, an analysis of molec-
ular variance (AMOVA) was performed using the Arlequin 
3.5.1.2 software (http://cmpg.unibe.ch/software/arlequin3/). 
Each CpG site was trimmed from the original sequence (7–26 
nucleotides in length), with two possible variants for each cyto-
sine nucleotide: C if methylated and T if unmethylated. Then, 
all sequences from the same temperature were considered as one 
group, with size equivalent to the number of sequences analyzed 

for each temperature (n = 21). Significance level was set at  
p < 0.05.
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