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Abstract

A variety of studies have demonstrated the role of lipocalin 2 (LCN2) in both diabetes 
and neurological disorders. Nevertheless, the relationship between LCN2 and diabetic 
peripheral neuropathy (DPN) needs to be elucidated in humans. Therefore, this study 
aimed to investigate the association of LCN2 with DPN in type 2 diabetes (T2D). A total 
of 207 participants with T2D and 40 participants with normal glucose tolerance (NGT) 
were included in this study. All participants were classified into DPN group and non-DPN 
(NDPN) group based on the Toronto Clinical Neuropathy Scoring (TCNS). Demographic 
and biochemical parameters were measured. Serum LCN2 levels were determined using 
an ELISA technique. Serum LCN2 levels in NGT group were lower than those in either DPN 
group (P = 0.000) or NDPN group (P = 0.043), while serum LCN2 levels in DPN group were 
higher than NDPN group (P = 0.001). Moreover, serum LCN2 levels positively correlated 
to TCNS scores, which reflects neuropathy severity (r = 0.438, P = 0.000). Multivariate 
stepwise regression analysis showed that BMI, triglycerides, and diastolic pressure were 
independently associated with serum LCN2 in DPN. Additionally, logistic regression 
analysis demonstrated that LCN2 (odds ratio (OR) = 1.009) and diabetes duration 
(OR = 1.058) were independently associated with the occurrence of DPN in T2D. Our report 
reveals the association of serum LCN2 with DPN in T2D. LCN2 might be used to evaluate 
DPN severity and serve a role in the pathogenesis of DPN.

Introduction

Type 2 diabetes (T2D), the most common form of diabetes, 
has fallen into the leading causes of disability and death 
worldwide. The harms of T2D arise from its complications 
such as neuropathy, nephropathy, retinopathy, and 
cardiovascular disease. Diabetic peripheral neuropathy 
(DPN), the most prevalent and troublesome complication 

of T2D, affects up to 50% individuals (1, 2). DPN, commonly 
with symptoms of pain, paresthesia, or numbness, 
leads to lower quality of life, increased morbidity, and 
huge economic burdens. A variety of factors related 
to the pathophysiological processes of T2D including 
hyperglycemia, the formation of intracellular advanced 
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glycation end products, oxidative stress, mitochondrial 
dysfunction, and inflammatory cascades have been 
demonstrated to be implicated in the development and 
progression of DPN (3). However, the precise mechanisms 
underlying the development and progression of DPN 
remain elusive.

Lipocalin 2 (LCN2), also known as 24p3 or neutrophil 
gelatinase-associated lipocalin, is a secreted glycoprotein 
in response to numerous physiological and pathological 
stimuli (4). A variety of studies have demonstrated that 
LCN2 is broadly expressed in many tissues such as the 
adipose tissue, liver, kidneys, lungs, and the brain and 
serves roles in both metabolic and neurological disorders. 
Our previous study and other colleagues’ studies indicate 
that serum LCN2 levels are significantly higher in diabetes 
and diabetic complications such as diabetic retinopathy, 
diabetic nephropathy, and cardiovascular diseases (5, 6, 7, 
8, 9). For neurological diseases, the role of LCN2 has been 
implicated in diabetic encephalopathy and some other 
neurological diseases in animal models with metabolic 
disturbance (10, 11). Most recently, a report by Bhusal et al. 
indicated that glial-derived LCN2 played an important 
role in the pathogenesis of DPN via PDK2-lactic acid axis 
in the dorsal root ganglion (DRG) in mice model (12). 
Nevertheless, the relationship between LCN2 and DPN in 
humans remains unclear. Therefore, we conducted a study 
to investigate the association between serum LCN2 and 
DPN in individuals with T2D.

Materials and methods

Participants

A total of 207 participants with T2D from the Department 
of Endocrinology, the First Affiliated Hospital of University 
of Science and Technology of China (USTC) were included 
in this study from September 2018 to February 2021. 
As the control, 40 participants with normal glucose 
tolerance (NGT) from the Health Examination Center, 
the First Affiliated Hospital of USTC, were recruited from 
October 2018 to May 2019. NGT and T2D were diagnosed 
according to the 1999 World Health Organization criteria. 
All participants with T2D were classified into DPN group 
and non-DPN (NDPN) group. The diagnosis of DPN 
was based on the Toronto Clinical Neuropathy Scoring 
(TCNS) (13). A total of 107 participants with TCNS scores 
≥6 were assigned to the DPN group, and 100 participants 
with scores <6 were assigned to the NDPN group. The 
clinical parameters including sex, age, and BMI were 

matched in the two groups. The exclusion criteria were as 
follows: (a) type 1 diabetes, gestational diabetes, specific 
types of diabetes, or acute complications of diabetes; 
(b) neuropathy caused by other diseases or drugs; 
(c) severe arteriovenous vascular disease (e.g. venous 
embolism, lymphangitis); (d) neurotoxicity caused by 
drugs, especially chemotherapeutic drugs, and nerve 
damage caused by metabolic poisons caused by renal 
insufficiency; (e) chronic kidney disease ≥stage 3b; and (f) 
any amputation other than involving the toes or fingers.

The study was approved by the Ethics Committee of 
the First Affiliated Hospital of USTC and complied with the 
Declaration of Helsinki. Informed consents were obtained 
from all participants before inclusion in this study. This 
study was registered on the Chinese Clinical Trial Registry 
(ChiCTR2100046905).

Data collection and demographic measurement

All participants were questioned and physical examination 
was done by trained doctors and nurses to obtain the 
information on age, sex, weight, height, blood pressure 
(BP), illness, and medical therapy history. The BMI was 
calculated as the weight/height2. BP was tested in triplicate 
after at least 30 min of rest, and the average of three 
recordings was recorded.

Laboratory measurements

Venous blood samples were collected from all participants 
after an overnight fast of 10–12 h. Fasting blood glucose 
(FBG), total cholesterol (TC), triglycerides (TG), creatinine 
(in urine or serum) were assayed by an automatic 
biochemistry analyzer (7600-020 Chemical Analyzer, 
Hitachi, Japan). Hemoglobin A1c (HbA1c) was measured 
by affinity chromatography with an HbA1c radiometer 
(Bio-Rad Laboratory Inc.). Urinary albumin was assayed 
using immune turbidimetry kits purchased from Northern 
Biotechnology Research Institute (Beijing, China). Urine 
albumin creatinine ratio (UACR) was calculated as the 
urine albumin/urine creatinine. Fasting C-peptide (FCP) 
was assayed by electrochemiluminescence immunoassay 
(Roche Diagnostics GmbH). The estimated glomerular 
filtration rate was calculated by the Chronic Kidney  
Disease Epidemiology Collaboration equation.

Serum LCN2 levels were assayed using an ELISA kit 
(Shanghai Xitang Biotechnology Co. Ltd, Shanghai, 
China). Procedures were according to the manual 
instructions by kit provider.
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Assessment of DPN

DPN was diagnosed using TCNS based on neuropathic 
symptoms, signs, and the presence of abnormal 
nerve conduction (13). All participants underwent 
electromyogram tests to evaluate the median nerve motor 
and sensory branches, the motor and sensory branches of 
the ulnar nerve, the motor and sensory branches of the 
radial nerve, and the tibial nerve and the peroneal nerve. 
The TCNS, a validated and reliable scale, has been used 
to grade DPN severity (14). The clinical neuropathy score 
ranges from a minimum of 0 to a maximum of 19 points. 
Six points are derived from symptoms, eight from lower-
limb reflexes, and five from sensory examination distally 
at the toes. A higher score indicates more severe disability.

Statistical analysis

Statistical analyses were conducted using SPSS software 
(version 20.0, SPSS Inc). Continuous variables with 
normal distribution were expressed as means ± s.d., 
skewed variables as medians with interquartile ranges, 
and categorical variables as frequencies. All variables were 
tested for normality using Kolmogorov–Smirnov test. 
Skewed distributed variables including TG and UACR were 
logarithm transformed to normality for further analyses. To 
compare the differences between two groups, independent 
t-test was performed for the normally distributed variables, 
and Χ2-test for categorical variables. To compare the 
differences in the three groups, ANOVA was used followed 
by Bonferroni method. The correlation between LCN2 
and TCNS score was performed by Spearman’s correlation 

analysis. The Pearson’s correlation analysis was used to 
examine the correlation between serum LCN2 and clinical 
parameters in DPN. Multivariate stepwise regression 
analysis was further performed to assess the association 
between serum LCN2 and clinical parameters after 
adjusting for potential confounders. Multiple logistic 
regression analysis was performed using the occurrence of 
DPN as a dependent variable. The confounders included 
the variables that had been reported to be associated with 
DPN. The P value less than 0.05 was considered to be 
statistically significant.

Results

Characteristics of the participants

As shown in Table 1, there were no statistically significant 
differences in sex, age, and BMI between both DPN group 
and NDPN group (all P > 0.05). When compared with the 
NDPN group, patients in DPN group had longer diabetes 
durations (P = 0.008). For the other variables that might 
affect serum LCN2 levels including HbA1c, FBG, FCP, 
TC, TG, UACR, eGFR, and BP, no statistically significant 
differences were observed between the two groups  
(all P > 0.05).

Serum LCN2 levels and DPN

There were significant differences in serum LCN2 levels 
among NGT group (96.191 ± 28.322 ng/mL), DPN 
group (142.851 ± 51.195 ng/mL), and NDPN group 

Table 1 General characteristics of the participants.

NDPN group (n = 100) DPN group (n = 107) P

Age (years) 54.45 ± 11.89 57.18 ± 13.04 0.118
Male, n (%) 61 (61.00) 71 (66.36) 0.381
Diabetes duration (years) 7.49 ± 6.77 10.14 ± 7.29 0.008a

BMI (kg/m2) 24.34 ± 3.67 24.17 ± 3.16 0.713
FBG (mmol/L) 8.40 ± 3.33 8.86 ± 3.05 0.303
HbA1c (%) 8.76 ± 2.17 9.04 ± 2.16 0.344
FCP (nmol/L) 0.35 ± 0.22 0.32 ± 0.19 0.426
TC (mmol/L) 4.20 ± 0.84 4.31 ± 0.95 0.366
TGb (mmol/L) 1.47 (1.00–2.16) 1.53 (1.00–2.43) 0.506
SBP(mmHg) 129.45 ± 16.03 130.26 ± 17.79 0.731
DBP(mmHg) 82.99 ± 8.91 81.15 ± 9.64 0.156
UACRb (mg/g) 14.85 (9.80–26.25) 17.00 (10.54–33.13) 0.285
eGFR (mL/min/1.73 m2) 109.87 ± 18.95 108.13 ± 17.20 0.490

Continues variables are expressed as mean ± s.d., median (25th–75th percentile), or as n (%).
aP < 0.01. bLogarithm transformations were carried out before analysis.
DBP, diastolic blood pressure; DPN, diabetic peripheral neuropathy; eGFR, estimated glomerular filtration rate; FBG, fasting blood glucose; FCP, fasting 
C-peptide; HbA1c, hemoglobin A1c; NDPN, non-diabetic peripheral neuropathy; SBP, systolic blood pressure; TG, triglyceride; TC, total cholesterol; UACR, 
urine albumin creatinine ratio.
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(118.789 ± 52.042 ng/mL; F = 14.864, P = 0.000; Fig. 1). 
The serum LCN2 levels in NGT group were significantly 
lower than either DPN group or NDPN group, while LCN2 
levels in DPN group were significantly higher than NDPN 
group (NGT vs DPN group, P = 0.000; NGT vs NDPN group, 
P = 0.043; NDPN vs DPN group, P = 0.001). The age, sex, 
and BMI in the three groups were matched (all P > 0.05).

Moreover, in participants with T2D, Spearman’s 
analysis showed that serum LCN2 level positively 
correlated to TCNS score, which reflects neuropathy 
severity (r = 0.438, P = 0.000; Fig. 2).

The association of serum LCN2 with clinical 
parameters in DPN

To examine the association of clinical parameters 
with serum LCN2, Pearson’s correlation analysis was 
performed in DPN group. Serum LCN2 was shown to 
be positively correlated to BMI (r = 0.289, P = 0.003) and 
TG (r = 0.217, P = 0.024), respectively, and negatively 
correlated to DBP (r = −0.204, P = 0.035; Table 2). No 
significant correlations were observed between serum 
LCN2 and age, diabetes duration, HbA1c, FBG, TC, UACR, 
and SBP (all P > 0.05).

To further determine independent clinical 
parameters affecting serum LCN2, multivariate stepwise 
regression analysis was performed using sex, age, BMI, 
HbA1c, UACR, eGFR, TG, and DBP as the independent 
variables. As shown in Table 3, sex (β = 21.933, 
P = 0.022), BMI (β = 4.666, P = 0.002), TG (β = 37.390, 
P = 0.022), and DBP (β = −1.835, P= 0.000) were shown to  
be independently associated with serum LCN2 levels  
in DPN.

Figure 1
Comparison of serum LCN2 levels among NGT, NDPN, and DPN groups. 
DPN, diabetic peripheral neuropathy; LCN2, lipocalin-2; NDPN, non-
diabetic peripheral neuropathy; NGT, normal glucose tolerance. *P < 0.05, 
**P < 0.001.

Figure 2
Positive correlation between TCNS score and serum LCN2 levels in DPN. 
DPN, diabetic peripheral neuropathy; LCN2, lipocalin 2; TCNS, Toronto 
Clinical Neuropathy Scoring.

Table 2 Pearson’s correlation analysis of variables with 
serum LCN2 in DPN.

Variable r P

Age −0.042 0.669
Diabetes duration 0.044 0.655
BMI 0.289 0.003
HbA1c −0.091 0.350
FBG −0.023 0.812
SBP −0.146 0.133
DBP −0.204 0.035
TG 0.217 0.024
TC 0.013 0.896
UACR 0.013 0.893

Significant differences are indicated in bold.
DBP, diastolic blood pressure; DPN, diabetic peripheral neuropathy; FBG, 
fasting blood glucose; HbA1c, glycosylated hemoglobin A1c; LCN2, 
lipocalin 2; SBP, systolic blood pressure; TG, triglyceride; TC, total 
cholesterol; UACR, urine albumin creatinine ratio.

Table 3 Multivariate stepwise regression analysis of serum 
LCN2 in DPN.

Independent 
variables

Dependent variable: serum LCN2 
Pβ SE Standard β

Sex 21.933 9.425 0.202 0.022
BMI 4.666 1.505 0.286 0.002
TG 37.390 16.116 0.215 0.022
DBP -1.835 0.485 −0.344 0.000

DBP, diastolic blood pressure; DPN, diabetic peripheral neuropathy; 
LCN2, lipocalin 2; TG, triglyceride.
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Multiple logistic regression analysis

Multiple logistic regression analysis was performed using 
the occurrence of DPN as a dependent variable in all 
participants with T2D. As shown in Table 4, the independent 
factors for DPN were LCN2 (odds ratio (OR) = 1.009) 
and diabetes duration (OR = 1.058), respectively. Other 
variables were excluded in this model including sex, age, 
BMI, HbA1c, and UACR.

Discussion

The mechanisms underlying the pathogenesis of DPN 
have been attributed to impaired glucose metabolism 
and dyslipidemia (15). The dysfunctions of metabolic 
pathways characterized by hyperglycemia and 
dyslipidemia cause an imbalance of the mitochondrial 
redox state and inflammatory processes, thereby leading 
to neuronal and glial cell injuries, which are accepted 
as crucial mechanisms of the pathogenesis of DPN (3). 
Increasing evidence has demonstrated the roles of LCN2 in 
modulating the activities of glial cells, recruiting immune 
cells, and amplifying neuroinflammation, consequently 
resulting in neuronal demyelination and apoptosis (4). 
Besides, as an iron-binding protein, LCN2-mediated 
oxidative stress promotes neuronal injury (10, 16). The 
LCN2 levels are known to be elevated in circulation in 
diabetes (5, 6, 7, 8, 9, 17). Consistently, increased LCN2 
expressions have also been described in the brain regions 
in both ob/ob mice and mice fed high-fat diets, the two 
classical models with metabolic disorders characterized 
by obesity, hyperglycemia, dyslipidemia, systemic 
inflammation, and neuroinflammation (10, 18, 19). LCN2-
related reactive oxygen species genes, which contribute to 
neurodegeneration, have been shown to be differentially 
expressed in the hippocampus of WT and ob/ob mice 
(10). Notably, the involvement of LCN2 has recently been 
implied in the neurological disorders from the studies in 
diabetic rodent models (10, 11). Bhusal et  al. found that 
the expression of LCN2 in the hippocampus was increased 
in streptozotocin-induced diabetic mice models (11, 20). 
Deletion of Lcn2 gene ameliorated diabetes-induced reactive 

gliosis and expression of pro-inflammatory cytokines 
in the hippocampus, subsequently decreasing neuronal 
loss in the hippocampus. Moreover, diabetes-associated 
cognitive deficits were improved in Lcn2 knockout mice 
compared to WT mice in diabetic conditions.

Preclinical studies strongly suggest the presumable role 
of LCN2 in the pathogenesis of DPN in humans. This study 
herein first reported the association of LCN2 with DPN in 
humans. In this study, serum LCN2 levels were shown to 
be elevated in individuals with DPN (Fig. 1). Furthermore, 
multivariable regression analysis showed that serum LCN2 
level was independently correlated with the occurrence of 
DPN in individuals with T2D. Additionally, we found that 
with the increase in serum LCN2 levels, the TCNS scores 
for DPN were increased (Fig. 2). Application of TCNS in 
clinical studies has confirmed its role in documenting and 
monitoring DPN (14, 21, 22). A higher score indicates more 
severe disability. Given that LCN2 has been recently shown 
to be stable in the circulation, this study suggests LCN2 as a 
biomarker in the evaluation of DPN severity (23).

Coincident with our observations, a most recent study 
on DPN in mice model has revealed that LCN2 expressions 
in both DRG and sciatic nerve increase significantly in 
DPN mice (12). Under the conditions of diabetes, LCN2 
from satellite glial cells mediates macrophage infiltration 
into DRG, stimulates the release of inflammatory 
cytokines such as tumor necrosis factor-α, and enhances 
neuronal inflammatory response. PDK2, the key regulator 
of mitochondrial function, is typically upregulated in 
diabetic conditions and promotes glycolytic metabolism, 
along with increased DRG lactic acid production, 
consequently leading to neurotoxicity. LCN2 contributes 
to the pathogenesis of DPN via PDK2-lactic axis in DRG of 
diabetic mice. These findings above may provide mechanic 
interpretations for our clinical observations.

A variety of factors including renal function, 
proteinuria, blood glucose, lipid, and BP have been 
extensively described to influence serum LCN2 levels 
in individuals with T2D (5, 17, 24, 25). To minimize the 
potential differences in the comparison of serum LCN2 
levels between DPN and NDPN groups, we carefully 
characterized and matched participants according to 

Table 4 Logistic regression analysis.

Independent variables
Dependent variable: occurrence of DPN

β SE P OR 95% CI

LCN2 0.009 0.003 0.002 1.009 1.003–1.015
Diabetes duration 0.057 0.026 0.030 1.058 1.006–1.116

DPN, diabetic peripheral neuropathy; LCN2, lipocalin 2.
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sex, age, and BMI. Notably, no statistically significant 
differences were indicated in other parameters including 
HbA1c, FBG, FCP, TC, TG, UACR, eGFR, and BP. The only 
statistically significant difference in the two groups was 
longer diabetes duration for individuals in the DPN group. 
This could be explained by the fact that diabetes duration 
is the risk factor for DPN in T2D (26).

In this study, both BMI and TG were shown to be 
independent factors associated with serum LCN2 levels, 
consistent with previous clinical studies (24, 25, 27). 
Dysregulation of LCN2 has been tied to obesity, metabolic 
syndrome, and cardiovascular diseases, mainly through its 
ability to bind to lipids like fatty acids (28). For example, 
LCN2 could bind to the fatty acid retinoic acid to mediate 
thermogenesis and lipid metabolism in adipose tissue 
(29). Additionally, downregulation of LCN2 was shown to 
attenuate the metabolism of arachidonic acid, impairing 
energy homeostasis in mice study (30). This study indicated 
a negative association of LCN2 with DBP, whereas such 
association was shown to be positive in previous studies (25, 
31). This discrepancy may be attributed to the heterogeneity 
of the studied population across the distinct studies.

A recent study has indicated that a LCN2 MAB 
significantly reduces cerebral infarction and neurological 
deficits after stroke, suggesting targeting LCN2 as a 
promising intervention for the therapy of neurological 
diseases. Another study showed that treatment with 
an anti-LCN2 antibody prevented LCN2-related 
neuroinflammation and neuronal death in vitro (20). 
Therefore, the association of LCN2 with DPN described in 
this study suggests a presumable strategy for the treatment 
of DPN.

Limitations should be noted in this study. This was a 
cross-sectional study, which could not provide the causal 
relationship between increased serum LCN2 levels and 
the development and progression of DPN. Moreover, the 
sample size of this study was limited. Prospective studies 
with larger sample size are required to unravel the role of 
LCN2 in the pathogenesis of DPN.

Conclusion

Taken together, this report is the first study on the 
association of serum LCN2 with DPN in T2D. LCN2 might 
be used to evaluate DPN severity. Moreover, LCN2 might 
serve a role in the pathogenesis of DPN. Novel strategies for 
the intervention of DPN would be beneficial from further 
studies on the relationship between LCN2 and DPN.
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