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Abstract: To accurately evaluate the mechanical performance of three-dimensional (3D) braiding
composites, it is essential to consider the braiding process and generate realistic representative
volume element (RVE) structures. An efficient simulation methodology based on truss elements
was used to simulate the 3D four-directional (3D4D) braiding process utilizing the finite element
method (FEM) on the macroscale. The goal was to obtain the spatial trajectories of yarns and establish
the relationship between the braiding parameters and the preform structure. Based on the initial
yarn topology, the yarns were discretized as bundles of virtual sub-yarns. Then, a temperature drop
simulation using hybrid elements was implemented to deform the yarn cross-section and obtain the
interior, surface, and corner cells on the mesoscale. The simulation results show good agreement
with the experiment. A parametric study was deployed to identify the effect of the model input
parameters on the computation cost and accuracy. Furthermore, the approach applies to the other
braiding processes, such as the cylindrical braiding composite.

Keywords: 3D braiding composite; finite element analysis (FEA); preform; virtual fibers; representa-
tive volume element (RVE)

1. Introduction

Composite materials are an effective means of lightweight design [1]. Three-dimensional
braiding composites are formed by interweaving yarns in space, and the mechanical
performance in each direction can be designed by changing the braiding process [2]. In
addition, a rational braiding process can produce near-net-shape products, which eliminates
an additional machining process [3]. With these advantages, 3D braiding composites have
significant application potential in the aerospace, marine, and transportation industries [4].
Nowadays, 3D braiding equipment is fully automated to produce composite components,
which significantly increases the application and production efficiency of braiding composites.

The macro-mechanical properties of 3D braiding composites are primarily determined
by the preform’s mesostructure and the constituent materials’ mechanical properties. Accu-
rate mesostructure is a precondition for calculating the mechanical properties of composite
products. The representative volume element (RVE) is the smallest volume over which a
measurement can be made to yield a value representative of the whole [5]. Wang et al. [6]
established three types of RVEs corresponding to the interior, surface, and corner cells, by
observing the interweaving topology of yarns during the braiding process. Chen et al. [7]
used an analytical approach combined with experimental observations to study the mathe-
matical relationships between the braiding structure and the braiding process parameters.
Zhang [8] analyzed the spatial motion trajectories of yarns for 3D five-directional and 3D
full five-directional braiding composite materials. It was assumed that the shapes of the
yarn section differed according to the compaction conditions of the yarns. Therefore, three
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RVEs were established by fitting the yarn space trajectory through the spline curves and
connecting the sections sequentially.

The preceding studies have constructed the RVE based on many assumptions with
respect to yarn geometry. For example, the yarn sections are unchangeable or are several
simple sections, the yarns do not slip against each other, or the yarn path in the preform
is identical to the carriers’ path in the machine bed. However, a 3D braiding fabric has a
complicated structure, often with multidirectional deformation, as well as changes in the
cross-sectional shape owing to yarn compaction. Therefore, many researchers have made
experimental investigations to obtain accurate RVEs. Byun et al. [9] polished and observed
the successive cross-sections of the composite samples in the braiding orientation, indicating
that the yarn patterns of the sequential cross-sections were all anti-symmetric about the
central point of sections. Then, the sequential sections of each yarn were connected to
reconstruct the yarn path. In addition, the contact locations among yarns were shifted, and
the cross-sectional shapes of yarns were changed in the intertwining process [9]. The precise
mesostructure of the textile composite can be established using CT tomography [10,11].
Liu et al. [12] obtained the statistical data of the axial yarn characteristic parameters of
the 3D five-directional (3D5D) braiding composites through a micro-CT experiment. The
twisting and compressional deformation of the axial yarn was thoroughly investigated
and reconstructed. Furthermore, the tracking and recognizing method for a cross-sectional
shape were developed to automatically establish the geometry model of the 3D four-
directional (3D4D) composite using a sequence of tomographic images [13].

It is time-consuming to use these experimental-based approaches to obtain fabric
structure, which can only be used to observe product results rather than for early predictive
guidance on the process. The simulation-based method is excellent for studying the process
and mesostructure of a composite. Wang and Zhou [14,15] developed the digital element
method, which divides a yarn into several chains of truss elements that can capture the yarn
deformation produced by the braiding process. The DEA Fabric Mechanics AnalyzerTM

software, based on the digital element method, obtained a good agreement with X-ray
CT images of a 3D woven textile composite [16,17]. A comparable technique of the vir-
tual digital elements was realized with the commercial FE codes LS-DYNATM [18] and
TEXGENTM [19,20]. Green et al. [21] simulated the waving and compaction process of a 3D
woven composite, and the corresponding parametric study was implemented to achieve
a balance between the analysis speed and accuracy. The digital element methodology
considering the rearrangement behavior of sub-yarns was used to predict the mechanical
behavior of a 3D woven fabric, doing away with the need for a complicated constitutive
model [22]. However, these methods do not consider the crucial effect of manufacturing
process parameters on the mesostructure of the preform. The two-dimensional braiding
process simulation considering the yarn as the truss element was used to study the motion
parameters of the mandrel [23]. This solution does not consider the yarn squeeze defor-
mation, which significantly affects the accuracy of the mechanical performance analysis.
Ghaedsharaf et al. [24,25] modeled the geometry of biaxial braids using bundles of virtual
fibers, in which the tension force was applied to the yarn tends to shrink the preform
from a loose state to a tight state. However, to obtain the desired final pitch length, the
initial pitch length and outer diameter, which are crucial to the final shape of the preform,
were determined through a trial-and-error method [24]. Yang et al. [26] simulated the
actual weaving process in an explicit solver ABAQUS/Explicit, in which each yarn was
represented as several twisted sub-yarns. Nonetheless, it is computationally intensive to
obtain quasi-static simulation results of the weaving process based on the virtual fibers. An
efficient simulation method that considers both the braiding process and the yarn extrusion
deformation, essential for obtaining the accurate RVE geometry, has not been reported so far.

This paper proposes a multiscale methodology for obtaining accurate RVEs. The
study is organized as follows: Section 2 describes the 3D four-directional braiding process
and the path of each yarn carrier on the machine bed. Section 3 presents the detailed
implementation process of the multiscale methodology. The parametric study is conducted
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in Section 4. In Section 5, the cylindrical braiding process is simulated to present the
method’s versatility. Concluding remarks are provided in Section 6.

2. Three-Dimensional Four-Directional Braiding Process

The 3D braiding fabric is woven by the alternate movements of yarn carriers in row
and column directions. Figure 1 is a schematic illustration of the four-step 1× 1 rectangular
braiding process. The arrangement of the carrier pattern (Figure 1a) determines the section
shape of the preform. A machine cycle is divided into four movements: in Step 1, the yarn
carriers move alternately in one position laterally (Figure 1c); in Step 2, carrier motions
occur in alternate columns (Figure 1d); Steps 3 and 4 reverse the carrier movement direction
in Steps 1 and 2 (Figure 1e,f), as illustrated by the arrows in each step. After these four
steps, the carrier pattern is identical to the original pattern (Figure 1a). One segment of the
preform is fabricated and called a braiding pitch, denoted by h. The take-up device moves
up one pitch length simultaneously. The carriers regulate the tension force by retracting the
yarns into the spool or releasing the yarns from the spool. Therefore, the yarns compact
with each other, resulting in a stable and tight preform. The braiding process is fully
automated, without a manual jamming process. Figure 1b shows an actual braiding setup,
including cylinders in each line, the carriers, and the take-up module [27].
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braiding machine [27]. Reprinted with permission from [27]. Copyright 2020, The Regenerative 
Engineering Society. (c) Step 1, (d) Step 2, (e) Step 3, and (f) Step 4. 
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The count of carriers in the rectangle pattern is determined by the row and column
number of yarns of the main part [m× n], which is given as,

N = mn + m + n (1)

where m and n are the row and column yarn numbers in the main part, respectively, and N
is the total number of yarns. After 4N/t steps, all carriers return to the original position,
where t denotes the greatest common divisor of m and n.

These yarns in the [6× 6] arrangement are divided into six groups according to their
trajectories, as shown in Figure 2a. After moving 32 steps, all carriers return to their original
positions. A Python script was written to obtain the path of every carrier and generate the
boundary condition of the numerical simulation model.
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Figure 2. (a) Schematic of the yarn path and groups and (b) the 3D4D braid pattern of the test
specimen and the simulation results.

Table 1 provides the main parameters of the 3D4D braiding process, as shown in
Figure 1b, which significantly affects the braiding preform structure. The preform structure
is mainly characterized by the interior braiding angle γ, the surface braiding angle θ, and
the pitch length h. In the specimen, the surface braiding angle and the pitch length were
easy to observe and measure and thus were used to benchmark with the simulation model,
as shown in Figure 2b. The high-strength 12K T700 carbon yarn was used to braid the
preform. The primary material properties of the yarn are listed in Table 2.

Table 1. The main process parameters of the 3D4D braiding process.

Take-up distance of the preform in one machine cycle h
Distance between every two adjacent carriers D

The tension force of carrier F
The braiding interweaving height H

Table 2. Material properties of the yarn.

Density (g/cm3) 1.8
Number of fibers per yarn 12,000

Modulus of elasticity (GPa) 230
Coefficient of friction among yarns 0.36

3. Modeling Approach Using the FEA Method

The workflow of the proposed modeling methodology is illustrated in Figure 3, and
the procedures are described as follows:

I. Simulation of the 3D4D braiding process on the macroscale: The braiding process
was simulated according to Section 2, during which the yarns were discretized as
T3D2 truss elements. The parametric model was generated using a Python script
and solved by the Abaqus software (Figure 3a). Yarns were interweaved to achieve
the preform.
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II. Sub-yarn discretization: The yarns in the two pitches of the preform at the stable braiding
stage (Figure 3b) were divided into several bundles of sub-yarns according to the center
curve of the yarns achieved in Step I, as shown in Figure 3c. A Python script was written
to automate the model generation and the assignment of boundary conditions.

III. Sub-yarn deforming simulation on the mesoscale: The contraction process was
accomplished by imposing the temperature drop load with an appropriate thermal
expansion coefficient (Figure 3d). The sub-yarns were represented by the hybrid
elements consisting of the truss and beam element with coinciding nodes. Then,
the yarn section changed from a circle to a realistic shape as the average stress of
all sub-yarns reached the tension stress of the carrier retraction.

IV. Mesostructure reconstruction: Since the FEA analyses require yarns with a solid
geometry rather than fibers, the chains of sub-yarns must be converted to solid
geometry. Another Python script was written to extract the section shapes of
different yarns and reconstruct the accurate yarn structure (Figure 3e). Eventually,
three RVEs were generated: interior cell, surface cell, and corner cell (Figure 3f–g).
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yarn discretization, (d) Step III: sub-yarn deforming simulation on the mesoscale, (e) mesostructure
reconstruction, (f) the interior cell, (g) the surface cell, and (h) the corner cell.
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3.1. Simulation of the 3D4D Braiding Process on the Macroscale

The braiding process simulation model takes the machine control and process parame-
ters as inputs and generates the braiding structure as an output. As shown in Figure 3a
and Supplementary Video S1 (see Supplementary Materials), the simulation model on the
macroscale contains the yarns and nonlinear springs. One end of the yarns is coupled to
the take-up point, and the other end is connected to a spring element with constant tension
force. Figure 2a displays the movement paths of the carriers applied to these control points.
The take-up point moves upward at a constant speed corresponding to the carriers’ speed.
The yarn-to-yarn friction coefficients for parallel- and perpendicular-to-yarn orientations
were experimentally measured to be 0.26 and 0.46 [23]. However, the inter-yarn friction
coefficient cannot be changed according to the yarn’s cross angle in the braiding simulation.
Therefore, the interactions between yarns are defined using the Coulomb friction model
with a friction coefficient of 0.36, which is the average of two directions. The braiding pro-
cess is a quasi-static process, and a stable fabric structure requires multiple braiding cycles.
It is essential to speed up the model calculation without compromising the computational
accuracy. Reducing the modulus decreases the wave velocity in the material, facilitating a
faster analysis speed. Comparative calculations show that setting the yarn’s modulus as
20,000 MPa is adequate to avoid stretching the yarn and the contact penetration.

Since a yarn consists of a substantial number of fibers, the bending modulus of yarns
is much lower than the value calculated using Young’s modulus in the fiber direction. The
primary purpose of the braiding process simulation is to achieve the topology structure of
the preform. Using truss elements (T3D2) that neglect the bending stiffness approximates
the actual state of yarns in the braiding process [22,28]. In Section 3.3, the yarn section
deformation due to squeezing will be computed. The comparative analysis results show
that the element size setting at half of the yarn radius can achieve minor penetration.
Meanwhile, the contact control parameters were set to avoid a reduction in the contact
thickness owing to the small element-size-to-truss-radius ratio [29]. The primary process
parameters of the 3D4D braiding process in Table 1 and the trajectory of each yarn carrier
were parameterized to facilitate modeling. Then, the corresponding Abaqus input file was
automatically generated through the user-written Python script.

Figure 4a shows that the simulation result of the braiding preform is stable and the
length of each pitch is also equal. The yarns in the same group have the same path, as
shown in Figure 4b,c. Figure 4e shows the test specimen. In addition, another Python script
was written to achieve the pitch length and braiding angle along the braiding direction.
The center curve of every yarn was drawn through Abaqus’s application programming
interface method. These curves were cut by sequential planes perpendicular to the braiding
direction with a small resolution distance. The matching degree of two pair intersections
was computed using the CDIST function in SciPy [30]. As shown in Figure 4d, the pitch
length corresponding to one machine cycle was found when the error in the matching
degree between two sections reached the minimum value. The interior braiding angle
γ calculated from the yarn path in group 1 (Figure 5b) is the angle between the oblique
line and the Z axis (the braiding direction) in the 45◦ plane. The surface braiding angle θ
calculated from the yarn path in group 5 is the angle between the oblique line and the Z
axis in the XOZ plane.

It is well known that the braiding process parameters must match each other to
obtain a consistent fabric structure. For example, the fixed height of the interweaving
point and the distance between two yarn carriers determine the braiding angle. The
take-up speed and the time for each carrier to move one step decided the interweaving
point of the braiding process. Therefore, the model with the take-up velocity as zero was
implemented to investigate the relationship between braiding angle and interweaving
point height. Despite the fluctuations in the braiding angle and height measurements
of the experimental specimens, the simulation results are in good agreement with the
experimental results, as shown in Figure 5. It is evident that the relationship between
braiding angle and interweaving height is nonlinear, and the angle decreases as the height
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increases (Figure 5a). In addition, pitch length is positively correlated with braiding
interweaving height (Figure 5b). The take-up machine moves up one pitch length in one
braiding cycle to obtain a consistent preform. Meanwhile, it is necessary to match the pitch
length and the interweaving point height by controlling the speed of the take-up device.

Polymers 2022, 14, 4210 7 of 20 
 

 

cross angle in the braiding simulation. Therefore, the interactions between yarns are 
defined using the Coulomb friction model with a friction coefficient of 0.36, which is the 
average of two directions. The braiding process is a quasi-static process, and a stable fabric 
structure requires multiple braiding cycles. It is essential to speed up the model 
calculation without compromising the computational accuracy. Reducing the modulus 
decreases the wave velocity in the material, facilitating a faster analysis speed. 
Comparative calculations show that setting the yarn’s modulus as 20,000 MPa is adequate 
to avoid stretching the yarn and the contact penetration. 

Since a yarn consists of a substantial number of fibers, the bending modulus of yarns 
is much lower than the value calculated using Young’s modulus in the fiber direction. The 
primary purpose of the braiding process simulation is to achieve the topology structure 
of the preform. Using truss elements (T3D2) that neglect the bending stiffness 
approximates the actual state of yarns in the braiding process [22,28]. In Section 3.3, the 
yarn section deformation due to squeezing will be computed. The comparative analysis 
results show that the element size setting at half of the yarn radius can achieve minor 
penetration. Meanwhile, the contact control parameters were set to avoid a reduction in 
the contact thickness owing to the small element-size-to-truss-radius ratio [29]. The 
primary process parameters of the 3D4D braiding process in Table 1 and the trajectory of 
each yarn carrier were parameterized to facilitate modeling. Then, the corresponding 
Abaqus input file was automatically generated through the user-written Python script. 

Figure 4a shows that the simulation result of the braiding preform is stable and the 
length of each pitch is also equal. The yarns in the same group have the same path, as 
shown in Figure 4b,c. Figure 4e shows the test specimen. In addition, another Python 
script was written to achieve the pitch length and braiding angle along the braiding 
direction. The center curve of every yarn was drawn through Abaqus’s application 
programming interface method. These curves were cut by sequential planes 
perpendicular to the braiding direction with a small resolution distance. The matching 
degree of two pair intersections was computed using the CDIST function in SciPy [30]. As 
shown in Figure 4d, the pitch length corresponding to one machine cycle was found when 
the error in the matching degree between two sections reached the minimum value. The 
interior braiding angle 𝛾 calculated from the yarn path in group 1 (Figure 5b) is the angle 
between the oblique line and the Z axis (the braiding direction) in the 45° plane. The 
surface braiding angle 𝜃 calculated from the yarn path in group 5 is the angle between 
the oblique line and the Z axis in the XOZ plane. 

(a)

γ
θ

(b) (c)

Section i

Section  j

Section
x

Y
Z

45°plane

o

(d) (e)

 
Figure 4. The braiding simulation results: (a) the simulation preform, (b) the yarn path in group 1, 
(c) the yarn path in group 5, (d) the pitch length calculating method, and (e) the test specimen. 

It is well known that the braiding process parameters must match each other to 
obtain a consistent fabric structure. For example, the fixed height of the interweaving 
point and the distance between two yarn carriers determine the braiding angle. The take-
up speed and the time for each carrier to move one step decided the interweaving point 

Figure 4. The braiding simulation results: (a) the simulation preform, (b) the yarn path in group 1,
(c) the yarn path in group 5, (d) the pitch length calculating method, and (e) the test specimen.

Polymers 2022, 14, 4210 8 of 20 
 

 

of the braiding process. Therefore, the model with the take-up velocity as zero was 
implemented to investigate the relationship between braiding angle and interweaving 
point height. Despite the fluctuations in the braiding angle and height measurements of 
the experimental specimens, the simulation results are in good agreement with the 
experimental results, as shown in Figure 5. It is evident that the relationship between 
braiding angle and interweaving height is nonlinear, and the angle decreases as the height 
increases (Figure 5a). In addition, pitch length is positively correlated with braiding 
interweaving height (Figure 5b). The take-up machine moves up one pitch length in one 
braiding cycle to obtain a consistent preform. Meanwhile, it is necessary to match the pitch 
length and the interweaving point height by controlling the speed of the take-up device. 

250 300 350 400 450 500 550 600 650

12

14

16

18

20

22

24

26

Br
ai

de
d 

an
gl

e 
(d

eg
re

e)

The braiding height (mm)

 Experiment
 Simulation
 Experiment fitting

250 300 350 400 450 500 550 600 650
4

5

6

7

8

9

Th
e 

pi
tc

h 
le

ng
th

 (m
m

)

The braiding height (mm)

 Experiment
 Simulation
 Experiment fitting

(a) (b)

 
Figure 5. Comparison of simulation and experimental results: (a) the braiding angle and (b) the 
pitch length. 

3.2. Sub-Yarn Discretization 
The yarn center curves are obtained from the simulation method described in Section 

3.1. However, the yarn section is circular due to the non-deformability of the truss element 
section, which is different from the actual yarn. To simulate the yarn squeezing 
deformation, the single yarn was discretized as several virtual sub-yarns whose fiber 
volume fraction is equal to the actual yarn, which was 65.3% in T700 12K [31]. The 
diameter of the sub-yarns denoted as 𝐷௩ is determined by the equation as follows: 𝐴𝑉௩ = 𝑛௩ 𝜋4 𝐷௩ଶ  (2)

where 𝐴 and 𝑉௩ are the real yarn area and the fiber volume fraction, respectively, 
and 𝑛௩ and 𝐷௩ are the number and diameter of the virtual sub-yarns, respectively. 

The sub-yarn discretization is implemented in a custom Python script. Figure 6 
shows the schematic of the sub-yarn discretization process. 𝐶ଵ𝐶ଶ … 𝐶തതതതതതതതതതതത is the centerline of 
the yarn, the coordinates of which are extracted from the simulation result of the 3D 
braiding process in Section 3.1. 𝑆, 𝑆ଵ, … 𝑆 are the sections vertical to the centerline of the 
yarns. 𝑈ଵ is a point at the circumference of section 𝑆ଵ, and vector 𝐶ଵ𝑉ଵሬሬሬሬሬሬሬሬ⃗  is achieved by 
rotating vector 𝐶ଵ𝑈ଵሬሬሬሬሬሬሬሬሬ⃗  counterclockwise 90° with 𝐶ଵ𝐶ଶሬሬሬሬሬሬሬሬሬ⃗  as the axis. Then, a line parallel to 
vector 𝐶ଵ𝐶ଶሬሬሬሬሬሬሬሬሬ⃗  is drawn from point 𝑈ଵ, which intersects with 𝑆ଶ at a point denoted as 𝑁ଶ. 𝐶ଶ𝑁ଶതതതതതത intersects with section 𝑆ଶ at 𝑄ଶ. If the yarn is twisted, the corresponding rotating 
angle 𝜃 can be calculated by the formula below. 𝜃 = 2𝜋𝜙ฮ𝐶ప𝐶పାଵሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ฮ1000  (3)

Figure 5. Comparison of simulation and experimental results: (a) the braiding angle and (b) the
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3.2. Sub-Yarn Discretization

The yarn center curves are obtained from the simulation method described in Sec-
tion 3.1. However, the yarn section is circular due to the non-deformability of the truss
element section, which is different from the actual yarn. To simulate the yarn squeezing de-
formation, the single yarn was discretized as several virtual sub-yarns whose fiber volume
fraction is equal to the actual yarn, which was 65.3% in T700 12K [31]. The diameter of the
sub-yarns denoted as Dv f is determined by the equation as follows:

ArealVf v f = nv f
π

4
D2

v f (2)

where Areal and Vf v f are the real yarn area and the fiber volume fraction, respectively, and
nv f and Dv f are the number and diameter of the virtual sub-yarns, respectively.

The sub-yarn discretization is implemented in a custom Python script. Figure 6 shows
the schematic of the sub-yarn discretization process. C1C2 . . . Cn is the centerline of the
yarn, the coordinates of which are extracted from the simulation result of the 3D braiding
process in Section 3.1. S0, S1, . . . Sn are the sections vertical to the centerline of the yarns. U1

is a point at the circumference of section S1, and vector
−−→
C1V1 is achieved by rotating vector
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−−→
C1U1 counterclockwise 90◦ with

−−→
C1C2 as the axis. Then, a line parallel to vector

−−→
C1C2 is

drawn from point U1, which intersects with S2 at a point denoted as N2. C2N2 intersects
with section S2 at Q2. If the yarn is twisted, the corresponding rotating angle θi can be
calculated by the formula below.

θi =
2πφ‖

−−−−→
CiCi+1 ‖

1000
(3)

where φ is the twist of the yarn. The points Ci, Ui, and Vi can be determined in sequence by
repeating the earlier process. Then, the coordinate transform relationship Mi from C0U0V0
to CiUiVi is as follows:

Mi·

xc0 xu0 xv0

yc0 yu0 yv0

zc0 zu0 zv0

 =

xci xui xvi

yci yui yvi

zci zui zvi

 (4)
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However, in some exceptional cases, the coordinate matrix does not have an inverse
matrix, making it impossible to calculate the transformation matrix Mi. A new method to
handle all situations was proposed, including one translational transformation and two
rotational transformations. The method includes the following steps:

I. The translational transformation was conducted to ensure that points C0 and Ci
coincide, as shown in Figure 7a. The coordinates of points C0 and Ci are denoted

as (xc0 , yc0 , zc0)
T and (xci , yci , zci )

T , respectively. The vector
−−→
C0Ci is denoted as

(xt, yt, zt)
T . The translation matrix Mi1 is as follows:

xci

yci

zci

1

 =


1 0 0 xt
0 1 0 yt
0 0 1 zt
0 0 0 1




xc0

yc0

zc0

1

 = Mi1


xc0

yc0

zc0

1

 (5)

II. The rotational transformation was deployed to ensure that points U′i and Ui coin-

cide. The rotation axis
−−→
CiV′i is determined by the cross product of vectors

−−→
CiU′i

and
−−→
CiUi , as shown in Figure 7b. The unit vector

→
n of the rotation direction and

the rotation angle ϕi1 are calculated as follows:

→
n =

−−→
CiUi ×

−−→
CiU′i

‖
−−→
CiUi ×

−−→
CiU′i ‖

= (n1, n2, n3)
T (6)
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ϕi1 = arccos(

−−→
CiU′i ·

−−→
CiUi

‖
−−→
CiU′i ‖‖

−−→
CiUi ‖

) (7)

The rotation matrix Mi2 is presented in Equation (8), where c = cos(ϕi1) and
s = sin(ϕi1). The blue lines (Figure 7b) are sub-yarns after rotation.

Mi2 =


n2

1(1− c) + c n1n2(1− c)− n3s n1n3(1− c) + n2s 0
n1n2(1− c) + n3s n2

2(1− c) + c n2n3(1− c)− n1s 0
n1n3(1− c)− n2s n2n3(1− c) + n1s n2

3(1− c) + c 0
0 0 0 1

 (8)

III. Taking the vector
−−→
CiUi as the axis, the angle ϕi2 between

−−→
CiV

′′
i and

−−→
CiVi is rotated

so that point V ′′i coincides with point Vi and the corresponding rotation matrix Mi3
is obtained, as illustrated in Figure 7c. After the three transformations, points C0,
U0, and V0 coincide at points Ci, Ui, and Vi, respectively.
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All nodes in the original sub-yarn layout can be transferred to the target location by
the following expression:

xpi,j

ypi,j

zpi,j

1

 = Mi3Mi2Mi1


xp0,j

xp0,j

xp0,j

1

 where
{

i = 0, 1, 2 · · ·m
j = 0, 1, 2 · · · n (9)

where m refers to the section number and n refers to the number of sub-yarns. The
subscripts i and j represent the section number and the sub-yarn number, respectively. The
coordinate of the jth point on the ith section is

(
xpi,j , ypi,j , zpi,j

)
.
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Figure 7d shows the discretization results of the yarns with 61 chains of sub-yarns.
There is no interpenetration among the yarn sections. It is also able to achieve twisted yarn
through this method.

3.3. Sub-Yarn Deformation on the Mesoscale

The extrusion deformation among yarns is the dominant form in sub-yarn shrinkage
simulations. The section shape of the yarn is mainly influenced by fiber bending stiffness
that affects the realignment resistances, so the bending stiffness of virtual sub-yarns cannot
be neglected. A new mesh technique was used to consider the appropriate bending
stiffness of yarns by overlaying the truss element (T3D2) with beam elements (B31) with the
coincident nodes [32], as shown in Figure 8a. The hybrid element, where the truss element
determines the tensile stiffness (fiber orientation), while the beam element represents the
bending property of the sub-yarns with a lower Young’s modulus, can simulate the real
mechanical property. The beam radius is the same as the truss’s radius. The bending
stiffness of the beam elements is calculated as follows:

nv f Ebeam Iv f ,beam = nr f Er f Ir f (10)

where I = 0.25πr4 is the second moment of inertia and r is the radius of fiber; nv f and nr f
denote the number of sub-yarns and actual fiber, respectively; Ebeam and Er f denote the
Young’s modulus of the beam element and the actual fiber, respectively.
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the yarn centerline due to the lateral compression of adjacent yarns. The axes of yarns are 
spatial curves, and the section deformations are complicated. The shape of the interior 
yarn in simulation (Figure 9a) agrees well with the micro-CT interior yarn (Figure 9b); The 
surface yarn in simulation (Figure 9c) has good consistency with the micro-CT result 
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section of the preform between the simulation result and the SEM micrograph. The cross-
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Figure 8. The FEA model of the yarn deformation simulation: (a) the hybrid element and (b) the
periodic boundary condition.

The 3D4D braiding composite is periodic in the braiding direction. Taking into
account the edge effects and the computing cost, two pitches in a stable braiding state were
chosen for sub-yarn deformation compression analysis. The end nodes of every bundle
of sub-yarns were coupled to a control point using a uniform coupling constraint. The
periodic boundary conditions (PBC) were applied to the two corresponding control points
(Figure 8b). The linear constraint equations (*Equation) in Abaqus were adopted to realize
the displacement constraint of the control points, and the formula was as follows:

ui,a = ui,b where i = 1, 2 · · · 6, a, b = 1, 2 · · ·N (11)

where ui refers to the displacement of the freedom i, subscripts a and b refer to the control
point numbers and N refers to the quantity of yarn.

To achieve a realistic braiding fabric structure, the temperature dropping load was
imposed on all elements to ensure that the yarns squeezed with each other, which was
equivalent to exerting tension force during the braiding process. The temperature drop
stopped until the average stress of all elements was equal to the tension stress produced by
the tension force of the yarn carrier. The following equation determines the average stress:

savg =
N

∑
i=0

(sbeam
11,i + Struss

11,i )/N (12)
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where Savg is the average stress; sbeam
11,i and Struss

11,i are the tension stress of the beam and truss
elements, respectively; and N denotes the total element number of beam elements.

The virtual yarn structure and the experiment results were compared, as shown in
Figure 9. The localized distortions are observed, and the fibers are no longer parallel to the
yarn centerline due to the lateral compression of adjacent yarns. The axes of yarns are spatial
curves, and the section deformations are complicated. The shape of the interior yarn in
simulation (Figure 9a) agrees well with the micro-CT interior yarn (Figure 9b); The surface
yarn in simulation (Figure 9c) has good consistency with the micro-CT result (Figure 9d).
Furthermore, Figure 9e–h compares the surface shape and the 45◦ cross-section of the
preform between the simulation result and the SEM micrograph. The cross-sectional shape
of yarns and the arrangement of braiding yarns are similar to the experimental observations.
The comparison results confirm the validity of the numerical method. The Animation of the
sub-yarn deformation is shown in Supplementary Video S2 (see Supplementary Materials).
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B.V, (e) the surface in the simulation, (f) the surface in the experiment [33]. Reprinted with 
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3.4. Mesostructure Reconstruction 
Most braiding composite FEA analyses are based on the yarn level. Fiber-level 

geometry needs to be transferred to yarn-level geometry. The center fiber (Figure 10a) 
determines the sequential cross-sections’ geometric centers and normals. The detailed 
extraction process of the yarn geometry involves three steps: 

I. The evenly distributed rays are drawn along the circumferential direction, with the 

Figure 9. Comparison of the virtual structure and the experimental results: (a) the simulation interior
yarn, (b) the micro-CT interior yarn [13]. Reprinted with permission from [13], Copyright 2017,
Springer Science Business Media B.V., (c) the simulation surface yarn, (d) the micro-CT surface
yarn [13]. Reprinted with permission from [13], Copyright 2017, Springer Science Business Media B.V,
(e) the surface in the simulation, (f) the surface in the experiment [33]. Reprinted with permission
from [33], Copyright 2012 Elsevier Ltd., (g) the 45◦ cross-section in simulation, and (h) the 45◦

cross-section in the experiment [34]. Reprinted with permission from [34], Copyright 2013 Elsevier Ltd.
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3.4. Mesostructure Reconstruction

Most braiding composite FEA analyses are based on the yarn level. Fiber-level geome-
try needs to be transferred to yarn-level geometry. The center fiber (Figure 10a) determines
the sequential cross-sections’ geometric centers and normals. The detailed extraction
process of the yarn geometry involves three steps:

I. The evenly distributed rays are drawn along the circumferential direction, with the
center of the section as the starting point, as shown in Figure 10c. The center of the
big circle moves outward from the center in steps of 0.001 mm on the ray until it
does not intersect all sub-yarn sections. The big circle’s radius is set as 3–5 times
the fiber radius to achieve a smooth and precise profile.

II. The centers of all big circles are connected to form a curve. Then, the curve is offset
by the radius of the big circle inward to obtain a curve that surrounds all fibers,
that is, the cross-sectional profile of the yarn.

III. All the cross-sectional profiles are joined to a multi-section surface, as shown in
Figure 10b. These procedures are implemented with user-written Python scripts to
obtain the coordinate sub-yarn nodes from the FEA result and generate realistic
yarn geometry in Catia software.
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Figure 10. Illustration of the yarn geometry extraction process: (a) the fiber-level geometry from yarn
deformation simulation, (b) the yarn geometry, and (c) the process of section profile extraction.

Figure 11a shows the extracted structure in one pitch. All yarns are anti-symmetric
with respect to the center of the preform. In the [6× 6] braiding preform, there are four
interior cells, eight surface cells, and four corner cells, as presented in Figure 11b. Further-
more, the most detailed description of the mesostructure can be procured by comparing
the changes in the sequential cross-sections of the preform along the braiding direction [9].
As shown in Figure 11b–g, four sections in one pitch are cut along the braiding direction,
with equal distance between each section, as h/5. It is obvious that the yarn layouts
of Figure 11b,f are almost identical, indicating that the mesostructure of 3D4D braiding
composites is repeated for every pitch.

The essential purpose of our work is to obtain accurate RVEs for subsequent me-
chanical calculations. The solid structure models of three types of RVEs, including the
interior, surface, and corner cells, are periodic, as shown in Figure 4f–h. Thus, it is con-
ducive to generate the periodic mesh and impose the periodic conditions in subsequent
mechanical calculations.
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5h/5 section.

4. Parametric Study

The parameter study is performed to verify the accuracy and convergence performance
of the finite element model. How to set the number of virtual sub-yarns to balance the
calculation accuracy and efficiency, and the effects of sub-yarn stiffness, tension force, and
yarn twist on the structure need further study.

4.1. Geometrical Convergence

Owing to the enormous computational effort required, it is impossible to model each
fiber as a single chain of beams. A parametric study of the sub-yarn number must be
performed to balance the discrete precision of yarn cross-section deformation and the
computation cost. Four models, discretized as the 19, 61, 92, and 133 chains of sub-yarns
per yarn with the same yarn bending stiffness, were simulated to study the convergence
of the model to reproduce an accurate braid structure. Figure 12a shows the result after
the temperature drop process, and the cross-section in the middle was chosen to observe
the deformation. Figure 12b illustrates the average stress representing the tension force
of yarns versus the temperature drop value during the deformation. It is noted that each
curve could be divided into three parts: linear, non-linear, and linear. The curves in the first
part are flat, with low tension stress, and a kinematic response is evident where the virtual
fibers rearrange and fill the gaps. The second parts show non-linear behavior, where the
fibers reorient with increasing contact. In the third part, the average stress increases rapidly
when fibers are sufficiently rearranged, resulting in a higher fiber volume fraction.

A higher number of sub-yarns leads to greater freedom of deformation of the yarn,
so the average stress rises more slowly. The curve of 92 sub-yarns almost coincides with
the curve of 133 sub-yarns, demonstrating that the model converges using 92 sub-yarns.
Meanwhile, the ratio of total width change (σtw = tw/tw0), representing the overall degree
of deformation when the average stresses are equal to 1 MPa, is plotted in Figure 12c,
showing that the number of sub-yarns has almost no effect on the overall deformation.
Furthermore, three types of yarns, surface, corner, and interior, are compared in Figure 12d.
The surface and corner yarns change from ellipse to pentagon, while the interior yarns
change from ellipse to hexagonal. The cross-sectional shape of 92 sub-yarns is the same
as that of 133 sub-yarns, and there is no penetration between the sub-yarns. Hereafter,
92 sub-yarns were used to model the yarn.



Polymers 2022, 14, 4210 14 of 18

Polymers 2022, 14, 4210 15 of 20 
 

 

Meanwhile, the ratio of total width change (𝜎௧௪ = 𝑡𝑤 𝑡𝑤⁄ ), representing the overall 
degree of deformation when the average stresses are equal to 1 MPa, is plotted in Figure 
12c, showing that the number of sub-yarns has almost no effect on the overall 
deformation. Furthermore, three types of yarns, surface, corner, and interior, are 
compared in Figure 12d. The surface and corner yarns change from ellipse to pentagon, 
while the interior yarns change from ellipse to hexagonal. The cross-sectional shape of 92 
sub-yarns is the same as that of 133 sub-yarns, and there is no penetration between the 
sub-yarns. Hereafter, 92 sub-yarns were used to model the yarn. 

Section

19 Chains 61 Chains 92 Chains 133 Chains

Surface

Corner

Inner

Surface

Corner

Inner

(a)

(d)

(b)

tw

(c)

l
w

l

w

w
l

0 5 10 15 20 25 30
0

2

4

6

8

10

Th
e 

av
er

ag
e 

str
es

s (
M

Pa
)

Temperature drop (℃)

 19
 61
 92
 133

 
Figure 12. Geometrical convergence of the simulation models: (a) the cross-section of the preform 
after shrinkage, (b) the average stress curve of all virtual fibers, (c) the ratio of total width before 
and after deformation, and (d) the geometrical convergence of the cross-section shapes against the 
number of sub-yarns. 

4.2. The Bending Stiffness 
The changes in fiber bending stiffness by imposing beam elements of different 

bending stiffness affect yarn spreading. Figure 13a illustrates the average stress versus 
temperature drop values, which are plotted for three different moduli of the beam 
elements, of 133.6 MPa, 1336 MPa (the baseline, (𝐸𝐼)௬ = 0.3), and 13,360 MPa, with the 
same friction coefficient and tensile stiffness of the truss elements. The results show that 
the average stress rises faster as the bending modulus increases, indicating that the 
bending modulus cannot be neglected. Moreover, the degree of cross-sectional 

Figure 12. Geometrical convergence of the simulation models: (a) the cross-section of the preform
after shrinkage, (b) the average stress curve of all virtual fibers, (c) the ratio of total width before
and after deformation, and (d) the geometrical convergence of the cross-section shapes against the
number of sub-yarns.

4.2. The Bending Stiffness

The changes in fiber bending stiffness by imposing beam elements of different bending
stiffness affect yarn spreading. Figure 13a illustrates the average stress versus tempera-
ture drop values, which are plotted for three different moduli of the beam elements, of
133.6 MPa, 1336 MPa (the baseline, (EI)yarn = 0.3), and 13,360 MPa, with the same friction
coefficient and tensile stiffness of the truss elements. The results show that the average
stress rises faster as the bending modulus increases, indicating that the bending modulus
cannot be neglected. Moreover, the degree of cross-sectional deformation is characterized
by the ratio (σ = l/w) of the length (l) to the width (w) at a specific tension force (see
Figure 12a). A smaller bending modulus of yarns, whether surface yarn, corner yarn, or
interior yarn, leads to lower resistance of the yarn spreading to transverse deformation
(Figure 13b), resulting in a larger ratio σ. The total width variation (σtw) increases as
the bending stiffness decreases at the same yarn tension force, resulting in a higher yarn
volume fraction.
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4.3. The Tension Force of Carriers and the Twisting of Yarns

The 3D braiding process is fully automated and does not require manual jamming.
The yarn carriers can control the yarn tension force at a constant value by retracting or
releasing the yarns. Three simulations were performed with an increasing tension force of
0.5 N, 1 N, and 3 N, respectively, corresponding to the average stress of 0.98 MPa, 1.96 MPa,
and 2.94 MPa. As shown in Figure 14a, the degree of yarn squeezing increases with the
tensioning force and vice versa for the total width.
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The twisted yarn has a higher resistance to cross-section deformation than the straight
yarn [35]. Using the same tension force, three models, containing 55 twist/m, 110 twist/m,
and no twist, were generated, the results of which are compared in Figure 14b. The ratio
of section deformation degree in the twist condition is smaller than that in the no-twist
situation, while the total width exhibits the reverse relationship. The twisting process
increases the lateral stiffness of the yarn, and a suitable twist can reduce fiber pilling during
the braiding process. However, too much twist increases the shear force among the fiber
filaments, which is not conducive to the overall tensile strength. Therefore, it is necessary
to consider yarn twisting in simulation.

5. Application

The 3D braiding composite shafts are widely used in aerospace, wind power, and
automotive transmission systems. These shafts can be integrally braided using the cylin-
drical braiding machine shown in Figure 15a [36,37]. The yarn arrangement consists of
three layers in the radial direction, 18 columns in the circumferential direction, and the side
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yarns. The yarn carriers move alternately in one position in radial and circumferential di-
rections. After four steps, the take-up device lifts one pitch height upward correspondingly.
Figure 15b shows the simulation result of the braiding process, and Figure 15c shows the
result of yarn deformation on the mesoscale. The yarns are arranged periodically in the
circumferential direction. Figure 15d–f shows the RVE, and the yarn cross-section changes
from a circle to a complex shape. Therefore, the application in the 3D cylindrical braiding
process demonstrates the versatility of the simulation methodology.
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of a cylindrical braiding machine, (b) the braiding process simulation result, (c) the mesostructure
after deformation simulation, (d) the top view of one pitch, (e) the outside view of an RVE, (f) the
inside view of an RVE, and (g) the deformational yarn.

6. Conclusions

The present research developed a multiscale simulation methodology based on the
virtual sub-yarns to establish accurate RVEs. The simulation results were compared with
the micro-CT and SEM structures in the literature. A parametric study was conducted to
validate the model. The multiscale method yields accurate results with a relatively small
computational cost. Furthermore, the method could give some predictive guidance on the
process design in the early stage. The following conclusions can be drawn:

(1) The braiding angle decreases as the height of the braiding point increases and vice
versa for pitch length.

(2) To achieve a realistic interior cell, surface cell, and corner cell, a temperature drop
simulation with hybrid elements was conducted to make the yarn cross-section de-
formable. The simulation result shows good agreement with the experiment.

(3) The parametric study shows that the use of 92 sub-yarns represents the cross-sectional
deformation well. A smaller bending stiffness leads to a larger total width variation,
resulting in a higher yarn volume fraction at the same tension force. The yarn defor-
mation degree is positively related to the tension force of carriers. Finally, the twisted
yarn has a higher resistance to cross-sectional deformation than the straight yarn.

(4) The simulation methodology presented here is a versatile tool that can study the rela-
tionship between the different braiding processes and the mesostructure of the preform.
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This paper proposes a numerical method to obtain the accurate RVEs. Future works
will integrate the source codes (see Supplementary Materials) into Abaqus Plug-ins to
further accelerate engineers’ research and development work.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym14194210/s1. Video S1: the simulation results of the 3D4D braiding process, Video S2:
the sub-yarn deformation, and the source codes of our workflow.
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