
����������
�������

Citation: Liu, S.; Pu, N.; Cao, J.;

Zhang, K. Synthetic Aperture Radar

Image Despeckling Based on

Multi-Weighted Sparse Coding.

Entropy 2022, 24, 96. https://

doi.org/10.3390/e24010096

Academic Editors: Jiayi Ma, Yu Liu,

Junjun Jiang, Zheng Wang and

Han Xu

Received: 9 November 2021

Accepted: 4 January 2022

Published: 7 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Synthetic Aperture Radar Image Despeckling Based on
Multi-Weighted Sparse Coding
Shujun Liu *, Ningjie Pu, Jianxin Cao and Kui Zhang

School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China;
201912021019@cqu.edu.cn (N.P.); jianxicao@126.com (J.C.); zk@cqu.edu.cn (K.Z.)
* Correspondence: liusj@cqu.edu.cn; Tel./Fax: +86-23-6510-3544

Abstract: Synthetic aperture radar (SAR) images are inherently degraded by speckle noise caused
by coherent imaging, which may affect the performance of the subsequent image analysis task. To
resolve this problem, this article proposes an integrated SAR image despeckling model based on
dictionary learning and multi-weighted sparse coding. First, the dictionary is trained by groups
composed of similar image patches, which have the same structural features. An effective orthogonal
dictionary with high sparse representation ability is realized by introducing a properly tight frame.
Furthermore, the data-fidelity term and regularization terms are constrained by weighting factors.
The weighted sparse representation model not only fully utilizes the interblock relevance but also
reflects the importance of various structural groups in despeckling processing. The proposed model is
implemented with fast and effective solving steps that simultaneously perform orthogonal dictionary
learning, weight parameter updating, sparse coding, and image reconstruction. The solving steps are
designed using the alternative minimization method. Finally, the speckles are further suppressed
by iterative regularization methods. In a comparison study with existing methods, our method
demonstrated state-of-the-art performance in suppressing speckle noise and protecting the image
texture details.

Keywords: synthetic aperture radar; image despeckling; nonlocal similarity; coefficient weighting;
dictionary learning

1. Introduction

Synthetic aperture radar (SAR) systems provide fine-resolution images regardless of
the weather conditions. Therefore, they are widely used in environmental monitoring,
military reconnaissance, and other fields [1–3]. Nevertheless, coherent imaging commonly
causes multiplicative speckle noise in SAR images, which limits the analysis and interpreta-
tion of the scene and reduces the visualization of the images [4–6]. To avoid these problems,
the speckle noise should be reduced as far as possible while retaining the structural features
and texture information in SAR images [7–11].

In recent work, much attention was devoted to spatial-domain adaptive filtering
based on Bayesian statistical estimation. Techniques such as linear minimum mean-square
error (LMMSE)-based filtering [12] and maximum posterior probability (MAP)-based
filtering [13] were introduced at this time. LMMSE filtering is performed by Lee [14],
Frost [15], and Kuan filters [16], whereas MAP filtering [17] employs Gaussian and gamma
filters. Although filters are easily implemented and have low computational complexity,
they lose much of the texture information [18]. Despeckling methods in the wavelet
domain have also been proposed. Initially, multiplicative noise was converted to additive
noise through homomorphic filtering. Later, the normal inverse Gaussian model was
introduced [19], which removes speckle noise without the shortcomings of spatial filter
wave technology and has set a new direction for SAR image processing. Transform-domain-
based methods better preserve the edges than spatial-domain filters, but tend to generate
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artifacts. Another important property of SAR images is nonlocal self-similarity, which
is easily incorporated in SAR image despeckling. For example, nonlocal means (NLM)
filtering [20] exploits self-similarity for image denoising. In an NLM filter, the resemblance
between image patches is measured by the Euclidian distance and weighted averaging
is performed in nonlocal regions. Inspired by the success of the NLM denoising filter,
the authors of [21] developed the probabilistic patch-based (PPB) algorithm, in which the
similarity between image patches in the SAR image is determined by the noise distribution
rather than the traditional Euclidian distance.

In recent years, the continuous development of sparse theory has sparked interest in
image denoising methods based on sparse representation [22–26]. In these methods, the
most critical steps are selecting the appropriate dictionary, constructing the sparse model,
and estimating the sparse coefficient. The earliest sparse representation methods, such
as the discrete cosine transform and wavelet transform, relied on fixed, over-complete
dictionaries. However, fixed dictionaries lack sufficient flexibility and self-adaptability
for disparate image structures and the exact expression of signals. A more flexible dic-
tionary would better characterize the prior information of the images. Recently, image
patches have been identified as a flexible sparse target. Unlike the whole image, a patch is
low-dimensional and overlapped patches provide opportunities for adaptively learning a
dictionary or transforming the image into a sparse representation. Sparse dictionaries of
training image patches extracted from images are known to ensure sparse representation
coefficients for specific image structures [27,28]. The famous K singular value decomposi-
tion (K-SVD) algorithm [29] assumes that each patch has a sparse representation in a global
over-complete dictionary. Each atom in the dictionary is then determined by minimizing
the fitting error of the represented patches under the sparsity constraint. Considering the
similarity and geometric direction of image patches, the authors of [30] classified image
patches and learned an orthogonal dictionary for each type of image patch. As this method
sparingly represents the types of image patches, it achieves faster dictionary learning,
sparser coding, and better image reconstruction quality than the K-SVD algorithm. Unlike
fixed dictionaries, a learned dictionary can adapt to the structural features of images and
effectively obtains the sparse representations of images.

In recent works, the sparsity and self-similarity of images are often combined to
improve the representation performance. The BM3D algorithm [31] combines similar
image patches with three-dimensional (3D) transformation to enhance the sparsity level
of 3D groups. For this purpose, BM3D performs a 3D wavelet transform on the groups
and estimates the real-image wavelet coefficients by wiener filtering, which effectively
removes Gaussian white noise from the images. The SAR-BM3D algorithm [32] extends
the BM3D algorithm to SAR images. This algorithm replaces the wiener filter with a
local LMMSE estimator that more accurately estimates the wavelet coefficients of the
image, and hence reduces the speckle effect on SAR images. The fast adaptive nonlocal
SAR despeckling (FANS) algorithm [33] is a faster and spatially-adaptive version of SAR-
BM3D, which ensures a better speckle rejection in homogeneous areas. Dong et al. [34]
proposed a nonlocal centralized sparse representation model based on the traditional sparse
representation model, which estimates the sparse coefficients by nonlocal averaging of the
image patches. As the image patches are used for constructing the coefficient correction
terms in the sparse representation, the sparse coefficient is close to the real-image coefficient.
To estimate the real image, some researchers exploit the low-rank property of similar image
patch sets [35] and apply a soft thresholding that handles the singular values of similar
noisy image patch sets.

As is well known, image regions differ in structure, so the sparsities of various image
regions differ in the transformation domain. For this reason, imposing constant constraints
on the coefficients is unlikely to fully utilize the prior information. To characterize the
structural differences in the image, weighted processing of the image coefficients is required.
The authors of [36] proposed a weighted nuclear norm minimization (WNNM) algorithm.
The standard nuclear norm minimization (NNM) algorithm treats all singular values
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equally and shrinks them with the same threshold. However, the equalization process of
NNM ignores the differences between image singular values in collections of similar image
patches with different image prior information. The WNNM algorithm treats different
singular values by assigning them with different weights. The weighting fully utilizes
the prior information in different singular values, thus improving the flexibility of the
kernel parameter constraint. Inspired by the Schatten p-norm and WNNM, the authors
of [37] developed the weighted Schatten p-norm minimization model, which replaces
the nuclear norm in the standard NNM model with the Schatten p-norm. They also
recommended a weight parameter for the Schatten p-norm that obtains a new low-rank
regular term. The problem is then solved by a generalized threshold contraction method.
The trilateral weighted sparse coding model [38] has achieved good results in practical
image denoising. This model accurately locates different noise intensities in different image
regions, introduces three weight matrices into the model, and characterizes the statistics
of realistic noise and image priors with data fidelity term and regularization term of the
sparse coding framework. The high significance of the weights ensures that the estimated
sparse coding coefficients approach the real-image coefficients.

Inspired by the above weighting idea, we propose a novel SAR image despeckling
model based on dictionary learning and multi-weighted sparse coding. In the proposed
multi-weighted sparse coding (MWSC), the efficient representation capacity of the orthogo-
nal dictionary is integrated with the strong sparsity constraint of the multi-weighting model.
This work makes three main contributions to the existing literature. First, we establish our
general analysis dictionary learning and MWSC-based SAR image despeckling model. The
proposed model continuously and efficiently trains the orthogonal dictionaries through
SVD. Second, we introduce a weight matrix for nonuniform regularization, which explicitly
and reasonably characterizes the diverse nonlocal characteristic of a group rather than
performing uniform nonlocal regularizations. Another weight matrix is introduced to the
data-fidelity term for characterizing the noise property. Third, we design an alternative
minimization solution step for simultaneous orthogonal dictionary learning, weight pa-
rameter update, nonconvex sparse coding, and image reconstruction. As demonstrated in
subsequent experimental results, the orthogonal dictionary learning and weight constraints
both contribute to the final performance improvements. In terms of speckle noise removal
and preservation of details, the MWSC recovered higher-quality images than other SAR
image despeckling methods.

2. Traditional Sparse Coding Model

Speckles in SAR images can be characterized by the following multiplicative noise
model [39]:

y = xu, (1)

where y is the observed SAR image, x is the real value of the SAR image, and u is the fully
developed speckle noise. First, the multiplicative noise model must be transformed into an
additive noise model. To this end, the SAR image is preprocessed as

y = xu = x + x(u− 1) = x + n, (2)

where n is the observed additive noise, which depends on the signal. In sparse representa-
tion theory, the sparse coding problem of each patch yk over dictionary D is formulated as

ck = argmin
ck

1
2
‖yk −Dck‖2

2 + λ‖ck‖P, (3)

where ‖yk −Dck‖2
2 is the data-fidelity term, yk = Rky is the image patch, and Rk is a

defined operator that extracts patch yk from y. ‖ck‖P is the regularization term denoting
the image prior, and λ is the regularization parameter used for balancing the relationship
between the sparse approximation error and the sparse constraint. The sparse coding
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process of each patch yk attempts to find a sparse coefficient ck over a given dictionary
D. Therefore, most of the entries in the vector ck are zero or close to zero. Once ck is
computed, the latent clean patch matrix x̂k is estimated as x̂k = Dck. The clean image x
to be reconstructed is then sparsely represented by a set of sparse codes {ck} formulated
as follows:

x = (
n

∑
k=1

RT
k Rk)

−1
n

∑
k=1

(RT
k Dck) (4)

3. The Proposed SAR Despeckling Algorithm
3.1. Weighted Sparse Representation Model

As the observed image y is seriously damaged by speckle noise, the image patch-based
sparse coding method exploits only the local sparsity, which is insufficient for estimating
the sparse coefficients ck from y. The correlation among image patches is another important
prior information of the image. To exploit this prior, we construct and utilize groups of
patches (rather than a single patch) as the basic unit of sparse representation. To retain the
correlation in the group, regularizing its group sparsity is an obvious solution; however,
the group sparsity may not be sufficiently guaranteed for all groups, because the levels
of similarity widely vary in different image regions. This variability is demonstrated on
the “Lena” image in Figure 1. Two groups, labeled “A” and “B” in Figure 1, are found in
the homogeneous region and a heterogeneous region, respectively. The enlarged patches
in Figure 1b clarify the similarity differences between the groups “A” and “B.” In the
current group-based sparse coding approaches, nonlocal similarity is enforced by uniform
nonlocal regularizations with the same penalty parameter, such as the norm. If the same
constraints are imposed on each image patch, the structural features of the image cannot be
fully captured and utilized, and some details and texture information are inevitably lost
from the image. In addition, the data-fidelity term in the sparse coding model ensures the
authenticity of the sparse coefficient in the sparse representation process and conforms to
the image despeckling process. In reality, the additive noise n depends on the signals in
the SAR image and its level varies in different local patches. Therefore, in the actual SAR
image despeckling process, the important work of the data-fidelity term ‖yk −Dck‖2

2 is
varying the local noise intensity.
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Figure 1. Comparison of similarity levels of two groups found in the “Lena” image. (a) Group A
(in the red window) and Group B (in the cyan window) include exemplary and similar patches;
(b) Zoomed-in exemplary and similar patches in groups “A” and “B”.

To rectify the problems in traditional patch-based sparse representation, we build
groups of similar patches and simultaneously exploit the local sparsity and the nonlocal
self-similarity of SAR images in a unified framework. We first divide the image y into
n overlapped patches, denoting each patch by a vector yi, i.e., i = 1, 2, . . . , n. For each
target image patch yi in the S × S training window, we search for N − 1 best matched
patches. Finally, all patches (the target image patch and all similar image patches) are
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stacked into a matrix Yi representing the group. This step requires a suitable metric for
measuring the similarity between noisy patches. Here, the Euclidean distance is selected as
the similarity metric between the target image patch yi and the candidate patch yi,j in the
training window. The Euclidean metric is given by

d(yi, yi,j) = ‖yi − yi,j‖
2
2
. (5)

The group Yi containing the searched similar patches is then represented as

Yi = [Ri,1y, Ri,2y, . . . , Ri,Ny] = [yi,1, yi,2, . . . yi,N ], (6)

where Ri,j is an operator that extracts the j-th similar patch yi,j = Ri,jy from y, and N is the
number of similar patches in group Yi. As all image patches in Yi share a similar underlying
structure, the column vectors of Yi are strongly correlated. The sparse coefficients of the
internal patches of group Yi are collected into a coefficient matrix denoted by C = [c1, c2,
. . . , cN].

The current group-based SAR image despeckling approaches impose the same con-
straint on each group. Because they ignore the varying local noise intensity, they cannot
fully capture and utilize the nonlocal characteristics of the image. To improve the accuracy
of C, we analyze its probability statistics. More specifically, we apply the maximum a pos-
terior (MAP) estimation derived from Gaussian Naïve Bayesian formula to the coefficient
matrix C:

C = argmax
C

P(C| Yi) = argmax
C

P(Yi | C)P(C)
P(Yi)

= argmax
C

P(Yi| C)P(C)

= argmax
C
{ ln P(Yi| C) + lnP(C )}

(7)

In Equation (7), ln P(Yi| C) is the data-fidelity term. Its form depends on the statistical
characteristics of the image noise that penalizes the differences between group Yi and the
coefficient matrix C. As the noise intensity varies in different regions of the SAR image,
we assume that the additive noise n follows a Gaussian distribution of noise standard
deviations. Hence, the data-fidelity term P(Yi| C) is defined as

P(Yi| C) =
N

∏
j=1

1√
2πσj

exp(− 1
2σ2

j
‖yi,j −Dcj‖2

2
), (8)

where σj is the noise standard deviation of the additive noise in image patch yi,j.
By the group property, all image patches in Yi share a similar underlying structure.

Therefore, their coefficient vectors under one dictionary should share the same sparse
profile. Specifically, the elements in one row of C have the same magnitude. We thus
assume that each row of C is independent of all other rows and that its scale parameters
follow a Laplace distribution. Therefore, the prior term in Equation (7) is defined as

P(C) =
N

∏
j=1

M

∏
l=1

1
2δl

exp(−

∣∣∣cl
j

∣∣∣
δl

) =
M

∏
l=1

1

(2δl)
N exp(−‖c

l‖1
δl

), (9)

where cl is denotes the l-th row vector of C and δl are the scale parameters of cl . Substituting
Equations (8) and (9) into Equation (7), the MAP estimation model of coefficient matrix C
is obtained as

C = argmin
C

N
∑

j=1
‖
√

2(yi,j −Dcj)σ
−1
i,j ‖

2

F
+

M
∑

l=1
‖δl
−1cl‖1

= argmin
C
‖(Yi −DC)Q1‖

2
F + ‖Q−1

2 C‖1

(10)
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where Q1 = diag(
√

2σ−1
1 , . . . ,

√
2σ−1

N ) and Q2 = diag(δ1, . . . , δM) are two diagonal matri-
ces. The design of Q1 and Q2 to characterize the varying statistics of realistic noise and the
sparsity prior of SAR images is described in Section 3.2.

Unlike the traditional sparse representation model, we modify the data-fidelity term
and regularization term with the weight matrices Q1 and Q2, respectively. The weight
matrix Q1 characterizes the residual Yi −DC in the data-fidelity term ‖(Yi −DC)Q1‖

2
F.

When the diagonal element
√

2σ−1
j is large, the speckle noise intensity is high and a stronger

constraint is imposed on the weighted residual term. Conversely, when the speckle noise
intensity is low, the constraint on the residual term is weakened. By introducing the weight
matrix Q1 into the data-fidelity term, we capture and utilize the realistic noise properties
in different patches. Meanwhile, Q2 in the regularization term reflects the importance of
each element in C. Specifically, one weight in Q2 is assigned to the elements in one row
of C to enforce the same sparse profile among similar patches, whereas the elements of C
in different rows are assigned different weights that change the strengths of the sparsity
constraints. Overall, the weighted sparse constraint model not only reflects the varying
local noise intensity, but also simultaneously utilizes the patch-level sparsity and relevance
among patches, which effectively improves the adaptability of the model to real SAR
images and the accuracy of the coefficient matrix C.

3.2. Adaptive Matrix Parameter Learning

Because the noise intensity varies in different image regions, the weight matrix Q1
must learn to adaptively describe the statistical properties of the noise. In the actual speckle-
reduction process, the weight matrix Q1 is updated through iterative regularization. During
the k-th iteration, the parameter σj in weight Q1 is updated as

σj = γ

√
abs(σ2 − ‖yj − yk

j ‖
2

2
/N), (11)

where σ is the noise benchmark parameter, γ < 1 is a control factor, which is tuned
according to the intensity of noise. In general, a smaller γ is set for low noise level and a
larger γ is set for high noise level. yj is the j-th image patch extracted from the original

observation image y, and yk
j is the j-th image patch extracted from the input image yk

during the k-th iteration of iterative regularization (see Section 3.4. for details).
An effective regularization term that describes the image priors is required for a high-

quality recovered image. In the proposed model given by Equation (10), the combinational
regularization term ‖Q−1

2 C‖1 is precisely controlled by a weight matrix Q2 describing the
importance of the different elements of the coefficient matrix. In our method, the weight
matrix Q2 of the regularization term is learned from Yi for adaptively adjusting the weights
of the coefficients. Clearly, Q2 is individual to group Yi and effectively captures the specific
structural information of that group.

Fixed dictionaries are unlikely to effectively express the signals in a sparse represen-
tation, but a trained dictionary is expected to enhance the sparsity of coefficients. The
dictionary learning method in the traditional sparse coding model (Equation (3)) jointly
optimizes the dictionary D and the coefficient vector ck. The dictionary D learned by this
method adapts to a given whole image, not merely a group. When the same dictionary
is shared by all image patches, it may not adapt to specific local structures in the image.
Instead of learning a redundant dictionary for the whole image, we directly learn an individ-
ual dictionary D for each group Yi, which covers all patches in that group. The model also
imposes a tight frame constraint DTD = I, which not only restrains the correlations among
dictionary atoms, but also simplifies the complexity of the sparse decomposition operations.

Finally, the complete group-based dictionary learning and MWSC model is defined
as follows:

(C, Q2, D) = argmin
C,Q2,D

‖(Yi −DC)Q1‖
2
F + ‖Q

−1
2 C‖1 s.t. DTD = I, (12)
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where C, Q2 and D are matrices to be solved.

3.3. Model Optimization

To facilitate the solution of Equation (12), we define an auxiliary variable A = Q−1
2 C.

Equation (12) is then rewritten as

(A, Q2, D) = argmin
A,Q2,D

‖(Yi −DQ2A)Q1‖
2
F + ‖A‖1 s.t. DTD = I. (13)

Equation (13) includes three unknown variables. Because Equation (13) is nonconvex,
it is solved by an alternative minimization method. In each iteration, Equation (13) is
decomposed into three subproblems: A, Q2 and D for learning the orthogonal dictionary
D, updating the weight Q2, and sparse coding of A, respectively.

Given D and A, the subproblem of Equation (13) with respect to Q2 is

Q2 = argmin
Q2

‖(Yi −DQ2 A)Q1‖
2
F . (14)

As D is an orthogonal dictionary, the subproblem of Q2 can be rewritten as

Q2 = argmin
Q2

‖DTYiQ1 −Q2AQ1‖
2
F. (15)

The objective function Equation (15) is separable into the diagonal elements of Q2 and
its minimization problem can be consequently decoupled into multiple independent scalar
optimizations of the form

δl = argmin
δl

‖(DTYiQ1)l − δl(AQ1)l‖
2
F, (16)

where (DTYiQ1)l and (AQ1)l represent the l-th rows of the matrices DTYiQ1 and AQ1,
respectively. Equation (16) is a quadratic minimization problem, so its diagonal element δl
is solved as

δl =
(DTYiQ1)l(AQ1)

T
l

‖(AQ1)l‖
2
2

. (17)

Estimating each l-th diagonal element δl of Q2 by Equation (17), the solution of Q2 is
obtained.

Given Q2 and A, the subproblem of Equation (13) with respect to D is

D = argmin
D

‖YiQ1 −DQ2AQ1‖
2
F s.t. DTD = I. (18)

Equation (18) is a Frobenius norm minimization problem with an orthogonal con-
straint, which can be solved by SVD of YiQ1(Q2AQ1)

T as

U∆VT = YiQ1(Q2AQ1)
T , (19)

where U and V are the matrices of the left and right singular vectors, respectively, and ∆ is
the singular value matrix. By SVD, Equation (19) is solved as

D = UVT . (20)

Clearly, the dictionary D is self-adaptive to each group Yi and requires only one SVD
for each group, which is computationally efficient.
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Given D and Q2, the subproblem of Equation (13) with respect to A is

A = argmin
A
‖(Yi −DQ2A)Q1‖

2
F + ‖A‖1. (21)

As D is orthogonal, the first Frobenius norm term in Equation (21) is rewritten as
‖DTYiQ1 −Q2AQ1‖

2
F. The minimization of Equation (21) is separable into the elements of

the matrices A and Yi as

aj = arg min
aj

2
σ2

j
‖DTyi,j −Q2aj‖

2

F
+ ‖aj‖1. (22)

where aj is the j-th column vector of matrix A. The minimization of Equation (22) can be
further decoupled into multiple independent scalar optimizations of the form

aj,l = argmin
aj,l

1
2
(aj,l −

dT
l yi,j

δl
)

2

+
σ2

j

4δ2
l

∣∣∣aj,l

∣∣∣, (23)

where aj,l is the l-th element of aj and dl is the l-th column of dictionary D. Equation (23)
can be efficiently and accurately solved by soft thresholding, that is

aj,l = sign(
dT

l yi,j

δl
)max(

∣∣∣∣∣d
T
l yi,j

δl

∣∣∣∣∣− σ2
j

4δ2
l

, 0), (24)

where sign(·) is a symbolic function. The soft-thresholding approach provides an explicit
solution to the original Equation (21).

3.4. SAR Image Despeckling

Equations (14), (18) and (21) are solved until the stopping criterion is satisfied. The
clean group Xi is then estimated using the solved D, A and Q2 as Xi = DQ2A. Based on
the estimated clean group Xi, the SAR image reconstruction model is constructed as

x = argmin
x
‖x− y‖2

2 + η∑
i

∑
j
‖Ri,jx− (DQ2A)j‖

2
2
, (25)

where η is a regularization parameter and (DQ2A)j is the j-th column of the estimated
clean group DQ2A. Equation (25) is a least squares problem that is minimized as follows:

x = (I + η∑
i

∑
j

RT
i,jRi,j)

−1
( y + η∑

i
∑

j
RT

i,j(DQ2A)j), (26)

where ∑
i

∑
j

RT
i,jRi,j is a diagonal matrix whose diagonal elements are the numbers of the

corresponding pixels extracted from all similar patches. The inverse of the large-scale
matrix I + η∑

i
∑
j

RT
i,jRi,j is easily obtained. Solving Equation (26) yields the reconstructed

SAR image.
To further improve the speckle-reduction performance of the proposed model, we

repeatedly remove speckles using an iterative regularization technique that filters the noise
back to the denoised image as the new input image:

yk+1 = xk + ξ(y− xk), (27)

where k is the number of iterations and ξ is the relaxation parameter. The above despeckling
process is repeated on the input image yk+1 to reconstruct the SAR image xk+1. This
procedure is repeated several times until the number of iterations reaches the threshold M,
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and the final despeckled SAR image is output from the model. Figure 2 is a flowchart of
the MWSC algorithm for suppressing speckle noise in SAR images.
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Figure 2. Flowchart of the MWSC algorithm for SAR image despeckling.

4. Experimental Results and Analysis

In this section, we experimentally verify the performance of the proposed MWSC
approach for SAR image despeckling. The despeckling performance was compared with
those of Gamma-MAP filters, the Log-KSVD method, the PPB method, the POTDF method,
the FANS method, and the SAR-BM3D method. PPB and SAR-BM3D are well-known
classical algorithms for processing SAR images. The executable codes of the competing
methods were downloaded from the authors’ website (http://www.grip.unina.it/research/
80-sar-despeckling.html) (16 October 2021).

To investigate the impacts of patch size and overlapping factor, despeckling experi-
ments on three test images are separately conducted under various patch sizes and overlap-
ping factors. Figure 3 shows the curves of PSNR versus patch size and overlapping factor.
From Figure 3a, we have the following observations. As the patch size increases, the PSNR
first increases and then drops. This is because using a large patch size allows more robust
discrimination between noisy patches. However, using a too large patch will prevent the
algorithm from finding enough similar patches. From Figure 3b, it is concluded that the
performance of our proposed algorithm is not quite sensitive to overlapping factor since all
the curves are almost flat. The highest performance for each test image is achieved with the
overlapping factor in the range [2,5]. Based on the above analysis, in the proposed MWSC
algorithm, we set the size of image patch as 8 × 8 and overlapping factor is empirically set
as 4. Besides, the range S× S of the training window for searching similar patches is set as
30 × 30. The number of image patches in one group is set as 32 and the size of the learning
dictionary is set as 64 × 64.

http://www.grip.unina.it/research/80-sar-despeckling.html
http://www.grip.unina.it/research/80-sar-despeckling.html
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Figure 3. Performance comparison with various patch sizes (a) and overlapping factors (b) for three
test images.

As noise-free signals are lacking in real SAR images, we simulated a SAR image for
the experiment based on an optical image. In our simulated test, we chose the “House”
and “Cameraman” images of size 256 × 256 and the “Lena” image of size 512 × 512. The
despeckling performance was quantitatively evaluated by two performance measures:
the peak-signal-to-noise ratio (PSNR) and the structural similarity index (SSIM), which
evaluate the speckle-suppression capability of the algorithm and the structural similarity
of the recovered image to the original image, respectively.

On real SAR images, the despeckling performance was evaluated by the equivalent
number of looks (ENL) and the overall edge preservation index (EPI). The ENL is a
widely used index that measures the degree of speckle suppression in a homogeneous
region. A large ENL denotes a strong speckle-suppression ability. Meanwhile, the EPI
reflects the degree of image-detail preservation. A large EPI indicates a strong detail-
preservation ability.

4.1. Despeckling Results of Simulated SAR Images

We first validated the proposed method on simulated SAR images generated by
adding different levels of gamma speckle noise (L = 4 or 16) to the natural images “House,”
“Cameraman”, and “Lena”. The number of looks L represents the speckle noise level, where
smaller L denotes a greater noise intensity. The original images are shown in Figure 4.
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Figure 4. Original images used in the comparison experiments. (a) Lena (512 × 512); (b) House
(256 × 256); (c) Cameraman (256 × 256).

Figures 5–8 show the images obtained by the different despeckling methods on the
simulated optical images contaminated by speckle. All methods achieved satisfactory
despeckling performance, although Gamma-MAP introduced some obvious artifacts that
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severely degraded the image quality of Lena (Figures 5c, 6c, 7c and 8c). The Log-KSVD
method left significant noise residues in the smoothed areas (Figures 5b and 6b). Although
PPB provided a much smoother result than Log-KSVD and Gamma-MAP, it blurred some
important details, such as the hat texture in Figure 6d and the window edge in Figure 7d.
POTDF keeps working very well on the heterogeneous region while unsatisfactory on
the homogeneous region (Figure 7e). The SAR-BM3D method well preserved the texture
information of the image and reasonably suppressed the speckle noise, but some residual
noise appeared in the despeckled image of Lena (Figure 6f). Likewise, FANS produces a
smoother output, but many wavelet-related artifacts appear. We observe that the proposed
MWSC model adequately suppressed speckle noise and better restored the edges and
textures of the original images than the competing methods.
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To demonstrate the processing results of each algorithm on image details and point
targets, we enlarged some local details in Figures 5 and 7. The enlargements are shown
in Figures 9 and 10, respectively. Here we compared only the results of PPB, POTDF,
SAR-BM3D, FANS and MWSC, the results of the Log-KSVD and Gamma-MAP algorithms
were omitted because their visual effects were poor. Visible speckle noise persisted in the
House image despeckled by PPB (Figure 10). The POTDF tended to produce an unfavorable
oversmoothing effect. On the other hand, SAR-BM3D, FANS, and the proposed MWSC
method best preserved the image details, but MWSC better suppressed the speckle noise
than the SAR-BM3D and FANS. For example, significant speckle noise appeared in the
enlarged local details of House obtained by SAR-BM3D and FANS (Figure 10). Besides
eliminating the speckle noise, the proposed MWSC algorithm better preserved the sharper
edges and finer details than the other algorithms, and thereby obtained much clearer
and better visual results. The corresponding PSNR and SSIM evaluations of the different
algorithms on the three synthetic images are displayed in Table 1. The MWSC algorithm
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achieved the highest PSNR and SSIM results in most cases (highlighted in bold font),
consistent with the visual inspections.
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Table 1. PSNR and SSIM values of the tested algorithms in despeckling of simulated SAR images.

Image Algorithm
L = 4 L = 16

PSNR SSIM PSNR SSIM

Lena

Noise 17.7987 0.2643 23.7617 0.4713
Log-KSVD 23.0580 0.4406 29.7223 0.7523

Gamma-MAP 25.9796 0.7226 29.7565 0.8146
PPB

POTDF
29.8550
29.6280

0.8025
0.8371

33.2598
34.0313

0.8786
0.8929

SAR-BM3D
FANS

31.1636
31.2764

0.8452
0.8514

34.1672
34.3950

0.8984
0.8981

MWSC 31.4900 0.8564 34.1283 0.8949

House

Noise 17.0168 0.2287 22.9988 0.4362
Log-KSVD 23.7837 0.5242 28.1420 0.7163

Gamma-MAP 24.3881 0.6733 28.0729 0.7750
PPB

POTDF
29.6706
28.8839

0.7874
0.8244

33.2822
33.8582

0.8632
0.8746

SAR-BM3D
FANS

31.2560
31.1984

0.8355
0.8415

34.4218
34.3353

0.8886
0.8782

MWSC 31.5566 0.8469 34.5000 0.8914

Cameraman

Noise 17.7353 0.4095 23.7319 0.5629
Log-KSVD 24.0267 0.6241 28.9515 0.7891

Gamma-MAP 24.0110 0.7230 28.2264 0.8034
PPB

POTDF
26.9156
27.6073

0.7840
0.8262

29.1476
31.6093

0.8582
0.9023

SAR-BM3D
FANS

28.0520
28.0336

0.8359
0.8384

31.5177
31.7052

0.9086
0.9061

MWSC 28.1334 0.8424 31.7115 0.9094
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4.2. Despeckling Results of Real SAR Images

In this experiment, the despeckling performances of the proposed and existing algo-
rithms were tested on real SAR images (see Figure 11). The despeckled results of the real
SAR images obtained by the compared methods are shown in Figures 12–14.
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Log-KSVD 23.7837 0.5242 28.1420 0.7163 

Gamma-MAP 24.3881 0.6733 28.0729 0.7750 
PPB 

POTDF 
29.6706 
28.8839 

0.7874 
0.8244 

33.2822 
33.8582 

0.8632 
0.8746 

SAR-BM3D 
FANS 

31.2560 
31.1984 

0.8355 
0.8415 

34.4218 
34.3353 

0.8886 
0.8782 

MWSC 31.5566 0.8469 34.5000 0.8914 

Cameraman 

Noise 17.7353 0.4095 23.7319 0.5629 
Log-KSVD 24.0267 0.6241 28.9515 0.7891 

Gamma-MAP 24.0110 0.7230 28.2264 0.8034 
PPB 

POTDF 
26.9156 
27.6073 

0.7840 
0.8262 

29.1476 
31.6093 

0.8582 
0.9023 

SAR-BM3D 
FANS 

28.0520 
28.0336 

0.8359 
0.8384 

31.5177 
31.7052 

0.9086 
0.9061 

MWSC 28.1334 0.8424 31.7115 0.9094 

4.2. Despeckling Results of Real SAR Images 
In this experiment, the despeckling performances of the proposed and existing algo-

rithms were tested on real SAR images (see Figure 11). The despeckled results of the real 
SAR images obtained by the compared methods are shown in Figures 12–14. 
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Figure 11. Real SAR images used in the comparison experiments. (a) SAR1 (256 × 256); (b) SRA2 
(256 × 256); (c) SAR3 (512 × 512). Figure 11. Real SAR images used in the comparison experiments. (a) SAR1 (256 × 256); (b) SRA2
(256 × 256); (c) SAR3 (512 × 512).
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Figure 12. Despeckling results of the real SAR1 image. (a) Noisy image; (b) Log-KSVD; (c) Gamma-
MAP; (d) PPB; (e) POTDF; (f) SAR-BM3D; (g) FANS; (h) MWSC.

As shown in Figures 12–14, the proposed MWSC outperformed its competitors on the
real SAR images. The Gamma-MAP algorithm eliminated less speckle noise than other
methods and introduced serious aliasing artifacts. It also blurred edges of the details, as
shown in Figures 12c and 13c.The Log-KSVD algorithm slightly improved the despeckling
effect but retained some obvious speckle noise (see Figures 12b and 13b). Although PPB
effectively suppressed the speckle noise from the SAR images, it blurred some edges
and strong targets Figures 12d and 14d). From Figures 12e and 13e, we can find that
POTDF still remains much noise in both homogeneous and heterogeneous areas. SAR-
BM3D and FANS preserve all structures very well, with an accuracy comparable to that
of MWSC. The MWSC, however, succeed in removing speckle in both homogeneous and
heterogeneous areas, providing a sharper result and contributing to a better perceived
quality. To more intuitively compare the detailed processing of the various algorithms,
Figures 15 and 16 present local enlargements of the despeckled images obtained by the
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despeckling methods. Again, the proposed MWSC method achieved a higher visual quality
than the other despeckling methods.
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Figure 13. Despeckling results of the real SAR2 image. (a) Noisy image; (b) Log-KSVD; (c) 
Gamma-MAP; (d) PPB; (e) POTDF; (f) SAR-BM3D; (g) FANS; (h) MWSC. 
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Figure 13. Despeckling results of the real SAR2 image. (a) Noisy image; (b) Log-KSVD; (c) Gamma-
MAP; (d) PPB; (e) POTDF; (f) SAR-BM3D; (g) FANS; (h) MWSC.
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Figure 13. Despeckling results of the real SAR2 image. (a) Noisy image; (b) Log-KSVD; (c) 
Gamma-MAP; (d) PPB; (e) POTDF; (f) SAR-BM3D; (g) FANS; (h) MWSC. 
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Figure 15. Despeckling results of a local enlargement of Figure 9. (a) Noisy image; (b) Log-KSVD; 
(c) Gamma-MAP; (d) PPB; (e) POTDF; (f) SAR-BM3D; (g) FANS; (h) MWSC. 

  

Figure 14. Despeckling results of the real SAR3 image. (a) Noisy image; (b) Log-KSVD; (c) Gamma-
MAP; (d) PPB; (e) POTDF; (f) SAR-BM3D; (g) FANS; (h) MWSC.



Entropy 2022, 24, 96 16 of 20

Entropy 2022, 24, x FOR PEER REVIEW 16 of 21 
 

 

    
(e) (f) (g) (h) 

Figure 14. Despeckling results of the real SAR3 image. (a) Noisy image; (b) Log-KSVD; (c) 
Gamma-MAP; (d) PPB; (e) POTDF; (f) SAR-BM3D; (g) FANS; (h) MWSC. 

As shown in Figures 12–14, the proposed MWSC outperformed its competitors on 
the real SAR images. The Gamma-MAP algorithm eliminated less speckle noise than other 
methods and introduced serious aliasing artifacts. It also blurred edges of the details, as 
shown in Figures 12c and 13c.The Log-KSVD algorithm slightly improved the despeckling 
effect but retained some obvious speckle noise (see Figures 12b and 13b). Although PPB 
effectively suppressed the speckle noise from the SAR images, it blurred some edges and 
strong targets Figures 12d and 14d). From Figures 12e and 13e, we can find that POTDF 
still remains much noise in both homogeneous and heterogeneous areas. SAR-BM3D and 
FANS preserve all structures very well, with an accuracy comparable to that of MWSC. 
The MWSC, however, succeed in removing speckle in both homogeneous and heteroge-
neous areas, providing a sharper result and contributing to a better perceived quality. To 
more intuitively compare the detailed processing of the various algorithms, Figures 15 
and 16 present local enlargements of the despeckled images obtained by the despeckling 
methods. Again, the proposed MWSC method achieved a higher visual quality than the 
other despeckling methods. 

   
(a) (b) (c) 

    
(d) (e) (f) (g) 

Figure 15. Despeckling results of a local enlargement of Figure 9. (a) Noisy image; (b) Log-KSVD; 
(c) Gamma-MAP; (d) PPB; (e) POTDF; (f) SAR-BM3D; (g) FANS; (h) MWSC. 

  

Figure 15. Despeckling results of a local enlargement of Figure 9. (a) Noisy image; (b) Log-KSVD;
(c) Gamma-MAP; (d) PPB; (e) POTDF; (f) SAR-BM3D; (g) FANS.
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Figure 16. Depeckling results of a local enlargement of Figure 10. (a) Noisy image; (b) Log-KSVD;
(c) Gamma-MAP; (d) PPB; (e) POTDF; (f) SAR-BM3D; (g) FANS.

To quantitatively evaluate the despeckling results, the corresponding ENLs and EPIs
of the three real images are provided in Table 2, with the best values highlighted in bold.
The ENL values were calculated in homogeneous regions of the real SAR images. Regions
1 and 2 in Table 2 correspond to the red and yellow regions, respectively, in the SAR images
(such as the Figure 12a). PPB and the proposed MWSC achieved higher ENL than the
other despeckling methods, affirming that the PPB and MWSC algorithms have stronger
speckle-reduction ability in the homogeneous regions than the remaining algorithms.
This conclusion is consistent with the above visual inspection. Meanwhile, SAR-BM3D,
FANS, and MWSC obtained higher EPI than PPB, Gamma-MAP, Log-KSVD and POTDF,
confirming the superior performance of SAR-BM3D, FANS and MWSC in image-detail
retention. In short, the proposed MWSC provided the best compromise between speckle
reduction and detail preservation.
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Table 2. ENL and EPI values of the tested algorithms in despeckling of real SAR images.

Image Algorithm
ENL

EPI
Region 1 Region 2

SAR1

Noise 9.2121 10.2718 1
Log-KSVD 83.6841 106.0872 0.3068

Gamma-MAP 127.8704 188.9452 0.1149
PPB

POTDF
246.0215
78.3594

358.4988
92.3279

0.1385
0.3227

SAR-BM3D
FANS

64.1340
102.4533

86.2054
178.5487

0.3520
0.3444

MWSC 173.1734 219.8400 0.3516

SAR2

Noise 14.0374 11.6972 1
Log-KSVD 252.7677 151.5827 0.4847

Gamma-MAP 295.5257 226.2869 0.2924
PPB

POTDF
1366.9521
436.5643

2939.8065
549.5423

0.1880
0.3233

SAR-BM3D
FANS

1470.8629
554.9834

727.2407
697.4763

0.3109
0.3151

MWSC 1006.4874 980.5904 0.3134

SAR3

Noise 17.4150 20.3698 1
Log-KSVD 128.5206 184.8684 0.2989

Gamma-MAP 149.3338 222.5550 0.2155
PPB

POTDF
488.0467
144.8686

809.7066
196.7193

0.2472
0.2902

SAR-BM3D
FANS

119.7533
156.1875

159.0166
269.8643

0.3991
0.3538

MWSC 186.0285 306.6940 0.3787

4.3. Impacts of Weights and Dictionaries on Performance

To better understand the roles of the weights Q1 and Q2 and the learning dictionary D
in the MWSC model, we compared the performances of the proposed MWSC and several
MWSC-based benchmark methods. We first replaced the weight Q1 with the unit diagonal
matrix, forming the QWSC benchmark model. Replacing the learning dictionary D with
the wavelet dictionary, we then formed the DWSC benchmark model.

Figures 17 and 18 present the despeckled images obtained by the different despeckling
methods. Log-KSVD retained a large amount of speckle noise in the “House” image
(Figure 17a). QWSC improved the visual effect of “House” because the weights Q2 improve
the sparse representation capability of the QWSC algorithm and further enhance the
speckle-suppression performance (Figure 17b). MWSC achieved a higher visual effect
than QWSC because the weights Q1 effectively capture and utilize the statistical properties
of the noise (Figure 18b,d). Although the result of DWSC exhibited no obvious speckle
noise, a small amount of detailed information was lost (Figure 18c). Obviously, the learning
dictionary in the proposed model adapted to different structures of the image to improve
the speckle-reduction performance of the model.
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Tables 3 and 4 give the numerical evaluation results of the different algorithms on
the “House” and real SAR2 images, respectively, with the best results marked in bold. As
shown in Table 3, MWSC achieved higher PSNR and SSIM values than the benchmark
algorithms on “House,” confirming that weight Q1, weight Q2, and dictionary learning
all improved the PSNR and SSIM values of the recovered images to different degrees.
Meanwhile, the ENL and EPI values in Table 4 clarify that the proposed BWCS algorithm
well balanced the speckle noise suppression with detail preservation in the real SAR image,
outperforming the Log-KSVD algorithm and the benchmark algorithms.

Table 3. PSNR and SSIM values of the tested algorithms in despeckling of House Image.

Image Algorithm
L = 4 L = 16

PSNR SSIM PSNR SSIM

House

Noise 17.0168 0.2287 22.9988 0.4362
Log-KSVD 23.7837 0.5242 28.1420 0.7163

QWSC 27.3545 0.8284 32.2659 0.8662
DWSC 27.5353 0.7172 32.3059 0.8597
MWSC 31.5566 0.8469 34.5000 0.8914

Table 4. ENL and EPI values of the tested algorithms in despeckling of real SAR2 Image.

Image Algorithm
ENL

EPI
Region 1 Region 2

SAR2

Noise 14.0374 11.6972 1
Log-KSVD 252.7677 151.5827 0.4847

QWSC 591.7327 711.9711 0.2075
DWSC 1527.7978 1029.4798 0.2541
MWSC 1006.4874 980.5904 0.3134
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This comprehensive analysis demonstrates that introducing weight Q1 improves the
noise-statistical properties of SAR images, while introducing weight Q2 captures the sparse
a priori properties of SAR images. The learning dictionary is more adaptable to different
image structures than the fixed dictionary, thereby enhancing the signal sparsity and
achieving competitive SAR image-despeckling performance.

5. Conclusions

This paper proposed a multiweighted SAR image despeckling method based on the
traditional sparse representation model and combined it into a framework that unifies
dictionary learning and coefficient weighting. In this method, the structure group is
constructed using the nonlocal similarity between SAR image patches and is employed
as the processing object of speckle reduction in SAR images. This approach significantly
improves the sparsity of the image coefficients. Borrowing the idea of coefficient weighting,
we also designed a data-fidelity term for the total downscaling model and a regularization
term to enhance the reliability and accuracy of image coefficient estimation. An orthogonal
dictionary was trained on sets of similar image patches to elevate the sparsity of the
coefficients and simplify the complexity of sparse coding. Throughout the iterations, the
algorithm updates the weight matrix of each similar image patch set to improve the full-
medium adaptation. By combining the statistical parameter estimation of SAR images
with iterative regularization, we further improved the quality of the images during the
solution process. In comparison experiments, the proposed method achieved comparable
or better despeckling performance than four competing methods, in terms of speckle
suppression, detail preservation, and visual effect. The results verified the reasonableness
and effectiveness of the proposed method.
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