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Abstract: Alzheimer’s disease (AD) is a devastating neurodegenerative disease characterized by
progressive neuron losses in memory-related brain structures. The classical features of AD are a
dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary
tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the
disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration
of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However,
their low capacity to cross the blood–brain barrier and their exorbitant cost currently limit their use.
To overcome these limitations, short peptides mimicking the binding receptor sites of these growth
factors have been developed. Such peptides can target selective signaling pathways involved in
neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and
their derived peptides as potential treatment for AD. It describes (1) the physiological functions of
growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies
to develop peptides derived from growth factor and their capacity to mimic the role of native proteins;
and (3) new advancements and potential in using these molecules as therapeutic treatments for AD,
as well as their limitations.

Keywords: neurotrophin; bone morphogenetic proteins; MAPK; PI3K/AKT; cholinergic neurons;
amyloid-β peptide; tau protein; metabolic pathway

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a pro-
gressive decline of cognitive and behavioral functions, with typical symptoms such as
memory loss and language or problem-solving difficulties [1]. AD is the leading cause of
dementia, accounting for 60 to 80% of cases, and currently affects more than 50 million
people worldwide [1]. Moreover, the World Health Organization (WHO) estimates that
131 million people will suffer from AD by 2050 [2], ensuring a global public health priority.

The etiology of AD is associated with changes in synaptic signaling, loss of synapses,
and neuron degeneration [3]. It has long been reported that the dysregulation of the
cholinergic system in the basal forebrain, a master regulator of executive and mnemonic
functions, is linked to memory loss/cognitive decline in AD [4,5]. The cortical cholinergic
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denervation remains one of the earliest, most severe, and most consistent transmitter
changes observed during AD progression, which led to the formulation of the “cholinergic
hypothesis” [6].

The histological hallmarks of AD are the accumulation of dense extracellular deposits,
also known as senile/amyloid plaques, and intracellular neurofibrillary tangles in several
brain regions such as the basal forebrain, frontal lobe, hippocampus, cingulate gyrus, amyg-
dala, substantia nigra, several brainstem nuclei, and the cerebral cortex [7]. The amyloid
plaques are caused by the accumulation and aggregation of amyloid-β (Aβ) peptides
(mainly Aβ1–42 but also Aβ1–40 peptides) generated by the consecutive cleavage of the
amyloid-β precursor protein (APP) by β- and γ-secretases [8]. The neurofibrillary tangles
are formed when the neuronal microtubule-associated protein tau is abnormally hyperphos-
phorylated by kinases such as glycogen synthase kinase 3β (GSK3β), leading to its release
from the microtubule and intracellular aggregation into bundles of filaments [9]. It causes
neuronal dysfunctions such as axon integrity and vesicular transport impairment [9,10].

The “amyloid hypothesis” (also known as the amyloid cascade hypothesis) has been
the mainstream explanation for the pathogenesis of AD for over 25 years, but is still a
highly controversial topic in the field. This hypothesis suggests that the accumulation
and deposition of Aβ peptides is the initiating factor that triggers a cascade of disease-
causing processes such as tau-tangle formation, neuroinflammation, synapse dysfunction,
and cell death, which ultimately leads to dementia [11]. Despite ongoing debates about
this hypothesis, evidence supports the idea that an imbalance between production and
clearance of Aβ peptides is the initiating event of AD pathogenic processes [12]. The
strongest evidence is that all the dominant mutations causing the familial (early onset,
Mendelian-inheritance) form of AD reside either in APP or presenilin (catalytic subunit of
γ-secretase), and result in increased production of Aβ1–42 or self-aggregation propensity of
resultant Aβ peptides [11]. The overexpression of APP due to duplication of chromosome
21 in trisomy 21 (Down’s syndrome) has also been reported to cause an early appearance of
Aβ1–42 plaques and development of AD at an early age (about 50% of people with Down
syndrome who are in their 60s have AD) [1]. Furthermore, the amyloid hypothesis is
also strongly supported by the identification of protective mutation of APP that results in
lifelong decrease in APP cleavage into Aβ and reduced risk of AD [13]. While these genetic
modifications greatly increase the AD risk, they are rare (1–6% of AD cases) [14]. Indeed,
more than 95% of AD cases belong to the sporadic (late onset) form of AD (LOAD), which
is caused by complex genetic and environmental factors. Apolipoprotein E4 (APOE4) is the
most prevalent and important genetic risk factor for LOAD [15], with an estimated 3 to 12
times increased risk of LOAD [1]. APOE4 has been reported to have both amyloid-related
and amyloid-independent effects, including reduced Aβ clearance by the blood–brain
barrier (BBB) and decreased Aβ plaque load, tau tangle formation, and regulation of
microglia linked to the triggering receptor expressed on myeloid cells 2 (TREM2) (also
linked with high risk of LOAD [16]), proinflammatory activation, impaired glucose and
lipid metabolism, and compromised vascular homeostasis [17–19]. Furthermore, several
genome-wide association (GWAS) studies identified multiple AD-risk genes that could
be linked with the Aβ cascade and/or tau pathology, but also to cholesterol and lipid
metabolism, immune system and inflammatory response, and vesicle trafficking [20–22].
These reports highlight the complexity and multifactorial nature of AD.

2. Current Strategies Targeting AD Development

Current treatments of AD only alleviate symptoms for a short period, and there is
still no cure for this disease or a way to stop or delay its progression. Presently, the only
Food and Drug Administration (FDA)-approved treatments for AD are primarily acetyl-
cholinesterase inhibitors (donepezil, rivastigmine, and galantamine), targeting the cholin-
ergic system dysfunction [1,23] and memantine, an antagonist of the N-methyl-D-aspartate
receptor (NMDAR) involved in chronic excitotoxicity and synaptic dysfunction [1,24].
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However, these treatments have only modest and transient effects, and do not stop the
progression of the disease [25,26].

In recent decades, many therapeutic approaches targeted the amyloid cascade com-
ponents. Consequently, many clinical trials have been directed toward Aβ-lowering
strategies, including interference with the amyloidogenic processing of APP, mainly with
β- and γ-secretase inhibitors, and removing Aβ oligomers and plaques with monoclonal
antibodies [22,27]. Unfortunately, until now, no therapy directed at reducing Aβ has been
successful, resulting in either no cognitive benefit, or even worsening cognitive outcome
or inducing major side effects [28–31]. However, a recent phase 2 trial of Donanemab, a
humanized IgG1 antibody that targets a modified form of Aβ present only in established
plaques, showed modest inhibition of cognitive and functional decline in early symp-
tomatic AD patients [32]. While encouraging, longer and larger trials are necessary to
study the efficacy and safety of Donanemab in AD. Therapeutic strategies targeting tau
are also under investigation, including inhibitors of tau kinases and tau aggregation, and
immunotherapy [27,33]. As for Aβ-target therapies, none of the tau-targeted therapies
have been successful yet, and the only treatment that has reached a phase III trial is the tau
aggregation inhibitor TRx0237 (LMTX™) [33].

Given that therapeutics targeting the main components of the Aβ cascade hypothesis
failed in the late stage of clinical trials, these strategies have been reconsidered, and
other strategies are being developed. Multiple promising targets to prevent AD or its
progression have been identified [34]. The neuroinflammatory system, including astrocyte
and microglia (key cellular regulators of neuroinflammation), and genetic variants linked
to neuroinflammation, such as TREM2, have received great attention recently due to
the notable correlation between the degree of neuroinflammation and the severity of
AD [27,35,36]. Targeting, APOE; a major lipid transporter that plays a pivotal role in
the development, maintenance, and repair of the central nervous system, and which
polymorphism is a major risk factor for developing LOAD, is also in an early phase of
therapeutic development [17,19,37]. Given that neurotrophin deficiency and dysregulation
is closely associated with the pathogenesis of AD [38], supplementation of neurotrophic
factors (nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF)) is
currently a potential therapeutic approach to treat AD [27]. Using AD animal models,
this treatment has proven its efficacy to ameliorate learning deficit [39,40]. A phase II
clinical trial using adenoviral vector to deliver NGF (AAV2-NGF) to the basal forebrain
(a region rich in cholinergic neurons) of AD patients demonstrated the feasibility of this
approach [41]. The sections below describe the role of different growth factors in the central
nervous system (CNS), their alteration in AD pathology, and potential uses as therapeutic
treatments for AD.

3. Growth Factors in Brain Function and AD
3.1. Neurotrophins

The neurotrophin family includes NGF, BDNF, neurotrophin-3 (NT-3), and neurotrophin-
4/5 (NT-4/5). Besides being essential during the development of the nervous system, they
play a crucial role in the survival and phenotype maintenance and regeneration of specific
types of neurons into adulthood [42]. In addition, they are implicated in the pathogenesis of
certain neurodegenerative diseases, such as AD, and are thus targeted as potential therapeutic
solutions for this disease.

3.1.1. Structure

The human NGF gene is located on the proximal short arm of chromosome 1 (1p),
while human BDNF, NT-3, and NT-4/5 genes are located on chromosome 11 (11p), 12 (12p),
and 19 (19q) respectively [43,44]. The BDNF gene has a very complex structure [45,46]. The
human BDNF gene consists of nine functional promoters and one protein-coding 3′ exon
that is spliced together with one of the nine noncoding 5′ exons or two noncoding exons
unique to humans (Vh and VIIIh), leading to several mRNA splice variants [46]. The splice
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variants are expressed in response to specific stimuli [47]. For example, the translation of
Bdnf transcripts containing exon-IV and -VI is directly or indirectly regulated by changes
in neuronal activity, and may be linked to pathologies related to depression and memory
disorders in the rat model [48–50]. The expression of specific Bdnf exons is regulated by
epigenetic mechanisms in the adult rat brain during memory consolidation [51].

After synthesis in the endoplasmic reticulum, the precursor form of neurotrophin
includes a signal sequence and a prodomain, followed by the mature protein sequence.
The prodomain is cleaved intracellularly and/or extracellularly to release the mature
protein. The cleavage of proNGF to obtain the mature form of NGF (mNGF) involves a
CNS extracellular protease cascade leading to the activation of plasmin [52]. Both proNGF
and mNGF are biologically active and can induce an antagonist effect on the maintenance
of the cholinergic neuron phenotype [53]. Mature neurotrophin can also be degraded
by enzymes such as matrix metalloprotease-9 (MMP-9) [52]. The process leading to the
maturation of proNGF to mNGF, as well as the degradation of mNGF by MMP, is called
the NGF metabolic pathway [54,55].

The mature neurotrophins are evolutionarily conserved with a high sequence homol-
ogy between vertebrates [43,56]. In addition, the mature NGF, BDNF, NT-3, and NT-4/-5
share 50% amino acid residue identity [57]. They also associate noncovalently into ho-
modimers, with each monomer presenting a cysteine “knot” with the characteristic loop
formation and a tertiary fold. These monomers (118 or 119 amino acids) are characterized
by seven β-strands connected by three exposed β-turn loops (L1, L2, L4) and an additional
loop L3 (Figure 1) [58,59]. All of these exposed sites may be accessible for interaction with
neurotrophin receptors.

Figure 1. Structure of (A) mNGF (PDB ID: 1 BET) monomer [60]. The exposed β-turn loops L1 (residues 28-36), L2 (residues
42-49), L3 (residues 59-67) and L4 (residues 91-99) were used to design peptides. (B) The mNGF dimer (red and blue)-TrkA
extracellular domain (black) binding sites (PDB ID: 2IFG [61]) [58,62].

3.1.2. Neurotrophin Receptors and Signal Transduction

The neurotrophin homodimers interact with two distinct classes of receptors: p75 neu-
rotrophin receptor (p75NTR), which is a member of the tumor necrosis receptor superfamily,
and tropomyosin receptor kinase (Trk) (Figure 1) [63]. Sortilin, a member of the Vps10p-
domain family of transmembrane receptors, acts as a coreceptor of p75NTR [64].

The Trk family is composed of three Tyr kinase receptors: TrkA, TrkB, and TrkC. TrkA
is expressed in the cortex and hippocampus, while TrkB and TrkC are expressed in both
axonal and dendritic compartments in hippocampal, cortical, and cerebellar neurons [65].
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The p75NTR receptor can interact with all neurotrophins in their pro- and mature
forms [64]. TrkA mainly recognizes NGF, whereas BDNF and NT-4/5 interact with TrkB,
and NT-3 binds TrkC; p75NTR regulates the specificity as well as affinity of Trk receptors
for their neurotrophin ligands [66]. The affinity of NGF for both p75NTR and TrkA is quite
similar (Kd around 1–2 nM) [64,67]. However, TrkA receptors co-expressed with p75NTR
have a higher affinity for NGF (Kd 2.8 × 10−12 M) [67].

The extracellular domain of p75NTR consists of four cysteine-repeat domains, with
two of them being implicated in the interaction with neurotrophins. The mNGF has two
binding epitopes for p75NTR: the first one involves positively charged residues in L1 and
L4 loops, whereas the second one involves hydrophilic residues from the highly conserved
loop L3 and the C-terminus [68]. The p75NTR receptor also has single transmembrane and
cytoplasmic domains, the latter containing a “death domain”.

The extracellular domain of TrkA contains three leucine-rich 24-residue motifs (LRR1-
3) flanked by two cysteine clusters (CR). Two immunoglobulin-like C2-type domains (Ig-C2)
are adjacent to these structures. Using the crystal structure of NGF/TrkA-d5 complex at
2.2 Å resolution, Wiesmann et al. found that the Ig-C2 domain (TrkA-d5) closest to the cell
membrane is sufficient for the binding of mNGF through its L2 and L4 loops [68]. Each Trk
receptor also has single transmembrane and cytoplasmic domains. The latter contains the
tyrosine (Tyr) kinase activity region surrounded by phospho-Tyr residues involved in the
recruitment of signaling and adaptor proteins of specific signaling cascades [63]. However,
the tyrosine kinase domain is missing in some isoforms of TrkB and TrkC [69].

Upon binding, NGF and BDNF induce the dimerization of their cognate Trk full-length
(Trk-FL) receptors. The cytoplasmic kinase domain of Trk receptors is in turn activated, and
an autophosphorylation of their tyrosine residues occurs. These phosphorylations trigger
the specific recruitment of adaptor proteins, the proto-oncogene tyrosine-protein kinase
Src homology 2 domain containing (Shc), the fibroblast growth factor receptor substrate 2
(FRS2), and the phospholipase Cγ (PLCγ) (Figure 2).
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Figure 2. The NGF and BDNF signaling pathways and their roles in healthy and AD brains [70–75]. CAM: calmodulin kinase; DAG: diacylglycerol; mBDNF: mature form of BDNF
(monomer); mNGF: mature form of NGF (monomer); RSK: ribosomal S6 kinase; TRAF: TNFR-associated factors. The figure was created using Servier Medical Art (https://smart.servier.com;
30 April 2021).

https://smart.servier.com
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Following this recruitment, Shc is Tyr-phosphorylated and stimulates the mitogen-
activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) and phos-
phoinositide 3-kinase/protein kinase B (PI3K/AKT) pathways [76]. The Ras/MAPK/ERK1/2
pathway induces the activation of the transcription factor cAMP response element-binding
protein (CREB), which is critical for early-response gene expression (e.g., c-Fos). Furthermore,
NGF, through the MAPK/ERK1/2 pathway, potentiates TrkA transcription by the homeobox
transcription factor LIM homeobox 8 (Lhx8) [77].

The adaptor protein PLCγ cleaves phospholipids to generate two second messen-
gers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), respectively leading to
intracellular release of Ca2+/calmodulin kinase (CAM) activation and protein kinase C
(PKC)-mediated signaling. The PLCγ1/Ca2+CAM/CREB pathway is involved in synaptic
plasticity [78].

A transactivation of the Trk-FL receptors can also be initiated by G-protein-coupled
receptors (GPCRs) such as adenosine A2A receptors [79]. Such transactivation can favor a
neuroprotective effect [80].

While commonly considered dominant-negative receptor isoforms unable to signal,
truncated TrkB, such as TrkB.t1 (which has a truncated C-terminal domain), inhibits Rho
GTPase signaling by interacting with the Rho GDP dissociation inhibitor (RhoGDI1) [81–83].
This inhibition induces cytoskeletal rearrangement in neuronal cells [82]. However, the
truncated Trk signaling and function in normal brain and neuropathologic conditions are
complex and still under investigation (for a review, see [84]).

The p75NTR receptor has no intrinsic catalytic activity, but upon mature neurotrophin
binding, its cytoplasmic domain can interact with adaptor proteins to activate downstream
signaling molecules, including nuclear factor kB (NF-kB). Binding of pro-neurotrophin to
p75NTR activates the JNK-caspase-3 mediated pathway, NF-κB pathway, and RhoA path-
way [85,86]. However, the BDNF Val66Met polymorphism alters its prodomain structure,
inducing different bioactivity due to impaired interaction with the sortilin receptor [87].

Both proBDNF and the mature form of BDNF (mBDNF) can also have an antago-
nist effect by binding with high affinity to p75NTR-sortilin and TrkB, respectively [88]:
proBDNF/p75NTR-sortilin induces neuronal apoptosis [89], whereas mBDNF/TrkB pro-
tect the hippocampal neurons from glutamate-induced cell death [90,91]. An imbalance in
the proBDNF:mBDNF ratio may therefore be involved in neuronal degeneration.

3.1.3. Effects of Neurotrophins on the CNS Cells

• NGF

While BDNF mRNA in the adult human brain is found in the hippocampus, cerebral
cortex, hypothalamus, and cerebellum, NGF mRNA is mainly expressed in the cortex
and hippocampus [46,92,93]. The NGF-responsive neurons in the CNS are the cholinergic
neurons of the basal forebrain (BFCNs) and striatum. The BFCNs, which possess extended
axons throughout the hippocampus and neocortex, play a crucial role in learning and mem-
ory functions [94,95]. NGF, after its release by the postsynaptic cortical and hippocampal
neurons, binds to TrkA and is retrogradely transported along the axon to the BFCN bodies.
It can then initiate signaling cascades, leading to the maintenance of BDNF phenotype in
adult CNS [55,96]. Indeed, NGF/TrkA signaling ensures the activation of genes encoding
for cholinergic differentiation markers such as acetylcholine synthesis enzyme (ChAT) and
the vesicular acetylcholine transporter (VAChT) [97]. Nevertheless, while the hippocam-
pus of P20–P25 homozygous TrkA knockout mice (TrkA−/−) presents a great deficit in
cholinergic fiber density, the cholinergic innervation of 28-day-old NGF knockout mice
is not altered [98,99]. Importantly, Eu et al. recently reported a decrease in cholinergic
fiber density in the hippocampus, but not in the cortex of 12-week-old Ngf gene knockout
mice [100] (Table 1). An atrophy and loss of septal cholinergic neurons with deficits in
memory and learning were also observed in heterozygous mutant mice (NGF+/–), which
showed a decreased level of both NGF mRNA and protein [101]. In addition, chronic
inhibition of the maturation of proNGF (but not proBDNF) with α2-antiplasmin treatment
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in the medial prefrontal cortex of normal adult rats led to a local loss and atrophy of
cholinergic terminals paralleled by cognitive impairment. Interestingly, the number of
dopaminergic, noradrenergic, glutamatergic, and GABAergic boutons were not affected.
This cholinergic degeneration prevents the consolidation and retrieval of a new memory in
rats [102].
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Table 1. Effect of the growth factor superfamily on CNS cells and their potential effect on Alzheimer’s disease hallmarks.

Superfamily Experimental Conditions Effect on CNS Cells In Vitro or In vivo Refs

Neurotrophin

NGF

Animal: Homozygous Ngf −/− knockout or WT mice
C57BL/6

Ngf cKO mice:

[100]
↓ Hippocampal Ngf mRNA level

Treatment: Injection of viral vector for Ngf overexpression
under stereotaxic guide

↓ Adult hippocampal neurogenesis
↓ Cholinergic fiber density in the hippocampus but not in the cortex

NGF restores hippocampal cholinergic fiber innervations and spatial memory.

BDNF

Animal: Female APP.PS1 transgenic mice BDNF + ADTC5 compared to BDNF alone or vehicle:

[103]

↑ Cognitive performance (Y-maze and new object recognition)
Treatment: BDNF at 5.7 nmol/kg, BDNF + ADTC5

(modulator to allow BDNF to pass BBB) at 10 µmol/kg or
vehicle. Intravenous injection every 4 days for 8 injections

↑ Degree of neuron-glial antigen 2 (NG2) receptor expression a marker for oligodendrocyte maturation
↑ Hippocampus level of early growth response 1 (EGR1) and activity-related cytoskeleton-associated

protein mRNA transcripts
No significant impact on Aβ plaque

Animal: AD11 anti-NGF mice (sporadic AD model), 6
months old Rescue memory performance (object recognition and object context tests)

[104]Treatment: Intranasal delivery at 12.6, 42, and 420
pmol/administration, repeated 7 times for 15 days

No impact on Ab plaques, tau hyperphosphorylation and cholinergic deficit
↓ CD11b-positive microglia in the hippocampus

BMP

BMP-6
Cells: neuronal progenitor cells from adult rat (NPC) Aβ1-42: ↑ BMP-6 level

[105]Treatment: 50–100 ng/mL for 4 days with a refresh of
medium containing BMP-6 at 2 days BMP-6: ↓ Proliferation of NPC (dose dependent effect)

BMP-9

Animal: APP.PS1/CHGFP (AD model) and WT/CHGFP
(control) transgenic mice 5 and 10 months old

↓ Number Aβ amyloid plaques in AD model

[106]

↑ ChAT expression in APP.PS1/CHGFP and WT/CHGFP
↑ Density of cholinergic fibers in APP.PS1/CHGFP and WT/CHGFP

Treatment: intraventricular infusion at 4 ng/h for 7 days
↑ Hippocampal level of receptors TrkA and p75NTR in 5 months old mice but not in 10 months old mice

↑ Hippocampal level of NGF in both mice (15–20%)
↑ IGF-1 levels in 5 months APP.PS1/CHGFP

Animal: APP/PS1 mice (7 months)
Improve spatial and associative learning and memory (Morris water maze, contextual fear

conditioning test)

[107]
↓ Aβ levels and number of plaques in AD model

Treatment: intranasal delivery of 50 ng/g/d for 30 days
↓ Hyperphosphorylated tau in the cortex and hippocampus
↓ Neuroinflammation (activated microglia and astrocytes)

↑ Expression of low-density lipoprotein receptor-related protein 1 (LRP1), involved in the clearance of
Ab
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Table 1. Cont.

Superfamily Experimental Conditions Effect on CNS Cells In Vitro or In vivo Refs

IGF

IGF-2

Animal: Tg2576 AD mouse (10 months old) and WT C57BL/6
mouse (control)

↓ Oxidative stress

[108]
↑ Expression of PI3K, AKT and CREB in hippocampus ↓ levels of amyloid plaques in the

hippocampus

Treatment: Injection saline/DMSO (control) and IGF-2 at 250 ng ↑Memory consolidation (Morris Water Maze) via PI3K/AKT pathway
↓Memory decline

Animal: APP.PS1/CHGFP and Wild Type (control) mice
↓ Aβ plaque numbers

[109]

↑ p75NGFR compared to vehicle both in APP.PS1/CHGFP and WT
↑ ChAT in APP.PS1/CHGFP and WT hippocampus

Treatment: Infusion of vehicle or 50 ng/h hIGF-2 for 7 days

↑ BMP-9 level in APP.PS1/CHGFP and WT hippocampus (basal level is higher in
APP.PS1/CHGFP)

↓ ALK1 expression in WT but not in APP.PS1/CHGFP hippocampus
↓ FGF-2 level in APP.PS1/CHGFP hippocampus

↑ Hippocampal neurogenesis (DCX) in APP.PS1/CHGFP and WT hippocampus

FGF

FGF-2

Animal: APP.PS1 mice (AD model) and WT Tg2576
mice (control).

In vivo:
FGF-2 in APP.PS1 mice

Reverse learning deficit memory
↓ Aβ hippocampal deposition

↑ Neurogenesis in subgranular zone of dental gyrus
In vitro:
FGF-2

↑ Dose-dependent Aβ phagocytosis in microglia
↓ Production of Aβ in neural stem cells

↑ Neuronal differentiation of neural stem cells

[110]

Treatment: hippocampal injection of hybrid virus expressing
FGF-2 or GFP (control) at 1 × 1010 per brain at 4 months

(presymptomatic) and 7–8 months (postsymptomatic) of age
Cells: Primary microglia culture and neural stem cells (mouse

embryonic brain day 14)
Treatment: Microglia: FGF-2 (0.1 or 1 ng/mL) + 10 µg fibrillar

Aβ1–42 for 1 h
Neural stem cell: hybrid virus + 1 µM Aβ1–42 oligomer for 7 days

Cells: Primary astrocyte culture weight FGF-2 (HMW, 23 kDa) at
10 ng/mL

LMW and HMW FGF-2:

[111]

Induce ERK and AKT pathway activation
Protective effect against cytotoxicity induced by Aβ (20 µM) or oxidative stress

Treatment: Medium with or without purified low molecular
weight FGF-2 (LMW, 17 kDa) or high molecular

↑ Bcl-XL transcripts
LMW FGF-2:

↑ Proliferation by upregulation of c-Myc, Cyclin D1, and Cyclin E through PI3K/AKT pathway
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Table 1. Cont.

Superfamily Experimental Conditions Effect on CNS Cells In Vitro or In vivo Refs

FGF-21

Animal: male APP.PS1 transgenic mice (6 months old)

In vivo:

[112]

Subcutaneous injection:
↑ Learning abilities after 5 days (Morris water maze)

↓ Brain Aβ burden

Treatment: Subcutaneously injection with 5 mg/kg/day twice a
day for 1 month or intracerebroventricular with a mini pump 0.4

µg/day for 14 days

↓ Tau phosphorylation positive area
Intracerebroventricular injection:

Rescue neurodegeneration through the FGF-21/FGFR1 signaling pathway (Morris water Maze)
In vitro:

Cells: Rat (PC12) pheochromocytoma cells and rat astrocyte (C6)
line in coculture treated with FGF-21 at different concentrations

between 0.07 and 8 µM

↑ Cell viability against Aβ25-35 toxicity (higher effect in the presence of astrocytes)
↓ Tau hyperphosphorylation

↓ ROS levels
Rescues the lactate system deficiency induced by Aβ25–35
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• BDNF

BDNF has an important role in synaptic plasticity, including long-term potentiation
(LTP) in the hippocampus of the adult brain, and is therefore involved in learning and mem-
ory consolidation [113,114]. BDNF is produced in the entorhinal cortex and then undergoes
anterograde transport to the hippocampus [115]. mRNA expression encoding BDNF is
increased in the hippocampus of rats that acquired spatial memory [116]. Moreover, using
a hidden-platform water-maze task, Gorski et al. found that forebrain-restricted BDNF
mutant mice (Emx-BDNFKO) present profound impairments in hippocampus-dependent
learning [117]. Furthermore, BDNF can regulate the expression of two ionotropic glutamate
receptors important for LTP: the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate
(AMPA) and NMDAR [118].

Importantly, recent studies showed that the ratio of proBDNF to mBDNF is important
for the synaptic plasticity. APOE4 epigenetically prevents BDNF transcription through
the nuclear translocation of histone deacetylases 4 and 6 in human neurons [119]. It can
also block the secretion and conversion of proBDNF to mBDNF [120]. Unlike mBDNF,
proBDNF decreases the strength of the synapses [54,121].

3.1.4. Effects of Neurotrophins on AD Hallmarks

• NGF

NGF mRNA levels are not decreased in the cerebral cortex of patients suffering from
AD [122,123]. In contrast, using regional hippocampal dissections, Ginsberg et al. observed
a downregulation of mRNAs for NGF and TrkA in patients suffering from mild cognitive
impairment or AD compared to healthy subjects [124].

Recent studies highlight the role played by the NGF metabolic pathway, which is
strongly affected in AD, leading to an imbalance in the proNGF:mNGF ratio [54,125]. The
degradation of mNGF is promoted in AD due to an increase in MMP-9 activity, while the
proNGF level is enhanced [126–129]. Indeed, an inhibition of the plasminogen activator
factor in AD brain prevents the cleavage of proNGF to NGF by extracellular plasmin [130].

Unlike TrkA, the expression of p75NTR is not altered in BFCNs during the progression
of the dementia [131]. An increase in the proNGF:mNGF ratio has been shown to be
sufficient to alter the phenotype of BFCNs, inducing a downregulation of TrkA and ChAT
protein expression, as well as degenerative retrograde alterations at their somatodendritic
level [53]. Furthermore, proNGF extracted from AD frontal cortex can induce apoptosis
in 3T3 cells expressing human p75NTR, while no effect was induced by proNGF isolated
from a comparably aged control brain. This apoptosis depends on the γ secretase shedding
of p75NTR [132]. The activation of PI3K/AKT and MEK/ERK pathways downstream of
Trk was shown to prevent the apoptosis induced by proNGF [133].

Furthermore, NGF binding to TrkA has been suggested to promote the amyloidogenic
cleavage of APP. A loss of the NGF/TrkA signaling could be linked to amyloid peptide
deposition and tau abnormalities [134].

The use of exogenous mature NGF to restore the cholinergic system and treat AD hall-
marks has therefore drawn considerable attention (for a review, see [5,55,135]). However,
the delivery of NGF to brain neurons via peripheral vein administration is limited due
to its molecular weight (despite its 13 kDa) and polarity that limit its transport across the
BBB [136,137]. Furthermore, NGF had a plasma half-life of 7.2 min (normal adult rat) [136],
and its intravenous administration in healthy human subjects can initiate diffuse myalgias
in neck and throat muscles [138].

Intraventricular NGF administrations were therefore used to bypass the BBB and
directly target the brain. For example, Hefti et al. performed repeated intraventricu-
lar injection of NGF (10 µg, twice weekly for 4 weeks) in adult rats with partial lesions
of the cholinergic septo-hippocampal pathway. They observed a significant increase in
hippocampal ChAT activity on the lesioned sides treated by NGF in comparison to the
untreated ones [139]. Moreover, mouse NGF or recombinant human NGF (rhNGF, 625
µg per intraventricular injection for a total of eight injections) in monkeys prevents the
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progressive degenerative changes that occur in BFCNs following transection of their axons
in the fornix [140,141]. A limited clinical trial of intracerebroventricular NGF adminis-
tration (up to 3 months) on three patients suffering from AD did not demonstrate clear
cognitive amelioration, although a few neuropsychology tests showed slight improvements.
Unfortunately, several negative side effects, such as back pain and weight loss, were also
reported [142].

The success of NGF approach strongly depends on the spatial and temporal delivery
of the neurotrophins that must be controlled to avoid any side effect as described above [55].
The efficiency of other routes of NGF administration, such as intraocular or intranasal de-
livery, are still under investigation [143,144]. Other approaches based on NGF gene therapy
include stereotactic surgery [145] or cell therapy [146]. Rafii et al. showed that bilateral
stereotactic administration of adeno-associated virus serotype 2 delivering NGF (AAV2-
NGF) to the nucleus basalis of Meynert can induce the synthesis of biologically active NGF
without adverse events [145]. Nevertheless, no conclusion on cognitive outcomes arises
from this study due to the small number of participants and lack of prospective control
subjects [145]. A phase II clinical trial that included 49 AD patients recently confirmed that
AAV2-NGF delivery was well-tolerated over 2 years, but no clinical cognitive outcomes
were observed compared to the control group [41]. The use of transplanted cells (NGF
cell therapy) also requires more studies on the inflammatory responses induced in the
brain [147].

Thus, there are important challenges remaining in using NGF treatment, but there is
still enthusiasm regarding this strategy for treating AD patients.

• BDNF

Several studies have shown that BDNF gene expression, as well as proBDNF and
mBDNF levels, are decreased in the cortex, hippocampus, and basal forebrain in AD-
affected brains [148–151] (Table 1). The decrease in BDNF expression appears to correlate
with the degree of cognitive deficits in humans [152]. TrkB mRNA levels are downregulated
in patients suffering from both mild cognitive impairment and AD compared to healthy
patients in both CA1 pyramidal neurons and regional hippocampal dissections [124]. TrkB
downregulation also correlates with the abundance of neuritic plaques and neurofibrillary
tangles [153]. Several BDNF-mediated functions are altered in AD by β-amyloid peptides,
as well as tau pathology, through the glucocorticoid receptor pathway [154,155]. The
BDNF signaling impairment induced by Aβmight involve NMDAR dysregulation [156].
Interestingly, Aβ selectively increases mRNA levels for the truncated TrkB, and induces
the cleavage of TrkB by calpain [157]. The truncated TrkB:TrkB-FL ratio is increased in
hippocampal and cortical postmortem samples from AD subjects [148,149].

Since altered BDNF/TrkB signaling has been involved in AD pathology, various
therapeutic approaches, such as exogenous mature BDNF delivery, BDNF gene therapy,
and cell therapy, have been investigated [158,159]. Interestingly, unlike NGF, BDNF can
cross the BBB in a bidirectional manner [160] However, the BBB penetration of BDNF
remains low [136]. Therefore, some BBB modulators, such as cadherin peptides (ADTC5),
have been used to improve BDNF’s efficiency in crossing the BBB. Intravenous injection of
BDNF with ADTC5 in transgenic APP.PS1 mice improved the cognitive performance of
these AD mice compared to BDNF alone [103].

Some promising results were also observed using Bdnf gene therapy in aged nonhu-
man primates. The BDNF-treated monkeys showed a significant improvement in perfor-
mance of their visuospatial discrimination tasks [159].

Braschi et al. also recently found that intranasal delivery of BDNF at 42 pmol can
rescue memory performance of AD11 mice, a sporadic model of AD. Surprisingly, this
treatment has no effect on Aβ burden, tau hyperphosphorylation, or cholinergic deficit,
whereas it induces a drastic decrease of CD11b immunoreactive brain microglia [104].
However, the comparison with human is difficult, since aging human and the murine
microglia signature strongly diverge [161]. For example, the proportion of morphologically
activated microglia in postmortem human cortical tissue is correlated with the accumula-
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tion of pathologic characteristic of AD, such as the number of amyloid plaques and tau
accumulation, worsening the cognitive decline [162]. However, such results open new
perspectives on the use of BDNF to treat AD.

3.2. The Bone Morphogenetic Protein (BMP)

BMPs/growth differentiation factors (GDFs) belong to the transforming growth factor-
β (TGF-β) superfamily (for a review, see [163]). Other members of this superfamily include
the TGF-β (TGF-β 1-3), nodal, activins, glial-derived neurotrophic factor (GDNF) family,
and anti-Müllerian hormone/Müllerian inhibiting substance. BMPs are classified into
four subgroups in function of their sequence homology: (I) BMP-2/BMP-4 Drosophila
decapentaplegic (dpp) subgroup (92% amino acid identities); (II) BMP-5/BMP-6/BMP-
7/BMP-8 Drosophila 60A subgroup (less than 65% residue identities with BMP-2); (III)
BMP-9/BMP-10 subgroup; (IV) BMP-12/BMP-13/BMP-14/) subgroup [164,165]. BMPs
are well known for their involvement in bone formation and remodelling [163]. However,
studies using knockout mice highlighted that BMPs have a crucial role in eye, kidney, brain,
and heart development [166–169].

3.2.1. Pro-BMP and Mature BMP Complexes

As already described for neurotrophins, pre-pro-BMPs contain a signal peptide (22
amino acid residues, pre-pro-BMP-9), a prodomain for folding and secretion (297 residues,
BMP-9 prodomain), and a mature BMP domain (BMP) (110 residues, BMP-9) [170]. After
signal-peptide removal, the pro-BMPs form dimers that are then cleaved by furin, favoring
the formation of complexes by noncovalent association between the prodomain fragments
and BMP [170]. After secretion, the pro-BMP/BMP complexes interact with extracellular
matrix proteins to obtain a latent cross-armed conformation [171].

3.2.2. BMP Receptors and Signal Transduction

BMP homodimer or heterodimer act on cells by binding to the heterotetrameric com-
plex, comprising two dimers of Type I and Type II Ser/Thr kinase receptors (Figure 3) [172].
BMP dimers interact with Type I kinase receptors by their wrist epitopes, and Type II
kinase receptors by their knuckle epitope [165,173,174]. These Type I or Type II receptors
are characterized by a BMP-binding extracellular domain at their N-terminal extremity, a
single pass transmembrane region, and a C-terminal intracellular domain containing the
Ser/Thr kinase activity [175,176].

Members of the BMP family interact with three Type I (BMPR-1A or ALK3; BMPR-1B
or ALK6; type 1A activin receptor ActR-1A or ALK2) and three Type II (BMPRII, ActRIIA
and ActRIIB) Ser/Thr kinase receptors. Furthermore, BMP-9 can bind with a high affinity to
another Type I Ser/Thr kinase receptor called ALK1 [165,173,177,178]. Most of Type I and
Type II BMP receptors are present in the brain. BMPRII receptors are abundant in the cortex
and hippocampus [179]. ALK-3 receptors are expressed in adult hippocampus-derived
neural stem cells and astrocytes in the dentate gyrus and the hilar region, while ALK-6
expression is found in mature neurons [180]. BMP dimer binding to Type I and Type II
Ser/Thr kinase receptors activates the canonical small mothers against decapentaplegic
(Smad) 1/5/8 and/or MAPK signaling pathways [181–183]. Upon binding to BMP, the
Type II receptors phosphorylate the Type I receptors at their GS motif. The activated
Type I receptors phosphorylate, in turn, Smad 1, 5, or 8, which form a complex with
Smad4. The Smad complexes are then translocated to the nucleus, where they interact
with transcriptional coactivators to promote gene transcription such as Id1-4 [180,184]. For
example, BMP-9 induces the phosphorylation and nuclear translocation of Smad1/5/8
in SH-SY5Y cells [185]. The canonical Smad1/5/8 pathway is strongly regulated. Its
activation can be prevented by several mechanisms, such as extracellular antagonists of
BMP (Gremlin, Noggin, Chordin) [181], and the decreased surface availability of Type
I and Type II kinase receptors due to their internalization through clathrin-dependent
mechanisms [183]. The inactive membrane receptor BAMBI (decoy-receptor BMP and
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activin membrane-bound protein) can also block BMP signaling [186]. Other regulatory
molecules of this signaling pathway act intracellularly. The pSmad1/5/8 can be deactivated
via their dephosphorylation by phosphatases such as the protein phosphatase magnesium-
dependent 1A (PPM1A). The canonical Smad pathway can also be inhibited by inhibitory
Smad (I-Smad, Smad6/7) [187]. BMP2/4 can induce the upregulation of genes encoding
for I-Smad in adult hippocampus-derived neural stem cells [180,187].
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Figure 3. FGF-2 and BMP-9 signaling pathways and their roles in healthy and AD brains [106,185,188–192]. GAB1: Grb2-associated binder-1; SOS: salt overly sensitive; TAB1/2/3:
TAK1 binding protein 1/2/3; TAK: transforming growth factor β-activated kinase 1; XIAP: X-linked inhibitor of apoptosis. The figure was created using Servier Medical Art
(https://smart.servier.com; 30 April 2021).

https://smart.servier.com
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3.2.3. Effect of BMP on CNS

Members of subgroup I (BMP-2/BMP-4) and II (BMP-5/BMP-6/BMP-7/BMP-8) are
found in the hippocampus and/or cerebral cortex of adult brain [179,184,193–196]. For
example, in adult rat brain, BMP-5 is widely expressed in neurons, astrocytes, ependymal
cells, and meninges [196]; BMP-6 in astrocytes, ependymal cells, and oligodendrocytes [197];
whereas BMP-9 is detected in the spinal cord and septal area [198,199].

BMPs are involved in multiple events during the CNS formation and patterning
(for a review, see [200]). However, even though several BMPs are widely expressed
throughout the adult CNS, their role in its maintenance is still poorly understood [201].
Mira et al. found that BMP-2 dose-dependently decreases the percentage of proliferating
adult hippocampus-derived neural stem cells cultured in medium supplemented with
fibroblast growth factor 2 (FGF-2) [180]. BMP-4 also decreases the number of neural stem
cells that enter the cell cycle. The deletion of both Bmpr1a and Smad4 genes in these neural
stem cells confirms that BMPR1a-Smad4 signaling is involved in cell quiescence induced
by BMP-2/BMP-4 [180].

Among BMPs, BMP-9 has generated a great interest since it promotes BFCN dif-
ferentiation and maintenance, and may also prevent cerebral ischemia–reperfusion in-
juries [188–190,202] (Table 1). BMP-9 favors the differentiation of mouse septal neurons
into the cholinergic phenotype both in vitro and in vivo, and increases the production
of the neurotransmitter acetylcholine [188,198]. BMP-9 can also induce an increase in
mRNA levels of Idb1 and Idb3 transcriptional regulators, fibroblast growth factor receptor
3 (FGFR3), and BMPRIa within 48 h in dissociated septal cells from embryonic day 14
mice [188].

Furthermore, intracerebroventricular administration of BMP-9 (16 ng/µL (8 ng/h)
over a 6-day period prevents the loss of cholinergic neurons after a septo-hippocampal
transection in mice. It increases the expression of NGF and its receptors, p75NTR and TrkA
in hippocampus [203].

3.2.4. Effect of BMP on AD Hallmarks

Increases in Bmp2, Bmp4, and Bmp6 transcript levels have been reported in hippocampi
of aged mice. Both BMP-4 and BMP-6 protein levels are more abundant in the cortex of old
mice [204]. An upregulation of BMP-6 mRNA levels was also observed in the hippocampus
and cortex of patients with AD [105]. Crews et al. suggested that BMP-6 in AD may
have deleterious effects on adult hippocampal neurogenesis due to its inhibitory effect
on stem cell proliferation [105]. Aβ1–42-containing plaques appear to play a key role
in BMP-6 upregulation in AD, increasing BMP-6 mRNA and protein expression in the
neural progenitor cells (Table 1) [105]. In the same way, an increase in BMP-4 levels was
correlated with reduced hippocampal cell proliferation in a mouse model of AD [205]. The
involvement of BMPs in CNS and neurodegenerative disorders such as AD is still under
investigation [200].

Several studies have shown that BMP-9 might be a promising molecule to treat
AD [106]. Using a AD mouse model (APP.PS1), which exhibit cholinergic defects, high
accumulation of amyloid plaques, and cognitive impairments, Burke et al. found that
intracerebroventricular infusion of BMP-9 (4 ng/h) for 7 days can reduce Aβ42-positive
plaques in the cortex and hippocampus [106]. This treatment also favors the establishment
of a trophic environment for BFCNs in the hippocampus by upregulating the expression of
NGF, its receptors (p75NTR, TrkA), NT-3, and insulin-like growth factor 1 (IGF-1) [106].
Wang et al. have recently confirmed that BMP-9 injected intranasally into APP.PS1 mice
(50 ng/g/d for 30 days), reduces senile plaque accumulation and restore cognitive func-
tion [107]. In addition, GSK3β, one of the kinases involved in the hyperphosphorylation
of tau, is inhibited by its phosphorylation at Ser9 in the brain of BMP-9-treated mice. In-
deed, the level of hyperphosphorylated tau in neurons in the cortex and hippocampus is
decreased in BMP-9-treated APP.PS1 mice [107].



Int. J. Mol. Sci. 2021, 22, 6071 18 of 44

Therefore, BMP-9, through its action on BFCN, might be a promising molecule to treat
AD. In addition, its receptor ALK1 is not affected at the early stage of AD [206]. However,
BMP-9 acts as a dimer of around 24 kDa that cannot easily cross the BBB, and the use of
supraphysiological doses is not only very expensive, but more importantly, may induce
side effects.

3.3. FGF and Other Growth Factors
3.3.1. FGF

To date, there are 22 mammalian FGFs (for a review, see [207]). They are classified
into seven subfamilies based on their sequence homology and phylogeny involving the
canonical FGFs, endocrine FGFs, and intracellular FGFs (for a review, see [208]). In human,
FGF-2 has five isoforms of different molecular weights (18 kDa, 21 kDa, 22.5 kDa, 24 kDa,
and 34 kDa) resulting from alternative initiations of mRNA translation [209]. There are
only three isoforms in mouse: 22 and 21 kDa high molecular weight (HMW) isoforms, and
one 18 kDa low molecular weight (LMW) isoform [210].

FGFs have a core region of around 120–140 amino acids forming 12 antiparallel β-
strands (β1–β12). A heparan sulphate proteoglycan binding site involves the β1–β2 loop
and parts of the region spanning β10 and β12. The core region is flanked by amino and
carboxyl termini [211].

• Receptors and signal transduction

The 18 secreted FGFs can bind to four Tyr kinase receptors (FGFR1–FGFR4). These
receptors, which share 46% sequence identity, have three extracellular immunoglobulin-like
domains (IgI, IgII, and IgIII), a single transmembrane domain, and a cytoplasmic Tyr kinase
domain [212]. FGFRs are expressed in different areas of the brain. For example, FGFR1
is widely expressed in the hippocampus and in various parts of the cortex, while FGFR4
is mainly found in the medial habenular nucleus. Both FGFR1 and FGFR4 are primarily
neuronal, whereas oligodendrocytes and astrocytes express FGFR2 and FGFR3 [213–215].
Upon binding of two FGF ligands and two heparan sulfate proteoglycans as cofactors,
the FGFR receptors dimerize and autophosphorylate, allowing the intracellular recruit-
ment of PLCγ1 and FRS2α (Figure 3). FRS2α activates the Ras/MAPK and PI3K/AKT
pathways [208], while PLCγ1 activates the Ca2+/CAM and PKC pathways. The FGFR
kinase domain also initiates the signal transducer of activators of transcription (STAT)
pathways [208].

• Effect of FGF on CNS and AD hallmarks

FGFs, such as FGF-2, play an important role during brain development [216]. FGF-2
also controls the neurogenesis through its involvement in the differentiation of new neurons
in the adult dentate gyrus [217]. It is mainly synthesized by astrocytes in the CNS, and
by microglia and neurons in the CA2 region of the hippocampus [218]. FGF signaling,
especially the MAPK pathway, is crucial in the cell-fate switch from neurons to astrocytes
in the developing mouse cerebral cortex [191].

FGFs, such as FGF-2 and FGF-21, have been shown to be beneficial to treat AD
hallmarks (Table 1) [112,219]. While no difference was detected in the levels of LMW
FGF-2 between AD patients and age-matched healthy controls, the expression of HMW
FGF-2 isoforms was drastically decreased in AD patients [219]. Both FGF-2 HMW and
LMW isoforms can protect against Aβ1–42-induced cytotoxicity in astrocytes through the
activation of the PI3K/AKT signaling pathway [111]. FGF-2 gene delivery by stereotaxic
hippocampal injection induces a decrease of Aβ through microglial activation in AD
transgenic APP.PS1 mice. In addition, it can restore spatial learning, hippocampal CA1 LTP,
and neurogenesis in APP.PS1 or J20 mice, two AD mice models [110].

FGF-2 can be administered systemically and cross the BBB to produce its effects. For
example, in 10.5-month-old female APP23 mice, a model of amyloid pathology, FGF-2
injected subcutaneously at 20-µg/kg per day for 3 weeks increases the number of astrocytes
and limits the expression of inflammatory mediators. It also reduces the generation of Aβ as
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well as the phosphorylation of tau, while it restores the spatial memory [219]. The intranasal
administration of FGF-2/chitosan seems more effective to deliver the growth factor to
the brain in comparison to intravenous injection. It also induces a better improvement of
spatial memory in rat with learning impairment after co-injection of Aβ25–35 and ibotenic
acid [220]. These data suggest that intranasal administration of FGF-2 could have potential
application in AD.

3.3.2. Other Growth Factors

Other growth factors, notably ciliary neurotrophic factor (CNTF) (for a review, see [221])
and GDNF, are also interesting molecules because of their role in the progression of demen-
tia [153]. Insulin growth factors like IGF-1 have also been tested in the context of AD. Low
plasma levels of IGF-1 have been previously associated with decreased cognitive perfor-
mance [222,223]. However, a recent study reported that older males with high level of IGF-1
showed poor concurrent cognition. Furthermore, high levels of IGF-1 beyond a threshold
in middle-aged males are associated with a decline in future cognitive function [224].

The benefit of IGF-1 administration in the context of AD is also still under debate.
Some studies found that peripheral administration of IGF-1 (50 mg/kg/day) facilitates
the clearance of Aβ (Table 2) [225,226]. In contrast, IGF-1 delivery (50 mg/kg/day for
1 month) in 11-month-old Tg2576 mice has no beneficial effect on amyloid plaque load
or Aβ levels [227]. Furthermore, inhibition of IGF-1 signaling seems to decrease AD
hallmarks [228]. The administration of a potent inducer of circulating IGF-1 levels (MK-
677) also fails to delay AD progression in a randomized trial [229]. Further investigations
are therefore required to better understand the role played by IGF-1 and its signaling
in AD.
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Table 2. Effect of the peptides derived from growth factors on CNS cells and their potential effect on Alzheimer’s disease.

Superfamily Peptide Sequence Experimental Conditions Effect on CNS Cells In Vitro or In Vivo Refs

Neurotrophin

NGF

Dimeric dipeptide:
Cells: mouse hippocampal HT-22 immortalized neurons and

primary culture of embryonic rat hippocampal neurons (18 days old
embryos)

Strong neuroprotective properties at 10−8 M [230]GK-2 β-turn loop L4 Treatment: peptide (10−5–10−10 M) added 24 h before adding H2O2
(1.5 mM) for 30 min or glutamate (5 mM) for 24 h

Incubation time: 4 h and 24 h

Dimeric dipeptides Cells: mouse hippocampal HT-22 immortalized neurons and rat
pheochromocytoma PC12

Both GK-2 (10−8 M) and GK-6 (10−6 M):

[231]
GK-2 and ↑ Phosphorylation of TrkA

GK-6 β-turn loop L1
Treatment: peptide (10−5–10−10 M) added 24 h before oxidative

stress

GK-6 (10−6 M):
Exhibits slight neuroprotective properties

↑ Differentiation (↑ neurite outgrowth in PC-12 at 7 days)

NGF N terminus Cells: Rat PC12 pheochromocytoma cells ↑ Internalization of TrkA and p75NTR receptors

[232]
Linear peptide NGF(1-14)
SSSHPIFHRGEFSV-NH2 Treatment: peptide at 50 µM or NGF (50 ng/mL) ↑ Proliferation of PC12 cells at 48 hDimeric peptide d-NGF(1-15)

Incubation time: 10 min to 72 h ↑ Differentiation (↑neurite total length at 72 h)

Cyclic peptide Cells: p75NTR- and TrkA-NIH-3T3 cells and E17 fetal rat
cortical neurons

No effect on NGF (0.5 nM) binding to TrkA, supporting its specificity
for p75NTR

[233]
↓ Dose-dependent Aβ1–40 (0.5 nM) binding to p75NTR in rat cortical

neurons

Treatment: Cyclic peptide (0–300 nM) for 30 min or 24 h and then
Aβ1–40 (0.5 nM, 25 nM or 20 µM) for 30 min

↓ Aβ1–40 (20 µM) signaling through p75NTR: ↓ c-jun mRNA and ↓
phosphorylation of cJUN

protects at 250 nM E17 neurons or 3T3 from Aβ1–40 (20 µM)
-induced toxicity

Dimeric dipeptide: Animal: Mongrel male rats with bilaterally injection of
Streptozotocin 3 mg/kg into their cerebral ventricles

GK-2 treatment can counteract the cognitive deficit in AD model
(spatial memory impairment in Morris water maze) [234]

GK-2 Treatment: GK-2 (0.5 mg/kg) or memantine (10 mg/kg) 4 h after
the surgery and then once a day for 2 weeks Effect similar to memantine

Dimeric dipeptide: Animal: Ischemic stroke animal model; male Wistar rats (8–9 weeks)
with intravascular thread occlusion of the middle cerebral artery ↑ Hippocampal and striatum neurogenesis in rat cerebral ischemia

[235]
GK-2 Treatment: GK-2 (1 mg/kg, intraperitoneal); 6 or 24 h after surgery,

once a day for 6 days ↓ Volume of the ischemic injury (60% when injected 6 h after surgery)
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Table 2. Cont.

Superfamily Peptide Sequence Experimental Conditions Effect on CNS Cells In Vitro or In Vivo Refs

Cyclic complex peptides derived from
loops L1 and L4 with or without NGF

N terminus

Cells: PC12 cells (clone 615) stably overexpressing TrkA,
dorsal root ganglia (DRG) from 8-day-old chick embryos
and cerebellar granule neurons from 8-day-old Sprague

Dawley rat pups

[236]

In vitro:
Both NL1L4 and L1L4 (3 µM) have neurotrophic properties

NL1L4 Treatment: NL1L4 (3, 6 and 10 µM), L1L4 (50, 100 nM, 3, 6
and 10 µM), and NGF (0.192 nM, control)

↑ DRG differentiation within 2 days like NGF
L1L4 dose-dependent ↑ PC12 differentiation at 3 days (EC50

1 µM)

Incubation time: 10 min (TrkA activation); 2 weeks (DRG)
and 3 days (PC12)

↑ TrkA phosphorylation (pTrkA) in PC12 cells at 10 min
(NL1L4 and L1L4 (3 µM): 57 and 80% of pTrkA level obtained

using NGF, respectively)
No effect on TrkB phosphorylation in cerebellar granule

neurons
L1L4 Animal: CCI model (adult male Sprague Dawley rats)

treated by L1L4 (37.5 µg/µL) through intrathecal lumbar
spinal catheter (1 µL/h for 7 days)

In vivo:
↓ Neuropathic pain in CCI model (restores mechanical and

thermal sensitivity)

BDNF

B-3 (Ac-SKKR-CONH2)
Cells: NIH 3T3 cells transfected with TrkB receptor; ↑ TrkB phosphorylation at TrkB at Tyr 706 at 1 h

[237]

mouse E18 primary No cytotoxic effect on cells at 5 days

hippocampal neurons
↑ Neuronal differentiation (↑ b-III-tubulin,

anti-neurofilament-M, and NeuN) in E18 hippocampal
neurons at 5 days

B-5 (Ac-IKRG-CONH2)
Treatment: peptides (2 nM to 10 µM) ↑ BDNF synthesis induced by B-3 (0.1 and 1 µM) and B-5

(0.1 µM) in primary E18 hippocampal cells at 5 days

Incubation time: 1 h; 2 and 5 days TrkB synthesis induced by B-3 and B-5 (1 µM) in NIH-3T3 at
5 days

GSB-106 Animal: male C57Bl/6 mice (chronic social defeat stress
(CSDS)) ↑ Locomotion in CSDS mice

[238]

Treatment: GSB-106 0.1 mg/kg once a day, for 21 days Restores decreased synaptophysin level in hippocampus of
CSDS mice
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Table 2. Cont.

Superfamily Peptide Sequence Experimental Conditions Effect on CNS Cells In Vitro or In Vivo Refs

BMP

BMP-9

pBMP-9 Cells: SH-SY5Y cells ↑ Neuronal differentiation (↑ neurite outgrowth; ↑
MAP-2, NSE. NeuN at 5 days).

[239]
Ac-

CGGKVGKACCVPTKLSPISVLYK-
NH2

Treatment: peptides or BMP-9 (control) at 0.1 or 1 nM with or without
retinoic acid (RA) in serum-free medium

SpBMP-9 ↑ differentiation in cholinergic phenotype.
(↑ acetylcholine, VAChT, ChAT) compared to BMP-9

or pBMP-9SpBMP-9
Ac-CGGKVGKASSVPTKLSPISVLYK-

NH2
Incubation time: 1, 3, and 5 days. Adding RA ↑ peptide-induced differentiation

SpBMP-9 Cells: SH-SY5Y cells SpBMP-9 plus NGF or bFGF

[240]
and NSpBMP-9 (negative peptide) Treatment: peptides at 0.1 nM with or without NGF (100 ng/mL) or

bFGF (FGF-2; 20 ng/mL) in serum-free medium

↑ Neuronal differentiation (↑ neurite outgrowth, ↑
NSE expression) compared to growth factor alone

Ac-
CGGKVGKAGGVPTKLSPIGGLYK-

NH2

↑ Neuronal differentiation in cholinergic phenotype.
(↑ VAChT vesicles located in the neurites) compared

with growth factor alone
Incubation time: 5 days. NSpBMP-9 has no effect

BMP-2
GBMP1a

(H-PFPLADHLNSTNHAIVQTLVNS-
NH2)

Cells: primary human glioblastoma cells (glioma stem cells
subpopulation)

↑ Astroglial differentiation (↑ GFAP protein
expression; ↑ S100) [241]Treatment: 60 ng/mL GBMP1a

Incubation time: 5 days ↓ Cell proliferation

FGF

FGF-2 FK-18 FFFERLESNNYNTYSRK
Cells: SH-SY5Y cell ↓ Glutamate-induced apoptosis via Akt activation

[242]Treatment: FK18 at 10 µg/mL or bFGF at 100 ng/mL 2 h before, at the
same time, or 30 min after stimulation with glutamate (4–10 mM)

↑ Bcl-2/Bax ratio
↓ Cleaved caspase-3
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4. Peptides Derived from Growth Factors

To overcome the limitations encountered using native growth factors, alternative
strategies involving biologically active small peptides have been developed (Table 2), in
order to improve pharmacokinetic properties and BBB permeability, selectively activate
targeted signaling pathways (biased signaling), and decrease the side effects compared to
full-sized proteins [59,185]. Figure 4 summarizes the signaling pathways induced by the
peptides and their subsequent effect on neuronal differentiation, cholinergic phenotype,
and cell survival in vitro and/or in vivo.
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Figure 4. Signaling pathways activated by peptides derived from growth factors and their effect in vitro and/or in vivo [232,239,243–245]. The figure was created using Servier Medical
Art (https://smart.servier.com; 30 April 2021).

https://smart.servier.com
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4.1. Peptides Derived from Neurotrophins
4.1.1. NGF

• Peptides derived from mNGF L1-L4 loops

At first, NGF-derived peptides were designed based on conserved amino acid se-
quences that have a high degree of hydrophilicity and may correspond to the receptor bind-
ing sites [246]. Longo et al. have therefore identified three sequences: 26TTATDIKGKEVTVLA
(region C), 64VESGCRGIDSKHW (region A), and 99WRFIRIDTA (region B) [246], corre-
sponding to potential active sites. Only the linear peptides derived from region C (C1
(ATDIKGKEVTV), C2 (DIKGKEVTV), and C5 (KGKE)) inhibited the neurite outgrowth
induced by NGF in sensory neurons. These antagonist peptides cannot block the binding of
NGF to its receptors [246]. However, Ibanez et al. found that the region C (28ATDIKGKEV36)
contains two lysines (K32 and K34) that are involved in NGF binding to p75NTR [247].

The resolution of the structure of mNGF explains that the lack of secondary structure
is why the linear peptides were unable to prevent NGF binding to the receptors. Indeed, X-
ray crystallographic analyses of mouse NGF showed that exposed sequences are organized
as three hydrophilic β-turn loops [248], later identified as L1, L2, and L4 loops, with an
additional exposed L3 loop (Figure 1) [68]. The L1 and L4 loops are known to be involved
in mNGF-receptor interaction [68]. Therefore, in addition to the region C corresponding to
the L1 loop (28ATDIKGKEV36), three other sequences that are part of L2 (42VNINNSVF49),
L3 (59RASNPVESG67), and L4 (91TTDEKQAAW99) were used to design linear or cyclic
peptides [249]. Only the small cyclic peptides mimicking the three-dimensional β-turn
conformation (C(30-35) CDIKGKEC; C(43-48) CNINNSVC; C(60-65) CASNPVEC; C(92-96)
CTDEKQC) were very potent antagonists of NGF. More importantly C(92-96) can bind
TrkA and inhibit the binding of NGF to the TrkA receptor [249,250].

Since the cyclization of the NGF-derived peptides mimicking β-turn loop structure
gave promising results to develop an NGF mimetic, Longo et al. developed several peptides
mainly based on the most efficient sequences 29TDIKGKEV36 and KGKE (C5) [251]. To
obtain a stable oxidative peptide cyclization, penicillamine and cysteine were added at the
N- and C- (amide) extremities of the peptide, respectively. Among the designed peptides,
the cyclopeptide P7 (IPenKGKEVCT) has the greatest survival-promoting activity via
p75NTR receptors. More importantly, only the dimerization of P7 allows a neurotrophic
activity [251].

Other NGF dimeric mimetic peptides were developed based on the β-turn sequences
of loops L1 and L4, which most significantly protrude outward and must play a major role
in the interaction with the receptors [252]. Gudasheva et al. designed two dimeric dipep-
tides called GK-2 and GK-6 [230,231]. GK-2 is based on the L4 loop sequence 93DEKQ96.
To stabilize its conformation and limit its degradation by peptidase, Asp93 and Gln96 are
substituted by succinic acid residue and amide group, respectively. GK-6 is composed of
the dipeptide fragment of the first loop Gly33–Lys34, protected at its N- and C-terminus,
as described for GK-2 [231]. Both GK-2 and GK-6 were reported to mimic NGF activity
through their capacity to activate TrkA receptors in HT22 neurons (Table 2) [231]. However,
upon TrkA activation, GK-2 and GK-6 induce different signaling pathways (Figure 4) [243].
Like, NGF; GK-6 stimulates both the PI3K/AKT and MAPK/ERK1/2 pathways. In con-
trast, GK-2 only activates the PI3K/AKT pathway. GK-2 has a neuroprotective effect in
several models of oxidative stress [230]. GK-6 also exerts a neuroprotective effect. Unlike
GK-2, it induces the differentiation of rat PC12 pheochromocytoma cells, which requires
the activation of the MAPK/ERK1/2 pathway (Table 2) [243]. Furthermore, in contrast
to GK-6, GK-2 did not induce hyperalgesia, which is one of the primary adverse effects
of NGF [243]. Therefore, even if both peptides are agonists of TrkA, they induce a biased
signaling for a selective downstream pathway and different profiles of biological activity.
These are promising examples of how the design of peptides based on different binding
region of NGF is key in the development of pharmacological agents that target the desired
neuronal activity of NGF without the main side effects.
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GTS-115 (bis(N-gamma-hydroxybutyryl-L-lysyl-L-histidine)), a peptide derived from
the β-turn sequence of loop L3, activates TrkA receptor and mediates its signal transduction
through the MAPK/ERK1/2 and PI3K/AKT pathways. It also shows a neuroprotective
activity on HT-22 cells cultured under an oxidative stress condition, but at a higher concen-
tration range (10–5 to 10–7 М) compared with GK-2 [252].

Because of their reported neuroprotective effects, several of these peptides were
also evaluated in vivo using animal models for various neurodegenerative diseases and
ischemic stroke (Table 2).

• Linear peptides derived from the mNGF N-terminal region

Given that the amino acid residues 4 to 13 of mNGF (especially His-4, His-8, Ile-6,
Phe-7, and Glu-11) play a crucial role in the interaction and activation of TrkA [253–255],
they were used to develop peptides derived from the mNGF N-terminal (Table 2).

NGF(1–14) is a linear peptide that encompasses the first 14 amino acid residues of the
human mNGF with the C-termini amidated to mimic the sequence within NGF [256,257]. It
triggers a slower, but longer lasting, activation and phosphorylation of TrkA in comparison
to NGF [257]. Interestingly, while NGF(1–14) is able to activate the PI3K/AKT pathway,
leading to GSK3β inactivation and phosphorylation of the transcription factor CREB, it
is unable to induce the phosphorylation of ERK1/2. As expected, since the MAPK/ERK
pathway is inactive, NGF(1−14) does not favor the differentiation of PC12 cells [257].
However, these results were in contradiction with those published by Pandini et al., who
observed an ERK1/2 activation in PC12 cells treated with NGF(1–14) [258]. The authors
suggested that the number of cell passages may have influenced the cell response. It was
also reported that the addition of Cu2+, known to accumulate in AD brain [259], alters the
conformation of NGF(1–14) and significantly increases its proliferative effect [258].

NGF(1–14) is a monomer with no detectable propensity to dimerize [257]. Because
dimeric peptides are more efficient to mimic native NGF, d-NGF(1–15), a dimeric form of
NGF(1–14) peptide, was obtained via a cysteine-bridge linker of two monomeric units [232].
As shown for NGF(1–14), the secondary structure of d-NGF(1–15) is stabilized by Cu2+

ions; d-NGF(1–15) interacts with the d5 domain of TrkA and is a better TrkA activator than
NGF(1–14). It induces the activation of the MAPK/ERK1/2 and PI3K/AKT pathways,
triggers CREB phosphorylation, increases BDNF levels and secretion, and significantly
increases neurite outgrowth in rat PC12 cells (Table 2 and Figure 4) [232]. Thus, use of this
dimeric peptide is a promising strategy to restore the neurotrophin levels in neurodegener-
ative disease, such as AD.

• Peptides designed by combining sequences from mNGF loops L1 and L4 and the
N-terminal region

In order to increase the efficacy, more complex NGF-mimicking peptides, such as
NL1L4 and L1L4, were designed by combining sequences from well-known regions of
mNGF-TrkA binding sites. The NL1L4 peptide incorporates sequence residues of the
N-terminal region (His4-Asp24), and residues from the L1 and L4 loops (Thr29-Lys34 and
Asp92-Gln95) that were cyclized to restrain their conformation flexibility and connected
with a linker TGA [236]. The L1L4 peptide was designed as NL1L4, but without the
N-terminal sequence. Both cyclic L1L4 and NL1L4 activate TrkA, but not TrkB. They also
induce differentiation of DRGs and PC12 cells, whereas the linear form of these peptides
did not, even at high concentration [236]. L1L4, which has the highest in vitro activity, is
also effective in reducing neuropathic pain in a chronic sciatic constriction injury (CCI)
model to an extent comparable to native NGF (Table 2) [236]. In addition, intrathecal
administration of this peptide does not cause the algesic effect of NGF [236], and is thus a
potential therapy for neuropathic pain and other brain disorders.

• Effect of NGF-derived peptides in the context of neurodegenerative diseases

Aβ has been reported to induce neuronal death by binding to p75NTR. Antagonis-
tic peptides have been designed to prevent this adverse effect of Aβ. A cyclic peptide
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(CATDIKGAEC) was derived from mNGF-β hairpin loop L1 (residues 29-35), a region
interacting with p75NTR, but in which KGE was replaced by KGA, a motif shared by NGF
and Aβ [233]. This cyclic peptide inhibits NGF and Aβ1–40 binding to p75NTR, but not
to TrkA, and prevents the neuronal death induced by Aβ1–40 in E17 rat cortical neurons
(Table 2) [233].

Other NGF-derived peptides have shown a neuroprotective effect both in vitro and
in vivo. The dimeric peptide GK-2 (described in the subsection “Peptides derived from
mNGF L1-L4 loops”) had neuroprotective activities in several experimental models. It stim-
ulated neuroprotective and neurogenesis activities in vivo in a rat model of ischemic stroke
(Table 2) [235] and in several other experimental models of traumatic brain injury or degen-
erative diseases [59,260,261]. GK-2 counteracts the impaired cognitive functions in two AD
rat models: (1) a surgical one (transection of the septo-hippocampal pathway), resulting
in the development of cholinergic deficiency; and (2) a neurotoxic one (streptozotocin),
reproducing the main pathological hallmarks (Aβ accumulation and tau phosphorylation)
(Table 2) [234]. Importantly, GK-2 systemic administration, unlike the native NGF, did
not cause hyperalgesia and weight loss in these in vivo experiments [243]. These results
suggest that GK-2 may be a promising molecule to prevent the development of AD [234].

Through their capacity to target specific receptors and to selectively activate a subset
of signaling pathways, NGF-derived peptides can favor neuroprotective and neurogenera-
tion activities. These characteristics make these molecules very promising tools to fight
neurodegenerative diseases. However, a lot of work remains to better understand the effect
of such peptides on the complex AD pathogenesis.

4.1.2. BDNF

• Linear peptides derived from mBDNF

Using neutralizing antibodies directed to identify active sites of mBDNF, five different
linear tetrapeptides were designed (peptides B-1 to B-5). B-3, B-4, and B-5 peptides exert
neurogenic and neurotrophic effects in mouse hippocampal neuronal cell culture. Both B-5
and B-3 were found to work as partial agonists and antagonists for TrkB activation, and
also to induce the expression of TrkB and BDNF (Table 2) [237]. HNgfEE is another short
peptide derived from the NGF sequence that shares similarities with the BDNF sequence.
When conjugated to the surface of polymersome nanoparticles, this peptide can bind and
activate the TrkB receptor in vitro [262]. However, to date the efficiency of these peptides
have not been evaluated in vivo.

• Cyclic dimeric peptides derived from mBDNF loops L2 and L4

The cyclic peptides derived from BDNF were designed based on the X-ray crystal-
lographic data obtained for mouse NGF and a BDNF/NT3 heterodimer [263], revealing
the β-hairpin loop (L1-L4) regions in the BDNF primary sequence. In addition, specific
site-directed mutagenesis and chimeric proteins (NGF with the L2 region of BDNF) showed
that amino acid residues in the L2 loop are involved in the interaction with TrkB re-
ceptors [264,265]. Based on these information, four conformationally constrained cyclic
peptides of various size and derived from the L2 loop were synthesized (L2-12, L2-10, L2-8,
and L2-6). These peptides act as competitive antagonists of BDNF for TrkB. However, they
have no survival-promoting activity [263].

Bicyclic dimeric peptides (disulfide-linked and amide-linked dimers) were then de-
signed based on the L2-8 sequence (e.g., (H-CVCVSKGQLC-OH)2) in order to obtain
potent peptides mimetic of BDNF. These peptides behave as partial agonists, promoting the
survival (around 29% of the maximal survival effect of BDNF) of embryonic chick dorsal
root ganglion sensory neurons. To improve the potency/efficacy of these compounds,
tricyclic dimeric peptides (hybrids of the disulfide-linked and amide-linked dimers) were
also designed to reduce conformational freedom and potentially favor the orientation of
the two monomeric units for receptor dimerization. Although still partial agonists, these
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peptides were very potent in increasing neuronal survival (100- to 1000-fold more potent
than the bicyclic disulfide-linked dimers) [266].

Other mimetic peptides of BDNF were designed based on the p75NTR-binding tripep-
tide motif KKR available on loop L4 of BDNF. For example, Fletcher et al. used a cyclic
pentapeptide (cyclo-[dPAKKR]) that consisted of the KKR tripeptide constrained by a dPro-
Ala linker. Unlike, BDNF; cyclo-[dPAKKR] cannot activate TrkB (Figure 4). However, it acts
as a BDNF agonist favoring the survival of primary embryonic chick sensory neurons. Fur-
thermore, this peptide is highly resistant to proteolytic degradation by plasma in vitro [244].
An alkyl amide-substituted analogue of this peptide (cyclo-[dPK(alkyl amide)KKR]), which
may recruit the peptide to cellular membrane, was found to be over 60-fold more potent
than cyclo-[dPAKKR] [267].

Based on these results, a dimer dipeptide named GSB-106 was derived from the BDNF
loop L4 β-turn sequence D93SKK96, where Asp93 was replaced by a succinic acid residue,
and Lys96 was replaced by an amide group [245]. Surprisingly, GSB-106 activates TrkB
receptors as well as the downstream PI3K/AKT, and MAPK/ERK1/2 and PLCγ [268].
It was also recently reported that GSB-106 induces the phosphorylation of TrkB via a
transactivation mechanism partially dependent on Src kinases in neuroblastoma SH-SY5Y
cells. GSB-106 exerts a neuroprotective effect against glutamate toxicity on cells expressing
TrkB. It also promotes survival of serum-deprived SH-SY5Y cells through TrkB/PI3K/AKT
pathway activation, which inhibits apoptosis [268]. Therefore, GSB-106 mimics BDNF in
its prosurvival activity.

• Peptides combining different regions of mBDNF

Long peptides derived from loops L3 and L4 in BDNF, Betrofin 3 (RGIDKRHWNSQ)
and Betrofin 4 (SYVRALTMDSKKRIGWR), respectively, were synthesized as dendrimers
composed of four monomers coupled to a lysine backbone. Both peptides can bind p75NTR
and TrkB receptors and induce neurite outgrowth of primary cerebellar granule neu-
rons [269]. Despite their effect on neuronal differentiation, the molecular weight of these
dendrimers is high and may limit their delivery to the brain.

• Effect of BDNF-derived peptides in the context of brain trauma and diseases

There are few studies on the effect of the BDNF-derived peptides in the context
of AD. However, their uses as antidepressants or to improve neurologic outcomes after
brain trauma have been well documented [270,271]. For example, GSB-106 improves
neurologic outcomes via PI3K/AKT and MAPK/ERK1/2 pathway activation in rat stroke
model caused by transient middle cerebral artery occlusion [271]. Furthermore, GSB-106
administered intraperitoneally or orally exhibits antidepressant activity [270,272,273]. It
also restores hippocampal neuroplasticity in a mice depression model induced by a chronic
social defeat stress procedure (Table 2) [238]. GSB-106 has therefore successfully passed
preclinical studies as a potential antidepressant.

4.2. Peptides Derived from BMP
4.2.1. Peptides Derived from the Knuckle Epitope

Based on the previous work of Saito et al. on BMP-2 [274], our research team has
designed two peptides, pBMP-9 and SpBMP-9, derived from the knuckle epitope of BMP-
9 corresponding to the amino acid residues recognized by the Type II Ser/Thr kinase
receptor BMPRII [275,276]. Like BMP-9, both peptides can activate the Smad canonical and
PI3K/AKT pathways, and inhibit GSK3β, a well-known tau kinase (Figure 4) [239]. Both
pBMP-9 and SpBMP-9 favor the differentiation of human neuroblastoma SH-SY5Y cells
toward neurons better than BMP-9, with SpBMP-9 being the most effective to promote the
cholinergic phenotype (Table 2) [239]. These results might be explained by a difference in
pBMP-9 and SpBMP-9 affinity for BMPRII receptors.

Several studies have shown that BMP-9 can induce the synthesis of NGF both in vitro
and in vivo, or act in synergy with other growth factors such as FGF-2 to promote the
differentiation of cholinergic neurons [106,190,198]. We therefore verified whether SpBMP-
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9 can act with several growth factors (FGF-2, EGF, IGF-2) and neurotrophin NGF to promote
cholinergic differentiation of SH-SY5Y cells [240]. Unlike its negative peptide NSpBMP-9,
SpBMP-9 can potentiate the effect of both bFGF and NGF on SH-SY5Y cell differentiation
toward the cholinergic phenotype. In contrast, there is no synergistic effect in terms of
neurite outgrowth for cells stimulated with SpBMP-9 combined with IGF-2 or EGF [240].
These results showed that SpBMP-9 may be a promising molecule to treat AD by increasing
the cholinergic phenotype in combination with other growth factors and inhibiting GSK3β.
However, such small peptides must be protected to be delivered to the brain. SpBMP-9
was successfully encapsulated into composite nanoparticles made of alginate and chitosan
for its intranasal delivery. SpBMP-9 released from the nanoparticles was still biologically
active [277].

However, the evaluation of SpBMP-9′s efficiency to treat AD hallmarks first requires
several in vivo studies using appropriate AD mice models.

4.2.2. Peptide Derived from the Wrist Epitope

GBMP1a was designed based on the BMP-2 wrist epitope (residues 48–69) that
can bind ALK-3 [241]. GBMP1a activates, although to a lesser extent than BMP-2, the
Smad1/5/8 pathway in primary human brain tumor cells (glioblastoma). GBMP1a also
limits the ability of glioma stem cells to self-renew, but favors their astroglial differentiation
(Table 2) [241]. Even though the role played by astrocytes in neuroinflammation and human
AD brain is still poorly understood, a peptide inducing astroglial differentiation may be of
interest [278].

4.3. Peptides Derived from FGF and Other Factors
4.3.1. FGF-2

• Peptide derived from FGF-2

Baird et al. have analyzed the functional domains in the primary sequence of FGF-2
responsible for heparin binding. Among 25 fragments, two interesting sequences have
been identified: FGF (24-68) and FGF-2 (93-120). Both peptides can inhibit FGF-2 binding
to its receptors on BHK cells. However, the shorter peptide FGF (106-115) is 10- to 100-
fold more potent [279]. Furthermore, FK18, a peptide corresponding to the sequence
FGF-2 (93-110), shows neuroprotective effects against excitotoxic injury [242] and has
no toxic effect in vivo after its intravitreal administration. [280] (Table 2). The dimeric
FGF2-FGFR1c structure has also revealed various FGF-2 β loop–strand regions acting as
FGFR1 interaction sites [281]. This information was used to design different mimetic FGF-2
peptides (canofin1, canofin2, and canofin3) that were produced as tetrameric dendrimers
coupled to a three-lysine backbone [282]. All three canofins bind to FGFR1 with a lower
affinity than FGF-2. However, they induce neuronal differentiation, as shown by neurite
outgrowth from rat cerebellar granule neurons, and protect differentiated neurons from
apoptosis [282].

Because of their neuroprotective properties and neuronal differentiation effect, such
peptides may be interesting molecules to fight degenerative disease.

4.3.2. Other Growth Factors

• Peptides derived from IGF

A short tripeptide GPE derived from IGF-1 gave promising results as neuroprotective
molecule both in vitro and in vivo using experimental models of neurodegeneration and
brain trauma [283,284]. GPE is naturally released after the N-terminal cleavage of IGF-1 in
the brain [285]. The synthetic GPE peptide increases the acetylcholine release in rat cortical
brain slice in culture [286], and prevents the neuronal death in the hippocampus injured
by NMDA in vitro [287]. It can cross the BBB upon its intraperitoneal administration, and
reduces neuronal loss in the hippocampus after hypoxic–ischemic injury in adult rats [284].

To improve its pharmacokinetic, GPE was modified by adding an α-lipoic acid (LA-
GPE, R-α-Lipoyl-GPE dimethyl ester). Both GPE and LA-GPE prevent the death of SH-
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SY5Y cells induced by Aβ1–42 in vitro. GPE-LA also reduces Aβ-induced AChE activity and
oxidative stress [288]. To increase its stability in the blood and reduce its degradation by
proteases, the amide bonds in GPE was replaced with an aminomethylene unit ψ[CH2NH]
at Gly-Pro (GPE3), Pro-Glu (GPE1), or at both junctions (GPE2). As expected, GPE2 was
more stable than GPE1 and GPE3, with half-lives of 11.8 h, 4.5 h, and 6.6 h, respectively.
However, GPE3 had the best neuroprotective properties [289].

The GPE-modified peptides can block the effect of Aβ1–42, limiting inflammation
and oxidative stress in vitro. They may therefore be considered for future application in
neurodegenerative diseases such as AD.

• Peptides derived from CNTF

CNTF is well known for its neuroprotective effect [221]. Two peptides, P6 and P021,
were derived from the biologically active region of human CNTF (amino acid residues
146–156) [290]. The peptide P6 is very stable over time, with a plasma half-life of over 6 h as
compared to 3 min for CNTF. It can also cross the BBB [291]. Both P6 and P021 gave promis-
ing results in the context of AD in several mice models [292–294]. The intraperitoneal
administration of P6 for six weeks in 6–7-month-old 3xTg-AD mice (prior to Aβ plaque
and neurofibrillary tangle formation) limits the impairment in spatial memory [292,293].
It potentiates the neurogenesis in APP transgenic (Tg) mice by increasing cell prolifera-
tion [294]. In the same way, P021 enhances the proliferation and differentiation of adult
hippocampal progenitors and improves cognition in C57Bl/6 mice and aged rats, favoring
the synthesis of BDNF [295,296]. Therefore, these peptides derived from CNTF are also
promising molecules to fight AD hallmarks.

In summary, the peptides derived from growth factors not only successfully mimic
the receptor binding sites, but also initiate specific signaling pathways such as PI3K/AKT,
MAPK/ERK1/2, and canonical Smad1/5/8 cascades involved in neuroprotective activity
(GK-2, FK-18), neurogenesis (GK-2), and cholinergic differentiation (SpBMP-9, pBMP-9).
Interestingly, some of them such as dNGF(1-15) and B-3/B-5 also promote the synthesis of
BDNF and the expression of its receptors, while others (GK-2; P06 and P021) counteract
the impaired cognitive functions in AD mice models without side effects. Furthermore,
peptides like GK-2 did not induce hyperalgesia, which is one of the primary adverse effects
of the native NGF protein. However, the side effects of peptides derived from growth
factors such as pBMP-9 and SpBMP-9 are still poorly known and require further studies.

5. Conclusions

Finding a therapy for AD disease is one of the greatest challenges for modern medicine,
since it is a multifactorial disease. Currently, major clinical trials are mainly focusing on
Aβ hypothesis components, but have been largely unsuccessful. None of the available
drugs protects against the loss of neurons, a hallmark in AD pathogenesis. In this regard,
the exogenous administration of peptides derived from growth factors is an attractive
therapeutic approach, given their roles in proliferation, differentiation, plasticity, and sur-
vival of neuronal cells. The strong supportive preclinical data in primary cells and animal
models indicate the potential/viability of this strategy for AD treatment. Several short
peptides derived from neurotrophins (NGF, BDNF), members of the TGF beta superfamily
(BMP), and FGF have been developed or are under development to replace the deficient or
dysregulated growth factor in AD. An advantage of these peptides is that their structure
can be constrained (or designed) to better interact with the growth factor receptors and to
activate a specific downstream pathway such as MAPK/ERK versus PI3K/AKT to favor
a subsequent behavior like neuronal survival and/or differentiation. It also offers the
opportunity to develop new therapeutic strategies by combining some of these peptides
together or with other available treatment for a multimodal approach. Blood stability
and pharmacokinetic properties of these peptides can also be improved by chemical mod-
ification. Their small size facilitates the penetration of the BBB to reach neuronal cells.
However, systemic administration of these peptides could lead to serious peripheral side
effects by acting on receptors in other tissues. Intranasal delivery or encapsulated cell
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biodelivery methods could help to overcome this limitation. Interestingly, if started early
in the progression of the disease, this treatment could alter the relentless cognitive decline.
However, future studies are required to better understand and improve the efficacy of
these promising molecules in the context of AD pathogenesis.
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Abbreviations

AAV2-NGF Adenoviral vector to deliver NGF
ActR-1A Type 1A activin receptor
ActRIIA Type II activin receptor
ActRIIB Type IIB activin receptor
AD Alzheimer’s disease
ADAM17 A disintegrin and metalloproteinase 17
ALK Activin receptor-like kinases receptor
AMH/MIS Anti-Müllerian hormone/Müllerian inhibiting substance
AMHRII Anti-Mullerian hormone receptor type II
AMPA Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate
APOE Apolipoprotein E
APOE4 Apolipoprotein E4
APP Amyloid-β precursor protein
AVVS2-NGF Adeno-associated virus serotype 2 delivering NGF
Aβ Amyloid-β
BAMBI BMP and activin membrane-bound inhibitor
BBB Blood–brain barrier
BDNF Brain-derived neurotrophic factor (mature form: mBDNF)
BFCNs Cholinergic neurons of the basal forebrain
BMP Bone morphogenetic protein (mature form)
BMPR-1A Type 1A BMP receptor
BMPR-1B Type 1B BMP receptor
BMPRII Type II BMP receptor
CAM Calmodulin kinase
CDC42 Cell division control protein 42 homolog
ChAT Acetylcholine synthesis enzyme
CNS Central nervous system
CNTF Ciliary neurotrophic factor
CR Cysteine clusters
CREB cAMP response element-binding protein
DAG Diacylglycerol
DMSO Dimethyl sulfoxide
dpp Drosophila decapentaplegic
ERK1/2 Extracellular signal-regulated kinase
FDA Food and Drug Administration
FGF Fibroblast growth factor
FGFR Fibroblast growth factor receptor
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FRS2 Fibroblast growth factor receptor substrate 2
Gab1 Grb2-associated binder-1
GDF Growth differentiation factors
GDNF Glial derived neurotrophic factor
GFAP Glial fibrillary acidic protein
GPCRs G-protein-coupled receptors
Grb2 Growth factor receptor-bound protein 2
GSK3β Glycogen synthase kinase-3-β
GWAS Genome-wide association
HMW High molecular weight
Ig-C2 Immunoglobulin-like C2 type domains
IGF Insulin-like growth factor
IP3 Inositol 1,4,5-trisphosphate
I-Smad Inhibitory Smad: Smad6/7
JNK cJun N-terminal kinase
Lhx8 LIM homeobox 8
LMW Low molecular weight
LOAD Late-onset Alzheimer’s disease
LRR1-3 Leucine-rich 24-residue motifs
LTP Long-term potentiation
MAGE Melanoma-associated antigen
MAP-2 Microtubule associated protein 2
MAPK Mitogen-activated protein kinase
MMP-9 Matric metalloprotease
NeuN Neuronal nuclear protein
NF-kB Nuclear factor kB
NG2 Neuron-glial antigen 2
NGF Nerve growth factor (mature form: mNGF)
NMDA N-methyl-D-aspartate
NMDAR NMDA receptor
NRAGE Neurotrophin receptor-interacting MAGE protein
NSE Neuron specific enolase
NT-3 Neurotrophin-3
NT-4/5 Neurotrophin-4/5
p75NTR p75 neurotrophin receptor
PI3K/AKT Phosphoinositide 3-kinase/protein kinase B
PIP2 Phosphatidylinositol 4,5-bisphosphate
PKC Protein kinase C
PLCγ Phospholipase Cγ
PPM1A Protein phosphatase magnesium-dependent 1A
RAF Rapidly accelerated fibrosarcoma
RhoGDI1 RhoGDP dissociation inhibitor 1
Shc Src homology 2 domain containing
Smad Small mothers against decapentaplegic
SOS Salt overly sensitive
STAT Signal transducer of activators of transcription
TAB1/2/3 TAK1-binding protein 1/2/3
TAK1 Transforming growth factor β-activated kinase 1
TF Transcription factor
Tg Transgenic
TGF-β Transforming growth factor-β
TRAF TNF receptor associated factor
TREM2 Triggering receptor expressed on myeloid cells 2
Trk Tropomyosin receptor kinase
Trk-FL Trk full length
VAChT Vericular acetylcholine transporter
WHO World Health Organization
WT Wild type
XIAP X-linked inhibitor of apoptosis
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