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Abstract: CRISPR/Cas technology holds promise for the development of therapies to treat inherited
diseases. Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disorder with a variable
multisystemic character for which no cure is yet available. Here, we review CRISPR/Cas-mediated
approaches that target the unstable (CTG•CAG)n repeat in the DMPK/DM1-AS gene pair, the
autosomal dominant mutation that causes DM1. Expansion of the repeat results in a complex
constellation of toxicity at the DNA level, an altered transcriptome and a disturbed proteome.
To restore cellular homeostasis and ameliorate DM1 disease symptoms, CRISPR/Cas approaches
were directed at the causative mutation in the DNA and the RNA. Specifically, the triplet repeat
has been excised from the genome by several laboratories via dual CRISPR/Cas9 cleavage, while
one group prevented transcription of the (CTG)n repeat through homology-directed insertion of a
polyadenylation signal in DMPK. Independently, catalytically deficient Cas9 (dCas9) was recruited to
the (CTG)n repeat to block progression of RNA polymerase II and a dCas9-RNase fusion was shown
to degrade expanded (CUG)n RNA. We compare these promising developments in DM1 with those
in other microsatellite instability diseases. Finally, we look at hurdles that must be taken to make
CRISPR/Cas-mediated editing a therapeutic reality in patients.

Keywords: cell therapy; gene editing; gene therapy; muscular dystrophy; myotonic dystrophy;
neuromuscular disease; repeat expansion; trinucleotide repeat

1. Introduction

1.1. Basic Principles of CRISPR/Cas Technology

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system
(Cas) methodology has a huge impact on research and gene therapy development by its ability to
accurately target a specific locus in the genome of eukaryotes [1]. Adapted from an antiviral defense
system in prokaryotes, CRISPR/Cas interferes with the genome via a small guide RNA (sgRNA).
This sgRNA directs the Cas endonuclease to a DNA target that matches the sgRNA sequence and
is located next to the proto-spacer adjacent motif (PAM), a conserved 2–6 base pair DNA sequence
bound by Cas itself (Figure 1). Upon binding, the Cas protein will generate a double strand break
(DSB) by cleaving the DNA in both strands, which was first shown for Cas9 from Streptococcus pyogenes
(SpCas9). Although SpCas9 is still widely used, many other Cas proteins have been identified in the
meantime, originating from different organisms, each with their own, highly conserved PAM sequence
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and nuclease characteristics [2,3]. The resultant DSB will commonly be repaired by the cell’s DNA
repair system through non-homologous end joining (NHEJ), generally resulting in the formation of an
indel at the cleavage site. In a minority of cases, homology-directed repair (HDR) will occur, depending
on the cell cycle phase and presence of a suitable donor template. In a research setting or for therapy
development, the indel may be used to knockout a protein-coding gene by disturbing its open reading
frame, while a HDR strategy may be designed to insert or replace a specific DNA segment (Figure 1).

The application of the CRISPR/Cas system quickly evolved far beyond the initial function of
inducing DSBs at desired loci. Mutating one or both of the two nuclease domains of Cas9, respectively,
resulted in the generation of Cas9 nickase (Cas9n), which only induces a single strand nick, and
catalytically dead Cas9 (dCas9), which bears no nuclease activity at all (Figure 1). dCas9 can block
transcription by physically occupying the gene or it may function as a scaffold for fluorophores
(e.g., green fluorescent protein (GFP)), transcription activators or inhibitors (i.e., CRISPRa or CRISPRi),
and epigenetic modifiers like demethylases and base editors [4,5] (Figure 1). More detailed information
on the broad spectrum of CRISPR/Cas technology, beyond the scope of this review, can be found in
comprehensive publications on this topic [1–5]. The focus of our review here will be on the use of
CRISPR/Cas in the context of research and therapy development for myotonic dystrophy (DM1), a
complex, inherited multisystemic disease, caused by an unstable (CTG•CAG)n repeat.
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Figure 1. Principles of main CRISPR/Cas9 applications. (a) CRISPR/Cas9 generates a double strand
break (DSB) in the genome, guided by its small guide RNA (sgRNA) next to a proto-spacer adjacent motif
(PAM) sequence. The DSB will in most cases be repaired by error-prone non-homologous end joining
(NHEJ), resulting in the formation of an indel. Precise DNA repair will occur through homology-directed
repair (HDR) and the use of a suitable donor template in a minority of the cases. (b) Cas9 D10A nickase
(Cas9n) is mutated in one of its nuclease domains and will therefore introduce a single strand break in
the DNA. When two nickases are targeted close to each other, the two nicks effectively generate a DSB,
which will be followed by the same repair events as illustrated in a. (c–e) dCas9 is a double mutant and
enzymatically inactive. It is being used as a precise and effective guiding vehicle to the genome and to
transcripts. Examples shown here are transcription activation (CRISPRa) and transcription interference
(CRISPRi) by dCas9 fusions to transcription activators and repressors, respectively. Fusion of GFP to
dCas9 has been used to localize (CUG)n RNA in situ in living cells [6].
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1.2. Clinical Genetics and Disease Mechanisms in DM1

DM1 is a severe disorder characterized by diverse symptoms related to a broad range of organs
and tissues, including skeletal muscle, heart, brain, eyes and gastrointestinal tract. Symptoms can
differ strongly between patients, even within one family. Currently, five subtypes are recognized in
the literature, from the mild late-onset, to adult, juvenile and infantile DM1, and finally the severe
congenital form of DM (CDM) [7]. The underlying cause of DM1 is a toxic gain-of-function of an
expanded (CTG•CAG)n repeat on chromosome 19 [8–10]. The repeat length is polymorphic in the
human population, generally between 5–23 triplets long. Above a length of 37 triplets, the repeat
becomes unstable and can grow to several thousands of triplets. Repeat instability, usually expansion,
occurs during life in somatic cells and between generations. Related to this behavior, anticipation is a
typical feature in DM1 families, since longer repeats in successive generations correspond to more
severe symptoms and earlier age of onset. Exactly how repeat length relates to pathology is still
enigmatic. In about 5%–10% of the patients, the (CTG•CAG)n repeat carries imperfections, which is
generally associated with a lower expansion rate and a less severe phenotype [11,12].

Expansion of the DM1 (CTG•CAG)n repeat causes toxicity at various levels [8–10]. At the DNA
level, an expanded repeat forms stable (CTG)n and (CAG)n hairpin-like structures that may cause
replication fork stalling during S-phase, leading to cell stress. In addition, repeat-induced chromatin
changes, e.g., CpG methylation, may lead to haploinsufficiency of DM1 locus genes, e.g., DMPK and
SIX5. Most experimental evidence, however, points to a toxic function for RNA gene products with an
expanded repeat. The DM1 expansion mutation is bidirectionally transcribed and located as a (CTG)n
repeat in the 3′ untranslated region (UTR) of DMPK and as a (CAG)n repeat in an alternatively spliced
intron of the DM1 locus antisense RNA (DM1-AS) gene. Expanded DMPK transcripts carrying a long
(CUG)n repeat are trapped in cell nuclei, where they form abnormal hairpin-like structures that sequester
members of the muscle-blind-like (MBNL) family. These (CUG)n RNA-MBNL ribonucleoprotein
particles are detected by microscopy as nuclear foci, a hallmark of DM1. Mutant DMPK transcripts also
stabilize CELF1 (CUGBP-1) by stimulating its phosphorylation. The imbalance in MBNL and CELF1
protein levels, both developmental regulators of RNA processing, leads to aberrant alternative splicing
and alternative polyadenylation of many transcripts and abnormal miRNA processing, together
resulting in altered expression of a broad range of proteins. Adding to the disturbed proteostasis,
the DM1-AS (CAG)n repeat is translated by a mechanism called repeat-associated non-AUG (RAN)
translation, by which toxic homopolymeric (e.g., polyQ) polypeptides are being formed [13]. In sum,
several pathogenic mechanisms likely contribute to disease in DM1. Which of these mechanisms is
most dominant, and to what extent tissue- and cell type-specific properties are involved, is not known.

There is no cure for DM1 and treatment is currently limited to disease management [14]. When it
comes to therapeutic approaches directed at the cause of disease, several strategies are being tested by
different laboratories [15–17]. The main three classes of therapeutics are small molecules, antisense
oligonucleotides and gene editing technology, including CRISPR/Cas. The CRISPR/Cas system, applied
now in a number of publications on the disease, has great potential for DM1, as it may lead to
a permanent rescue of cell function. Notably, there’s a second, relatively mild form of myotonic
dystrophy, DM2, but to our knowledge, no gene editing studies have been published on this disease.
Here, we will present the first steps taken towards gene editing applications in DM1, discuss pros and
cons of each approach and reflect on challenges and opportunities. We will compare and learn from
recent developments in other microsatellite instability diseases and will define remaining questions.
Finally, we will look at hurdles that must be taken to bring CRISPR/Cas-mediated gene editing closer
to the patients.
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2. CRISPR/Cas-Mediated Genome Editing in the DM1 Locus

2.1. Excision of the Expanded (CTG•CAG)n Repeat

The most straightforward application of CRISPR/Cas9 in DM1, for the first time reported by our
own group [18], is to remove the genetic cause of disease by precise excision of the expansion mutation.
This was accomplished by designing two sgRNAs targeting flanking sequences at either end of the
mutation, followed by joining of the two DSBs through NHEJ, while excluding the repeat-containing
fragment in between (Figure 2a). The main advantage of this strategy is that the disease defect is
restored at the DNA level, so long repeat-containing transcripts are not produced and downstream
toxic effects are eliminated. From a therapeutic point of view, this excision approach is feasible in DM1,
because the (CUG)n repeat is not part of the DMPK open reading frame, while functional open reading
frames in long noncoding RNA DM1-AS have not been demonstrated yet [19]. Since expanded (CAG)n
repeats in DM1-AS transcripts are subject to non-canonical, disease-related RAN translation [20], repeat
excision will also abolish the production of toxic homopolymeric proteins.
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Figure 2. CRISPR/Cas9 strategies successfully applied in DM1 models. (a) The (CTG•CAG)n triplet
repeat expansion mutation was excised via dual CRISPR/Cas9-mediated cleavage, at either side of the
repeat, followed by NHEJ of the two DSBs [18,21–24]. The DMPK gene is shown with its first and last
exons, stop codon (stop sign), and the 3′ UTR including the (CTG)n repeat. (b) Transcription of the
(CTG)n repeat in DMPK was prevented by inserting a premature poly(A) signal between the stop codon
and the repeat. This was done via a double Cas9n strategy followed by HDR using a donor template [23].
Notably, in this editing strategy the expanded repeat remains present in the genome. (c) Recruitment
of dCas9 to the expanded (CTG)n repeat in DMPK inhibited its transcription by physically blocking
RNA polymerase II progression [25]. (d) Recruitment of a PIN ribonuclease-dCas9 fusion protein to
the (CUG)n repeat resulted in degradation of (CUG)n repeat-containing transcripts [6].

The success of the repeat excision strategy is confirmed in a number of studies by other
laboratories [21–24]. Together, these reports show the reliability and robustness of the CRISPR/Cas
technique, since different choices were made regarding the sgRNA sequences, located closer to or
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further away from the (CTG•CAG)n sequence (Table 1). To prevent significant perturbation of the 3′

UTR in corrected DMPK transcripts, we reasoned that besides the expanded repeat, we should remove
as few flanking base pairs from the locus as possible. The design of sgRNAs, however, is being dictated
by the presence of a proper PAM sequence (NGG for SpCas9) and the number of predicted off-target
effects elsewhere in the genome. In our hands, different sgRNAs, targeting flanking sequences or the
repeat itself, demonstrated variable cutting efficiencies and some did not result in any cleavage at
all [18]. This may be explained by the complex DNA hairpin structures that can be formed by expanded
(CTG•CAG)n repeats [26]. A similar rationale was described by Provenzano et al. (2017), as they
speculated that the editing efficiency in regions close to the repeat might be influenced by its abnormal
3D structure [22]. Therefore they chose to target the DM1 locus more distal to the repeat, ~200–300 base
pairs up- and downstream. Whether the deleted flanking sequences harbor any regulatory 3′ UTR
information for DMPK mRNA half-life, translation efficiency or subcellular localization, e.g., through
binding of miRNAs or RNA-binding proteins, remains to be investigated.

Regardless of the use of different combinations of two sgRNAs, all reports demonstrate dual
cleavage followed by ligation of the two DSBs and exclusion of the repeat segment plus flanking
parts. Expanded and unaffected alleles were equally well targeted. Besides, it should be noted that
no suitable single nucleotide polymorphisms (SNPs) located near the repeat are available that can be
used to discriminate between long and short alleles. In most cases, the new junction precisely matched
joining of the two CRISPR/Cas9 cleavage sites. However, small and larger indels at the cleavage sites
were also seen, as well as repeat inversions [18,22,23].

Notably, we and others also discovered that a DSB close to the expanded repeat (<50 bp)
induces uncontrolled deletion of large repeat segments, thereby resulting in unpredictable repeat
contraction [18,21,24]. This phenomenon, not observed when sgRNAs are directed further away from
the repeat (>200 bp) [22], relates probably to the occurrence of unstable slipped-strand structures at
(CTG•CAG)n tracts in or close to a DSB [27,28] (see for an excellent review on this topic [29]). To us
this demonstrates that for reliable and predictable removal of an expanded repeat two highly effective
sgRNAs are needed and that single CRISPR/Cas9 cleavage must be avoided. Of note, if one of the two
DSBs is repaired by NHEJ whereby an indel is created, this site cannot be cut again and repeat excision
is blocked.

Current evidence suggests that the DM1 triplet repeat can be removed from any cell type in the
human body, which seems a prerequisite for gene therapy in vivo in a multisystemic disease like DM1.
The repeat has been excised in unaffected and DM1 primary and immortalized myoblasts, induced
pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), iPSC-derived myogenic cells, iPSC-derived
neural stem cells, MYOD1-expressing immortalized fibroblasts, HEK293T cells and transgenic mouse
myoblasts (Table 1). Whether CRISPR/Cas9-mediated repeat excision is also possible in terminally
differentiated cells like myotubes needs to be investigated. Excision efficiencies may vary between the
different cell types and reports, likely depending on the choice of the sgRNAs. We propose, however,
that the local chromatin organization surrounding the (CTG•CAG)n repeat does not play a dominant
role in cleavage efficiency, given the observation that unaffected as well as expanded, hypermethylated
alleles were successfully targeted.
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Table 1. Study characteristics of CRISPR/Cas approaches in DM1.

Study CRISPR/Cas Strategy, Cas Type,
(CTG•CAG)n Length sgRNA 1 Delivery DM1 Biomarkers Examined Cell Types Used

(CTG•CAG)n Excision

Van Agtmaal et al.,
2017 [18]

(CTG•CAG)n excision
hSpCas9
Unaffected: n = 5/13
DM1: n = ~550/2600

Repeat-flanking sgRNAs
Upstream: 11 bp
Downstream: 51 bp

Nucleofection: Cas9 and sgRNA
expression plasmids

DMPK, SIX5 and DM1-AS RNA
expression
DMPK protein expression
DMPK RNA subcellular
distribution
(CUG)n RNA foci and MBNL1 foci
BIN-1 ex11 and DMD ex78 splicing
Myogenic differentiation

Human: Immortalized unaffected
and DM1 myoblasts
Murine: Immortalized DM500
myoblasts

Provenzano et al.,
2017 [22]

(CTG•CAG)n excision
eSpCas9
Unaffected: n = 5/13
DM1: n = 300–1000

Repeat-flanking sgRNAs
Upstream: 189 bp
Downstream: 305 bp

Lipofection and nucleofection:
Cas9 and sgRNA expression
plasmids

DMPK RNA expression
(CUG)n RNA foci and MBNL1 foci
SERCA1 ex22 and INSR ex11
splicing
Myogenic differentiation
DMPK protein expression

Human: HEK293FT cells
Immortalized unaffected and DM1
inducible MYOD1-expressing
fibroblasts

Dastidar et al., 2018 [21]

(CTG•CAG)n excision
hSpCas9
Unaffected: n = 5/13
DM1: n = 1000–1700

Repeat-flanking sgRNAs
Upstream: 24 bp
Downstream: 51 bp

Lentiviral transduction:
CMV-hspCas9-EF1-GFP virus
Nucleofection: Cas9/sgRNA RNP
complexes

DMPK RNA expression
(CUG)n RNA foci andMBNL1 foci
SERCA1 ex22 splicing

Human: DM1 iPSC-derived
myogenic cells
DM1 primary myoblasts
DM1 iPSCs

Wang et al., 2018 [23]

(CTG•CAG)n excision
SpCas9 and SaCas9
Unaffected: n = 5
DM1: n ≥ 2000

Repeat-flanking sgRNAs
Upstream: <220 bp
Downstream: <220 bp

Lipofection: Cas9 and sgRNA
expression plasmids (CUG)n and (CAG)n RNA foci

Human: HEK293FT cells
DM1 iPSC-derived neural stem
cells

Yanovsky-Dagan et al.,
2019 [24]

(CTG•CAG)n excision
SpCas9
Unaffected: n = 5
DM1: n = 2000

Repeat-flanking sgRNAs
Upstream: 11 bp
Downstream: 47 bp

Transfection: Cas9 and sgRNA
expression plasmids

SIX5 expression
DM1 locus CpG hypermethylation
H3K9me3 enrichment

Human: HEK293T cells
DM1 hESCs

Insertion Poly(A) Signal Cassette

Wang et al., 2018 [23]

Insertion poly(A) signal cassette
SpCas9n
Unaffected: n = 5
DM1: n ≥ 2000

Paired sgRNAs between
stop codon and repeat
Donor template:
5′ HR arm: 97 bp
3′ HR arm: 184 bp

Lipofection: Cas9n and sgRNA
expression plasmids and donor
template

(CUG)n RNA foci
DMPK RNA subcellular
distribution
MAPT ex3, MBNL1/2 ex7, SERCA1
ex22 and INSR ex11 splicing
Myogenic differentiation

Human: DM1 iPSCs
DM1 iPSC-derived neural stem
cells
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Table 1. Cont.

Study CRISPR/Cas Strategy, Cas Type,
(CTG•CAG)n Length sgRNA 1 Delivery DM1 Biomarkers Examined Cell Types Used

dCas9-Mediated Repeat Transcription Inhibition, Repeat RNA Visualization and Degradation

Pinto et al., 2017 [25]

(CTG)n transcription block
dSpCas9 and dSaCas9
(CTG•CAG)n plasmids n =
0/12/40/240/480/960 (interrupted)
DM1: n ≥ 2000

(CAG)6 sgRNA

Transfection: plasmids expressing
dCas9 and sgRNAs
Transduction:
AAV2/6-dSaCas9-sgRNA and
AAV2/9-dSaCas9-sgRNA

(CUG)n RNA foci
(CUG)n RNA expression
Multiple splice modes (RNA-seq)
RAN translation
Expression of (CUG)n and (CAG)n
repeat-containing transcripts
Myotonia

Human: Transiently transfected
HEK293T and HeLa cells
DM1 primary myoblasts
Murine: HSALR mice (EDL muscle
ex vivo, tibialis anterior and
gastrocnemius in vivo)

Batra et al., 2017 [6]

(CUG)n RNA visualization and
degradation 666dSpCas9,
dSpCas9-GFP and PIN-dSpCas9
(CTG•CAG)n plasmids
n = 105
n = 960 (interrupted)
DM1: n ≥ 2700

(CAG)n sgRNA

Lipofection: Cas9 and sgRNA
expression plasmids
Lentiviral transduction: U6-sgRNA
and EFS-PIN-dCas9

(CUG)n RNA expression
(CUG)n RNA foci
MBNL1 foci
Multiple splice modes (RNA-seq)
Expression of (CUG)n and (CAG)n
repeat-containing transcripts

Human: DM1 primary myoblasts
Primate: COS-M6 cells

1 bp upstream/downstream indicate CRISPR/Cas9 cleavage distance in base pairs from first/last triplet in the repeat.
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The ultimate goal of removal of the pathogenic repeat in a DM1 patient cell is improvement or
preferably reversal of the disease situation. Whether that indeed will be possible in vivo depends
on in vivo CRISPR/Cas9 activity, the reversibility of the molecular mechanisms and the resilience of
the cells and tissues involved. Well-known biomarkers that are used to measure changes in DM1
disease status at the cellular level are occurrence of repeat RNA/MBNL1 nuclear foci, ratios of certain
DM1-typical alternative splice modes, miRNA expression and myogenic differentiation capacity.
In most studies, one or more of these molecular measures were tested and these indeed improved
after removal of the expansion (Table 1). One particular DNA biomarker for CDM, that deserves
special attention, is hypermethylation of the CpG island surrounding the repeat in the DM1 locus [24].
This abnormal chromatin structure is commonly seen in patient cells with repeat lengths of over a
few hundred triplets. In a collaborative project between the Eiges laboratory and our group, we
compared CpG methylation before and after repeat removal in ESCs and immortalized myoblasts, both
carrying CDM-size repeats with corresponding hypermethylation [24]. To our surprise, excision of the
repeat in undifferentiated stem cells resets the methylation status in the locus, but methylation levels
remain unchanged in affected myoblasts after deletion of the large expansion. These findings suggest a
transition from a reversible to an irreversible heterochromatin state by the DM1 mutation, which must
be taken into account when considering gene correction in differentiated cells in vitro and in vivo [24].

DNA editing strategies with the purpose to excise a disease-causing repeat have also been
designed in other microsatellite expansion disorders. These studies may be informative for therapy
development in DM1, although approaches strongly depend on disease-specific features related to
(i) the corresponding disease mechanism, i.e., loss- versus gain-of-function; (ii) the location of the
unstable repeat in the mutated gene, i.e., in coding or non-coding sequences; (iii) the function of the
gene or the repeat sequence itself, i.e., crucial, redundant or insignificant and (iv) the length of the
repeat, i.e., many disease-causing microsatellites are relatively short (<100–200 units) compared to the
extreme expansions in many DM1 patients.

Like in DM1, the unstable microsatellite in fragile X syndrome (FXS) is a non-coding repeat: A
(CGG•CCG)n sequence in the 5′ UTR of FMR1 on the X-chromosome. A repeat of >200 triplets induces
FMR1 silencing via hypermethylation and chromatin remodeling of the region. Indeed, removal of
pathogenic repeats in FXS iPSCs and ESCs was associated with reduced methylation and reactivation
of the FMR1 gene [30,31]. CRISPR/Cas9-mediated editing was accomplished by either a single cleavage
20 bp upstream of the repeat or dual cleavage at either side (~55 bp) of the repeat. Following NHEJ,
the entire repeat including short flanking sequences was removed, also in wt alleles (n = 9–10).

Another noncoding unstable microsatellite is the (GAA)n repeat in intron 1 of FXN, associated
with the recessive disorder Friedreich’s ataxia (FRDA), characterized by heterochromatinization of
the gene and low protein production. Repeats containing 82 and 190 triplets were excised by dual
CRISPR/Cas9 approaches (using SpCas9 and SaCas9) and different sgRNA combinations at either side
of the repeat (~100–600 bp up and downstream) in transgenic mouse fibroblasts and transfected mouse
muscle [32]. (GAA•TTC)n removal raised FXN transcript and protein production.

In many (CAG)n expansion diseases, the pathogenic repeat is located in a coding sequence giving
rise to the production of proteins with extended polyglutamine (polyQ) stretches. In Huntington’s
disease (HD), for example, the pathogenic (CAG)n repeat is located in exon 1 of HTT. Dual CRISPR/Cas9
cleavage, ~35 bp up- as well as downstream of the repeat, successfully excised a (CAG)140 repeat plus
flanking sequences from a HTT transgene in a HD mouse model in vivo [33]. Consequently, excision
inactivated the HTT transgene, mutant HTT protein was no longer produced and the neurological
phenotype in the mice was attenuated. Excision of an expanded (CAG)78 repeat from exon 10 in
ATXN3 in spinocerebellar ataxia type 3 (SCA3) patient-derived iPSCs [34] was also performed through
dual CRISPR/Cas9 cleavage (82 bp up- and 11 bp downstream of the repeat). Repeat excision resulted
in a premature stop codon in exon 11, but truncated ATXN3 protein was still able to associate with its
normal binding partner ubiquitin.
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Finally, in an approach to decrease off-target effects and increase specificity, a second report on
HD used paired Cas9 nickases, making nicks in the most 5′ CAG triplet and ~60 bp downstream of
the repeat, in a series of HD fibroblasts [35]. Both unaffected (CAG)17/21 and expanded (CAG)44–151
repeats were efficiently removed from HTT, thereby inactivating these alleles. It remains to be
determined whether a paired Cas9n strategy [36,37] will work for typical repeat lengths of hundreds
to several thousands of triplets in DM1 [7]. Long distances between pairs of Cas9n may induce slipped
strand structures leading to an unpredictable outcome [18,21,24,27,28].

2.2. Reduction of the (CTG•CAG)n Repeat Length

An alternative strategy to excision of the expanded repeat followed by error-prone NHEJ, is
making use of HDR to precisely repair the expansion mutation and correct the gene (Figure 1). Based
on a carefully designed donor template with homology arms, a HDR-mediated strategy can be used to
exchange an elongated repeat for a shorter one below the pathogenic threshold, <37 triplets in DM1.
In SCA2, Marthaler et al. (2016) reported the correct replacement of 44 for 22 CAG triplets in the open
reading frame in exon 1 of ATXN2 in patient iPSCs [38]. CRISPR/Cas9 and two sgRNAs were used,
targeting upstream of the repeat in exon 1 and downstream in intron 1. A comparable correction
strategy was successfully performed in HD iPSCs, using two nickases, cutting only ~30 bp apart, ~30 bp
upstream of the repeat, to replace 180 for 18 CAG triplets [39]. Unfortunately, a known disadvantage
of HDR is its low efficiency and the fact that it is mainly active in proliferating cells [40,41].

An HDR-based strategy to shorten the repeat has not yet been reported for DM1. It is likely that
the extreme expansions of hundreds to thousands of triplets represent a complicating factor, since
cleavage near the repeat facilitates contractions and rearrangements up to a few kilobase pairs, probably
due to the flexibility of repeat hairpin structures [18,21,24]. This type of uncontrollable behavior is
supported by earlier data using transcription activator-like effector based nuclease (TALEN) and zinc
finger nuclease (ZFN) cleaving short (CTG•CAG)n repeats (<100 triplets) in yeast and human cells,
respectively [42–44].

A different mechanism is at play when a single strand cut is made inside the repeat with Cas9n [45]
(Figure 1). While a DSB may lead to both expansions and contractions, a single strand break is repaired
preferably in a repeat-contracting manner. Shorter, stable (CTG•CAG)n repeats in other genes in the
genome are likely unaffected by this approach [45]. Reduction of (CTG•CAG)n repeat length by a
deliberate single strand cut might be an interesting opportunity to bring an expanded repeat back to a
healthy or less harmful size [30], but it is doubtful whether this strategy will be safe enough for in vivo
use towards long repeats in DM1.

2.3. Allele-Specific Gene Editing

Recent advances in HD paved the way to selectively knock out the mutant, expanded allele, leaving
transcription of only the healthy allele [46,47]. By screening the HTT locus for SNPs, variants located in
PAM sequences for SpCas9 were identified that are specifically linked to the mutant allele. Dual cleavage
Cas9 approaches thus excised a ~44 kb fragment, comprising the promoter region, transcription start
site and first exons including the (CAG)n repeat [47] or a ~1 kb fragment encompassing part of the
promoter and exon 1 including the repeat [46] of mutant HTT in patient-derived cells and in a HD mouse
model. These allele-selective editing approaches completely abolished or at least reduced mutant HTT
expression, depending on CRISPR/Cas9 editing efficiency. Future studies could explore the potential of
such a personalized approach using SNPs in DM1 too, since complete elimination of expanded DMPK
transcripts would likely improve DM1 pathology, assuming that DMPK haploinsufficiency is not too
harmful in humans [48]. It must be noted, however, that thus far no SNPs specifically linked to the
mutant DMPK allele have been identified.
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2.4. Insertion of a Premature Polyadenylation Signal in DMPK

A CRISPR/Cas9-mediated strategy engaging HDR of a non-repeat region in DMPK in iPSCs
was reported by Xia and coworkers [23]. Rather than focusing on editing the repeat itself, they
designed a strategy to prevent transcription of DMPK’s (CTG)n repeat. Premature polyadenylation
(poly(A)) signals were inserted between the stop codon and the repeat in exon 15 to induce premature
termination of RNA synthesis (Figure 2b) [23] (see also [49,50]). A dual Cas9n approach was chosen,
introducing two adjacent single strand nicks in opposite strands, to minimize off-target effects. Edited
iPSCs and their derivatives lost nuclear foci and splicing abnormalities were repaired. This elegant
approach not only avoids the production of toxic (CUG)n RNA, it also releases DMPK transcripts with
a novel engineered 3′ UTR for translation into the cytoplasm. DMPK haploinsufficiency may thus be
alleviated, however the novel 3′ UTR may confer unexpected regulatory features to the engineered
DMPK transcripts. A significant limitation to this strategy is that the pathogenic repeat remains present
in the genome, so detrimental effects on replication stress and heterochromatinization of the locus
and silencing of SIX5 persist. In addition, transcription of the (CAG)n repeat as part of DM1-AS will
continue, with the risk of the production of RAN translation-mediated homopolymeric proteins [19,20].

3. CRISPR/dCas9 as a Guide to the DM1 Locus

By introducing two mutations in the nuclease domains in Cas9, an enzymatically inactive protein
was generated, dCas9, that maintained its ability to bind DNA with great precision. The genome
guiding ability of dCas9 was applied to neutralize detrimental effects of expanded (CTG•CAG)n
repeats without chemically editing the DNA. CRISPR/dCas9 has been shown to interfere with DMPK
transcription by physically hybridizing to the repeat, thereby blocking passage of RNA polymerase II
(Figure 2c) [25]. Of a number of repeat sgRNAs tested, sgRNA (CAG)6, hybridizing to the coding strand,
performed best, which is remarkable since CAG is not a favorable PAM sequence for dSpCas9 nor
dSaCas9, the two Cas9 enzymes tested. Transcriptional blockade by dCas9 preferentially affected the
pathogenic allele, presumably reflecting the occupancy power of multiple dCas9 molecules that can bind
the expanded segment. Proof of principle for this strategy was demonstrated in vitro in transfected cells
and in DM1 patient cells, while injection of adeno associated viruses (AAVs) expressing dSaCas9 and
(CAG)6-sgRNA in HSALR mice, a transgenic DM1 model for DM1 [51], reduced myotonia. Remarkably,
no corresponding rescue of CLCN1 missplicing was observed, presumably due to inefficiency of
viral delivery combined with bulk tissue analysis. Evidence was provided that repeat-mediated
transcription inhibition also works for other repeat expansion diseases [25].

Ongoing developments in dCas applications have opened up ample opportunities for genome
regulation and modulation in DM1 without using endonuclease activity [52]. CRISPRi, for example
might be used to target dCas9-repressor fusion proteins to the DMPK promoter to impair initiation of
transcription, thereby reducing expanded DMPK RNA levels (compare the use of CRISPRa in FXS [53]).
Unless available SNPs linked to either of the two alleles are used, however, this strategy will not be
allele-specific and both DMPK genes may be repressed. Other interesting examples are dCas9 fusions
to demethylases, to reduce CpG hypermethylation around the expanded repeat and restore normal
chromatin structure, or fusion to DNA base editors [54,55], which may introduce interruptions in
large (CTG•CAG)n repeats, thereby lowering repeat instability and probably ameliorate the disease
phenotype [11,12].

4. CRISPR/dCas9-Mediated Targeting and Elimination of Expanded Repeat RNA

CRISPR/dCas9 not only targets double stranded DNA, it is also able to recognize single stranded
RNA rather efficiently [49,56]. This principle was used by the Yeo laboratory to visualize expanded
(CUG)n transcripts in situ using a dCas9-EGFP fusion protein and a (CAG)n sgRNA in transfected COS
cells [6]. Surprisingly, only dCas9 in combination with a (CAG)n guide was able to dissipate nuclear
(CUG) RNA foci and reduce repeat RNA expression levels, more or less similar to what has been



Int. J. Mol. Sci. 2019, 20, 3689 11 of 17

shown for blocking-type antisense oligonucleotides [57,58]. This effect was strongly enhanced when
dCas9 was fused to a PIN-endonuclease domain, providing evidence for an effect at the RNA level,
rather than the DNA level as reported by Pinto et al. [25]. A significant drawback of RNA-targeting
CRISPR/Cas therapeutics in DM1 is that these must be continuously present, since their activity will
not leave a permanent mark in the genome. On the other hand, RNA approaches might have fewer
side effects, since complete elimination of off-target transcripts with nearly perfect sgRNA match
seems unlikely.

5. Therapeutic Outlook for CRISPR/Cas-Mediated Ex Vivo and In Vivo Approaches in DM1

5.1. Ex Vivo Cell Therapy

A meaningful therapeutic intervention in DM1 requires gene editing of a large part of the (stem)
cell pool to halt disease progression and significantly contribute to improvement in the long term.
Therefore, an ex vivo approach, namely cell therapy based on autologous CRISPR/Cas-edited cells
from DM1 patients, might be considered.

When focusing on skeletal muscle, the general consensus holds that satellite cells are required
for muscle regeneration [10]. However, it is important to realize that also pericytes are indispensable
for postnatal growth of skeletal muscle [59,60]. Studies in mice have shown that these cells enter
the satellite cell pool, suggesting that they contribute to subsequent regular muscle regeneration [61].
Importantly, it is still not clear whether human pericytes show similar differentiation characteristics
and can contribute to skeletal muscle formation in vivo. Since satellite cells have shown problems
including poor survival and incompatibility with systemic delivery, pericytes may be considered the
preferred choice [10]. CRISPR/Cas-mediated editing efficiency might differ between muscle stem cells
(e.g., pericytes, mesoangioblasts, satellite cells) and the further differentiated proliferating muscle
progenitors, such as myoblasts.

The use of iPSCs in cell therapy brings two benefits: First, it circumvents the limited proliferative
lifespan of primary cells and, secondly, when CRISPR/Cas-mediated editing has taken place, which is
never 100% efficient, the correctly edited cells can be selected, clonally expanded and used further [21].
Two laboratories have used DM1 iPSCs both aimed to end up with genetically edited iPSCs [21,23],
which can be differentiated into suitable muscle or neuronal progenitor cells (or progenitor cells for other
tissues or organs) creating an unlimited amount of autologous, non-immunogenic healthy cells [62].
Repeat-corrected cells will hopefully prove to be useful to halt or at least delay the degenerative process
in DM1 patients in the future.

5.2. In Vivo Gene Editing

Research on gene editing in the DM1 locus has mainly focused on cell models in vitro in which
CRISPR/Cas9 delivery was performed via transfection of expression plasmids and Cas9/sgRNA RNP
complexes or via transduction of lentiviruses and AAVs (Table 1) [18,21,22]. In patients, non-viral
vector methods seem only applicable for site-specific, local delivery into skeletal muscle [63,64]. Given
the multisystemic manifestation of DM1, therapeutic approaches call for systemic delivery via AAV
vectors [65,66]. Since it is not possible to select for the correctly edited cells, unlike in cell therapy, the
reliability and efficiency of the gene editing process for in vivo gene therapy needs to be exceptionally
high. Next to proper selection of sgRNAs and CRISPR/Cas variants, there are important challenges to
be considered: (i) Vector size, (ii) vector choice and tissue-specific delivery, (iii) preexisting immune
response to the vector and its cargo and (iv) uncontrollable off-target effects [67,68].

The smaller size of AAVs may be beneficial for diffusion into tissues, but requires some creativity
with regard to packaging capacity, since only cDNAs up to 5 kb can be accommodated. The coding
sequence for SaCas9 is 1 kb smaller than for SpCas9 and fits in an AAV [6] (Table 1). A reported setback
might be, however, that the use of SaCas9 induces more repeat inversions [23]. Additional strategies to
overcome the size restrictions include the development of hybrid viral capsid structures [69], the use
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of expression cassettes with small promoters [70], promoter activity derived from the AAV ITR [71]
or split AAV vectors, an approach in which a large gene can be split into two parts and separately
packaged into two individual split AAV vectors [72].

In recent years, the number of clinical trials in which AAVs have been used for in vivo gene
therapy has steadily increased [73]. It still remains challenging to achieve expression of an effective
CRISPR/Cas system at therapeutic levels. Especially for DM1, as a multisystemic disorder, many organs
must be targeted for a clinical benefit in the patient, e.g., skeletal muscle, heart, gastrointestinal tract and
brain. Modification of capsid proteins and incorporation of targeting peptides on the surface of AAV
capsids may specify transduction of specific cell types [74]. For example, attempts to improve muscle
tropism of AAV2, the best characterized and mostly used vector, led to diverse capsid modifications
such as insertion of a seven-amino-acid muscle-targeting peptide [75,76]. Additional target organ
specificity could be gained by organ-specific promoters. More specific delivery might be an enormous
undertaking, but brings benefits such as decreased vector production and decreased vector exposure.

Furthermore, preexisting immunity is an important issue to consider. First, a recent article
identified preexisting immunity against SpCas9 and SaCas9 [77]. Secondly, almost all individuals
harbor neutralizing antibodies to AAV due to a prior immune response to naturally occurring
viruses [74,78]. The time window, in the first few months of life, during which humans are devoid of
any anti-AAV antibodies is narrow and leaves hardly any therapeutic window [79]. Consequentially,
AAV-CRISPR/Cas9 can be introduced into patients only once in order to avoid the amplification of the
adaptive immune response, thus limiting efficiency to a single dose of the treatment, which might be
insufficient [80]. Whilst AAV2 is the best characterized and mostly used vector in clinical studies [76,81],
antibodies against the AAV2 serotype are also the most common [82]. To overcome the presence
of preexisting immunity against AAV and enable re-administration, researchers are currently using
capsid gene shuffling to produce viral variants resistant to neutralizing antibodies [76,81]. Although
different serotypes could be used for a second treatment in combination with immune modulatory
drugs, selective modification and/or replacement of specific regions of the capsid to create vectors
that have lower host immune response seem to be more promising. Selective capsid modifications
can be used diversely and will hopefully lead to vectors with more desirable biological properties for
infectivity, stability, toxicity and expanded tropism.

As a final point, we need to consider the risk of unwanted off-target cleavage events by
CRISPR/Cas9, which is doubled with dual sgRNA use; and structural genomic alterations, like
large deletions and inversions. Particularly, unintended germline modifications are a great cause for
concern. When treating a multisystem disorder such as DM1, a whole-body activation of CRISPR/Cas9
bears the chance of exposing not only somatic cells to treatment, but also germ cells in the gonads. As
discussed by Lander et al. and Monckton, we clearly need to consider how to mitigate and manage
risks concerning heritable, non-heritable and unintended heritable genome editing approaches [67,68].

6. Conclusions

The exciting power of CRISPR/Cas technology has truly entered the DM1 field and its possibilities
for research and therapy development seem virtually endless. Some approaches target and cleave
near the unstable repeat mutation in the DNA and are permanent, others are transient and reduce
the production or half-life of pathogenic expanded RNA. Several recent additions to the CRISPR/Cas
toolbox are waiting to be exploited in DM1 model systems.

Which of these strategies is most effective and safe ex vivo in cells and in vivo in patients cannot
be concluded at this moment and more research is warranted. Both the risk of CRISPR/Cas off-target
cleavage events—not unique to the DM1 field [83], and unpredictable DNA repair upon cleavage near
the unstable repeat—shared with the microsatellite disease community, require serious attention.

Compelling questions that still need to be answered relate to the translation of
CRISPR/Cas-mediated strategies to the clinic. Ex vivo and in vivo treatment both have their pros and
cons, but which clinical subtype of DM1 should be treated first? What is the best age for treatment; for
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example in light of the developmental abnormalities occurring in CDM, which likely are not reversible
post-natally? Since DM1 is a multisystemic disease, which symptoms, organs or tissue should be
considered for therapy or is whole-body treatment really possible and in fact the only beneficial option?
Finally, to obtain a clinically meaningful effect, which fraction of cells or part of an organ must be
cured? These and many more scientific, clinical, translational and ethical issues should carefully and
jointly be discussed by fundamental scientists, clinicians, patients and industry in the coming years to
develop the best DM1 therapy possible.
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