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Abstract: Fourth-order cumulants (FOCs) vector-based direction of arrival (DOA) estimation methods
of non-Gaussian sources may suffer from poor performance for limited snapshots or difficulty in
setting parameters. In this paper, a novel FOCs vector-based sparse DOA estimation method is
proposed. Firstly, by utilizing the concept of a fourth-order difference co-array (FODCA), an advanced
FOCs vector denoising or dimension reduction procedure is presented for arbitrary array geometries.
Then, a novel single measurement vector (SMV) model is established by the denoised FOCs vector,
and efficiently solved by an off-grid sparse Bayesian inference (OGSBI) method. The estimation
errors of FOCs are integrated in the SMV model, and are approximately estimated in a simple way.
A necessary condition regarding the number of identifiable sources of our method is presented that,
in order to uniquely identify all sources, the number of sources K must fulfill K ≤ (M4− 2M3 + 7M2−
6M)/8. The proposed method suits any geometry, does not need prior knowledge of the number of
sources, is insensitive to associated parameters, and has maximum identifiability O(M4), where M is
the number of sensors in the array. Numerical simulations illustrate the superior performance of the
proposed method.

Keywords: direction of arrival estimation; fourth-order cumulants; non-Gaussian sources;
fourth-order difference co-array; sparse Bayesian learning

1. Introduction

Direction of arrival (DOA) estimation is a topic that has received a great deal of attention in the last
several decades. It arises in many practical scenarios, such as radar, sonar, and communications [1–4].
For example, in radar and sonar systems, objects including airplanes, birds, missiles, submarines,
and fish torpedoes can be tracked by estimating their DOAs. In communication systems, the DOAs of
the sources can be used to improve the communication quality.

Higher-order cumulants (HOCs)-based DOA estimation methods have been developed for
non-Gaussian sources [1,5–8], mainly to overcome the limitations of second-order statistics-based
DOA estimation methods such as MUltiple SIgnal Classification(MUSIC) [9] and Estimation of Signal
Parameters via Rotational Invariance Techniques (ESPRIT) [10]. Their limitations include identifiable
number of sources, colored Gaussian noise, and modeling errors. The famous 4-MUSIC method [5]
uses the fourth-order cumulants (FOCs) to form a MUSIC-like method. Then, the 2q-MUSIC [6] and
rectangular 2q-MUSIC [7] methods extend 4-MUSIC by utilizing 2qth-order cumulants. The rectangular
2q-MUSIC method achieves a trade-off between performance and maximal identifiable number of
sources compared with the 2q-MUSIC method. To further increase the degrees of freedom (DOFs)
of the FOCs-based methods, a kind of sparse linear array named multiple level nested array and
the corresponding spatial smoothing MUSIC (SS-MUSIC) method were developed, which make the
DOFs increase from O(Mq) to O(M2q) [8], where M is the number of sensors in the array. However,
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HOCs-based methods always suffer from performance degradation when snapshots are limited,
mainly because accurate estimations of HOCs require a large number of snapshots.

Recently, a series of covariance vector-based DOA methods were proposed [11–13] which
built a single measurement vector (SMV) model by covariance vector and were solved by sparse
methods such as L1-norm-based methods [14] and sparse Bayesian learning (SBL) [15]. Consequently,
these methods always perform better than other covariance-based DOA methods such as MUSIC
when snapshots are limited, mainly because estimation errors of covariance are utilized to build
their sparse models. Moreover, the DOFs of these methods increase to O(M2), which is more than
MUSIC. Analogously, the FOCs vector-based L1-norm method (4-L1) is applied in [16–18]. Compared
with FOCs vector-based SS-MUSIC (4-SS-MUSIC) in [8], the 4-L1 method can utilize all the virtual
sensors in the fourth-order difference co-array (FODCA) [8], which may give a better performance
than 4-SS-MUSIC. Moreover, the 4-L1 method can be applied to any array, while 4-SS-MUSIC only
suits for linear arrays. Nonetheless, the 4-L1 method is inconvenient to use in practice, since the
parameter of allowable error bound is difficult to choose, and the solution of 4-L1 is sensitive to it.
The allowable error bound usually needs to be chosen manually through trial-and-error for each
scenario, as in [16–18]. Furthermore, it has been demonstrated both theoretically and empirically that
the SBL technique induces less structural error (biased global minimum) and convergence error (failure
in achieving the global minimum) than the L1 methods [11,19–21]. On the other hand, an advanced
denoising procedure of the FOCs vector may further promote the performance of FOCs vector-based
DOA estimation methods. An analogous procedure can be found in covariance vector-based DOA
methods in [22].

In this paper, we establish a novel denoised SMV model by FOCs vector, and solve it by an off-grid
sparse Bayesian inference (OGSBI) method [21]. By utilizing the concept of the fourth-order difference
co-array, the advanced denoising or dimension reduction procedure of FOCs vector is presented for
any geometry. The estimation errors of FOCs are integrated in the proposed SMV model, and are
approximately estimated in a simple way. A necessary condition of our method regarding the number
of identifiable sources is presented such that in order to uniquely identify all sources, the number
of sources K must fulfill K ≤ (M4 − 2M3 + 7M2 − 6M)/8. The proposed method suits for any
geometry, does not require prior knowledge of the number of sources, has maximum identifiability
O(M4), and is insensitive to associated parameters. The off-grid parameter estimation in our method
promotes superior performance in overdetermined cases when the number of snapshots is large and
signal–noise-ratio (SNR) is high, and also ensures good performance when choosing a relatively coarse
grid. Numerical simulations illustrate the superior performance of the proposed method.

2. Data Model

One-dimensional DOA estimation is discussed in this paper. Consider an array with any geometry
which consists of M identical, omnidirectional, unpolarized and isotropic sensors. The sensor locations
n1, n2, ..., nM are measured by d = λ/2, and collected by the vector set S , {n1, n2, ..., nM} ⊂ R3,
where nm = [nm,x, nm,y, nm,z]T is expressed in three dimensions for m = 1, 2, ..., M, (·)T is the
transpose operator, λ is the wavelength, and R denotes the set of real numbers. The cardinality
of S is denoted by |S|, and |S| = M. Each sensor receives the contribution of K zero-mean
statistically independent stationary narrowband non-Gaussian sources. We denote by x(t) =

[x1(t), x2(t), ..., xM(t)]T, s(t) = [s1(t), s2(t), ..., sK(t)]T and v(t) = [v1(t), v2(t), ..., vM(t)]T the observed
signals of the sensors, the source signals, and the noises of the observed signals at the tth snapshot,
respectively, where t = 1, 2, ...,+∞. The observed signals are modeled as:

x(t) = As(t) + v(t), (1)

where A = [a(θ1), a(θ2), ..., a(θK)] ∈ CM×K denotes the array manifold matrix, a(θk) =

[ej2πuT
k n1 , ej2πuT

k n2 , ..., ej2πuT
k nM ]T is the steering vector for θk, j is an imaginary number, uk = d/λ ·
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[cos(θk), sin(θk), 0]T, θk denotes the azimuth angle of the kth source, and C is the set of complex
numbers. The noises are assumed to be statistically independent zero-mean white Gaussian and
independent from each source.

Build the FOCs vector cx ∈ CM4
, where the ith entry is [cx]i = cum{xi1(t), xi2(t), x∗i3(t), x∗i4(t)}

with i = (i1 − 1)M3 + (i2 − 1)M2 + (i3 − 1)M + i4, cum{·} denotes the cumulant operator, (·)∗
denotes complex conjugate, and the indexes iγ and γ are integers satisfying 1 ≤ iγ ≤ M and 1 ≤ γ ≤ 4,
respectively. Due to model (1), the above assumptions of the sources and noises, and the properties of
the cumulants [23,24], we can obtain

[cx]i =
K

∑
k=1

csk ai1(θk)ai2(θk)a∗i3(θk)a∗i4(θk), (2)

where csk = cum{sk1(t), sk2(t), s∗k3
(t), s∗k4

(t)} with kγ = k, aiγ(θk) is the iγth element of aγ(θk),
and aγ(θk) = a(θk). Then, we have

cx = Bcs ∈ CM4
, (3)

where cs = [cs1 , cs2 , ..., csK ]
T, B = [b(θ1), b(θ2), ..., b(θK)], b(θk) = a1(θk) ⊗ a2(θk) ⊗ a∗3(θk) ⊗ a∗4(θk),

and ⊗ denotes the Kronecker product.

3. The Proposed Method

In this section, we present an FOCs vector-based method to perform DOA estimation. Firstly,
we provide a dimension reduction method to build a novel data model by employing the concept of
a fourth-order difference co-array [8]. This method can also be treated as a denoising procedure to
reduce the estimation errors of FOCs. Next, according to the newly built data model, our sparse model
is efficiently established and solved by the OGSBI method. Some information about the proposed
method (e.g., identifiability, complexity, and comparison with the state-of-the-art methods) is also
discussed.

3.1. Dimension Reduction or Denoising Procedure

In this subsection, the dimension of model (3) is reduced by utilizing a fourth-order difference
co-array. Here we supplement several definitions and properties to facilitate dimension reduction.

Definition 1. Fourth-order difference co-array (FODCA): Given an array with arbitrary geometry S,
the fourth-order difference co-array D is defined as the set of distinct vector elements from the set

D =
{

ni1 + ni2 − ni3 − ni4 : ∀ni1 , ni2 , ni3 , ni4 ∈ S
}

, (4)

where i1, i2, i3, i4 = 1, 2, ..., M, as described in Section 2.

Let m1, m2, ..., m|D| denote the distinct elements in D, where |D| is the cardinality of D.
The following definition gives the concept of a transformation matrix, which describes the relation
between b(θ) and the steering vector on D (see Property 2 in this subsection).

Definition 2. The transformation matrix J: Given array S, the associated FODCA D can be obtained by
Definition 1. The transformation matrix J is an M4 × |D| matrix, where the ξth column corresponds to the
vector mξ ∈ D, and the (i, ξ)th entry of J satisfies

Ji,ξ =
{1, if ni1 + ni2 − ni3 − ni4 = mξ ,

0, otherwise,
(5)

where the index ξ = 1, 2, ..., |D|, and recall that i = (i1 − 1)M3 + (i2 − 1)M2 + (i3 − 1)M + i4 in Section 2.
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Property 1. The transformation matrix J has full column rank.

Property 2. Let aD(θ) be the steering vector of D (i.e., aD(θ) = [ej2πuTm1 , ej2πuT
k m2 , ..., ej2πuT

k m|D| ]T), we have

b(θ) = JaD(θ), (6)

where b(θ) = a1(θ)⊗ a2(θ)⊗ a∗3(θ)⊗ a∗4(θ), aγ(θ) is the steering vector for θ, and γ = 1, 2, 3, 4.

Property 3. Define H =
{
|D| : D = f (S),S = {n1, ..., nM}, ∀n1, ..., nM ∈ R3}, where f (·) is the function

that S maps to D by Definition 1. Then the supremum of H is

sup{H} = (M4 − 2M3 + 7M2 − 6M + 4)/4. (7)

Properties 1, 2, and 3 are proved in Appendix A, B, and C, respectively.
From Property 2, we have B = JAD, where AD = [aD(θ1), aD(θ2), ..., aD(θK)]. Substituting it to (3),

we obtain cx = JADcs. Due to Property 1, we have

J+cx = ADcs ∈ C|D|, (8)

where J+ = (JHJ)−1JH is the Moore–Penrose inverse of J. Comparing the model (8) with (3), it is clear
that the row dimension decreases from M4 to |D|.

Remark 1: An analogous procedure can be found in covariance vector-based DOA estimation
methods [22]. Among HOCs-based DOA estimation methods, rectangular 2q-MUSIC provides two
strategies to reduce the dimension of a rectangle FOCs matrix (i.e., selection strategy and averaging
strategy), by eliminating redundancies of associated left and right virtual steering vectors [7]. From this
perspective, the proposed dimension reduction procedure is the essential realization of the averaging
strategy applying to FODCA, with an explicit formulation (8). It is clear that the averaging strategy
is better than the selection strategy due to the averaging of the noise in the associated observation
components [7], if the computation burden is not taken into consideration. Thus, the averaging
strategy can also be treated as a denoising procedure. In addition, it can be seen that FODCA has the
same geometry as a fourth-order virtual array with parameters (q, l) = (4, 2) [25], which is deduced
from an eighth-order cumulants-based array processing problem. In TABLE IX from [25], the max
number of identical virtual sensors in the fourth-order virtual array, with parameters (q, l) = (4, 2) and
space diversity (without angular and polarization diversity), is illustrated, and it is equal to (7) after
simplification due to the same geometry. The detailed derivation of (7) is provided in Appendix C,
since it is not provided in [25].

Remark 2: It is clear that when 2 ≤ K < M, the limiting root mean square error (RMSE) of
covariance vector-based methods is not necessarily zero [22,26], while the RMSE of the traditional
MUSIC method converges to zero as signal–noise-ratio (SNR) approaches infinity. As the FODCA
can be regarded as two levels of second-order difference co-array [8,18], applied to construct
covariance vector-based methods, it can be deduced that the FOCs vector-based DOA estimation
methods, including [8,16–18], will be outperformed by traditional MUSIC in high-SNR regions when
2 ≤ K < M. From this point, we only suggest to use these methods (including the proposed method)
in underdetermined cases (K ≥ M).

3.2. Sparse Model

In this subsection we develop the sparse model from (8). Let θ̃ = [θ̃1, ..., θ̃I ] be a fixed sampling
grid in the DOA range, where I � |D|. Let θ̃ be a uniform grid with a grid resolution r = θ̃2− θ̃1 ∝ I−1.
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Suppose θ̃wk is the nearest grid point to θk, where wk ∈ {1, ..., I}. Then, the steering vector aD(θk) can
be approximated by its first-order Taylor series

aD(θk) ≈ aD(θ̃wk ) + a′D(θ̃wk )(θk − θ̃wk ). (9)

Denote

ÃD = [aD(θ̃1), ..., aD(θ̃I)], (10)

Ã′D = [a′D(θ̃1), ..., a′D(θ̃I)]. (11)

Denote β = [β1, ..., β I ]
T ∈ [−r/2, r/2]I and Φ = ÃD + Ã′Ddiag{β}, where for w = 1, ..., I,

βw = θk − θ̃wk if w = wk for any k = 1, ..., K and βw = 0 otherwise, and diag{·} denotes the operator
to form a diagonal matrix by a vector or to form a vector by diagonal entries of a matrix. Neglecting
approximation errors of (9), model (8) can be expressed as:

J+cx = Φz, (12)

where z = [z1, z2, ..., zI ]
T is the zero-padded extension of cs from [θ1, ..., θK] to [θ̃1, ..., θ̃I ].

Consider the case of existing estimation errors of FOCs. Let ĉx = cx + e, where ĉx is the estimate
of cx, and e is the estimation errors vector. Then, model (12) becomes

J+ĉx = Φz + J+e. (13)

Assume e ∼ AsCN(0M4 , Q) [1], where AsCN denotes the asymptotic normal distribution, 0M4

denotes zero vector with M4 elements, and Q ∈ CM4×M4
is a positive definite (Hermitian) matrix.

The estimation of FOCs and the matrix Q are discussed in Section 3.3. Following this assumption,
we have J+e ∼ AsCN(0|D|, Q̃), where Q̃ = J+Q(J+)T. Furthermore, we can obtain Q̃−

1
2 J+e ∼

AsCN(0|D|, I|D|×|D|), where I|D|×|D| is |D| dimensional identity matrix. We denote by

c̃x = Q̃−
1
2 J+ĉx ∈ C|D|, (14)

Φ̃ = Q̃−
1
2 Φ = Q̃−

1
2 (ÃD + Ã′Ddiag{β}) ∈ C|D|×I , (15)

ẽ = Q̃−
1
2 J+e ∈ C|D|. (16)

Then, we can obtain the following SMV off-grid sparse model

c̃x = Φ̃z + ẽ, (17)

with ẽ ∼ AsCN(0|D|, I|D|×|D|). Note that if setting βw = 0 for w = 1, ..., I, the model (17) is simplified
to an on-grid DOA model.

3.3. Estimation of FOCs and the Matrix Q

To facilitate the implementation of the proposed method, in this subsection we present the
estimation methods of FOCs and the matrix Q.

Let us introduce the following general notations: m4,x(i1, i2, i3∗, i4∗) = E{xi1(t)xi2(t)x∗i3(t)x∗i4(t)},
m2,x(i1, i2∗) = E{xi1(t)x∗i2(t)}, and m2,x(i1, i2) = E{xi1(t)xi2(t)}. Their empirical estimators
are m̂4,x(i1, i2, i3∗, i4∗) = 1

L ∑L
t=1{xi1(t)xi2(t)x∗i3(t)x∗i4(t)}, m̂2,x(i1, i2∗) = 1

L ∑L
t=1{xi1(t)x∗i2(t)}, and
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m̂2,x(i1, i2) = 1
L ∑L

t=1{xi1(t)xi2(t)}, respectively, where L is the number of snapshots. Due to the
assumptions of sources and noises, [cx]i can be expressed as [25]:

[cx]i = cum{xi1(t), xi2(t), x∗i3(t), x∗i4(t)}

= m4,x(i1, i2, i3∗, i4∗)−m2,x(i1, i2)m∗2,x(i3, i4)

−m2,x(i1, i3∗)m2,x(i2, i4∗)−m2,x(i1, i4∗)m2,x(i2, i3∗).
(18)

Utilizing the corresponding empirical estimators of terms in (18), [cx]i can be estimated by

[ĉx]i = m̂4,x(i1, i2, i3∗, i4∗)− m̂2,x(i1, i2)m∗2,x(i3, i4)

− m̂2,x(i1, i3∗)m2,x(i2, i4∗)− m̂2,x(i1, i4∗)m2,x(i2, i3∗).
(19)

Consider complex variables X(t) = xi1(t)xi2(t)x∗i3(t)x∗i4(t)− xi1(t)xi2(t)∑L
t0=1 x∗i3(t0)x∗i4(t0)/L−

xi1(t)x∗i3(t)∑L
t1=1 xi2(t1)x∗i4(t1)/L − xi1(t)x∗i4(t)∑L

t2=1 xi2(t2)x∗i3(t2)/L for t = 1, 2, ..., L. It is obvious
that limL→+∞ E{X(t)} = [cx]i. According to central limit theorem, as L → +∞, the sample average
X = ∑L

t=1 X(t) = [ĉx]i converges in distribution to a complex normal. This solution theoretically
supports the assumption that e = ĉx − cx ∼ AsCN(0M4 , Q) in Section 3.2, and we aim for a robust
estimation of Q in the following derivation.

Consider signals given by

y(t) = x(t)⊗ x(t)− E{x(t)⊗ x(t)}. (20)

It is obvious that E{y(t)} = 0M2 . Let yg(t) denote the gth element of y(t), g1 = (i1 − 1)M + i2,
and g2 = (i3 − 1)M + i4, then we have

m2,y(g1, g2∗) =m4,x(i1, i2, i3∗, i4∗)− m2,x(i1, i2)m∗2,x(i3, i4). (21)

Rewrite (18) as:
[cx]i = m2,y(g1, g2∗)−m2,x(i1, i3∗)m2,x(i2, i4∗)
−m2,x(i1, i4∗)m2,x(i2, i3∗),

(22)

where y(t) is given by (20).

Lemma 1. Given two joint distributed complex-valued random variables Yt and Zt with snapshots index
t = 1, 2, ..., L, Yt, and Zt are independent from snapshot to snapshot, respectively. As L approaches infinity,
it holds true that

var(YtZt)/var(YtZt) = O(L), (23)

where var(·) is variance, and YtZt, Yt, and Zt are sample averages of YtZt, Yt, and Zt with L snapshots,
respectively.

Proof. See Appendix D.

Due to Lemma 1, from (19) and (22), it is easy to find that when the snapshots number L is large,
the term m̂2,y(g1, g2∗) has much larger variance than the other two terms in (22). This implies that
the estimation error of [ĉx]i is mainly caused by the term m̂2,y(g1, g2∗), giving rise to the following
approximate expression of ei:

ei = [ĉx]i − [cx]i ≈ m̂2,y(g1, g2∗)−m2,y(g1, g2∗). (24)
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Since the signals are independent from snapshot to snapshot, and E{y(t)} = 0M2 , we can obtain

E{eie∗j } ≈
1
L2

L

∑
t1=1

L

∑
t2=1

E{[yg1(t1)y∗g2
(t1)][yh1(t2)y∗h2

(t2)]
∗}

−m2,y(g1, g2∗)m∗2,y(h1, h2∗)

= cum{yg1(t), y∗g2
(t), y∗h1

(t), yh2(t)}/L

+m2,y(g1, h1∗)m2,y(g2∗, h2)/L

+m2,y(g1, h2)m2,y(g2∗, h1∗)/L,

(25)

where h1 = (j1 − 1)M + j2, h2 = (j3 − 1)M + j4, j = (h1 − 1)M2 + h2, and j1, j2, j3, j4 = 1, 2, ..., M.
In (25), the term cum{yg1(t), y∗g2

(t), y∗h1
(t), y∗h1

(t)}/L contains the eighth-order statistics of x(t),
which significantly aggravates the inaccuracy of estimation if the number of snapshots is not large
enough. In addition, as the number of snapshots number approaches infinity, we get E{eie∗j } ≈ 0.
Therefore, we neglect this term to obtain a robust estimation of Q, given by

Q̂i,j = m̂2,y(g1, h1∗)m̂2,y(g2∗, h2)/L

+ m̂2,y(g1, h2)m̂2,y(g2∗, h1∗)/L.
(26)

Rewrite (26) in matrix form

Q̂ = R̂y ⊗ R̂T
y /L + [T̂y ⊗ T̂∗y,1, T̂y ⊗ T̂∗y,2, ..., T̂y ⊗ T̂∗y,M2 ]/L, (27)

where R̂y = ∑L
t=1 y(t)yH(t)/L, T̂y = ∑L

t=1 y(t)yT(t)/L, and T̂y,h1 is the h1th column of T̂y.
Note that the estimator Q̂ in (30) need to be revised in certain cases. It is clear that, for the noise-free

case, R̂y = (A⊗A)∑L
t=1{[s(t)sH(t)]⊗ [s(t)sH(t)]}(A⊗A)H/L, and T̂y = (A⊗A)∑L

t=1{[s(t)sT(t)]⊗
[s(t)sT(t)]}(A⊗ A)T/L. When K < M, the ranks of both matrices R̂y and T̂y are K2. As a result,
the estimator (27) may be singular, which may lead to a singular matrix Q̃. This is unallowable for
model (17). Therefore, when K < M, and SNR is high, to avoid above problems, Q is estimated by

Q̂ = R̂y ⊗ R̂T
y /L + [T̂y ⊗ T̂∗y,1, T̂y ⊗ T̂∗y,2, ..., T̂y ⊗ T̂∗y,M2 ]/L + ε1I|D|×|D|, (28)

where ε1 is a small positive number.
Specially, if the observed signals are circular, we have m2,x(l1, l2) = 0 and m4,x(l1, l2, l3, l4) = 0 for

∀l1, l2, l3, l4 = 1, ..., M. Then, we obtain y(t) = x(t)⊗ x(t), and ci can be estimated by

[ĉx]i = m̂4,x(i1, i2, i3∗, i4∗)− m̂2,x(i1, i3∗)m̂2,x(i2, i4∗)
− m̂2,x(i1, i4∗)m̂2,x(i2, i3∗).

(29)

Furthermore, it is obvious that m2,y(g1, h2) and m2,y(g2∗, h1∗) become zero in (25). Then, the
estimator of Q in (27) becomes:

Q̂ = R̂y ⊗ R̂T
y /L. (30)

Accordingly, when K < M and SNR is high, for circular sources, Q is estimated by

Q̂ = R̂y ⊗ R̂T
y /L + ε2I|D|×|D|, (31)

where ε2 is a small positive number.
Remark 3: Approximate expressions for the covariances of FOCs which are more precise than (25)

are derived in [5]. However, it is not easy to use in our method in practice, because several
higher-order (greater than four) moments need to be estimated, which may cause the estimation
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of Q to be not as robust as FOCs. For example, if the number of snapshots is large enough to generate
precise estimates of FOCs, but not large enough to generate ones of higher-order (greater than four)
moments, the DOA estimation results may suffer from a mass of outliers in independent experiments.
In comparison, (26) contains at most fourth-order statistics, which means that it is more robust and has
lower computational cost. We will show that our estimators work well for the proposed method in
numerical simulations.

3.4. DOA Estimation by OGSBI Method

In this subsection, the sparse model (17) is solved to obtain the DOAs by the off-grid sparse
Bayesian inference (OGSBI) method. Recall the sparse model (17):

c̃x = Φ̃z + ẽ. (32)

In Section 3.3, we showed that the estimation errors of FOCs obey e = ĉx − cx ∼ AsCN(0M4 , Q),
and the robust estimators of Q are also given. As ẽ = Q̃−

1
2 J+e ∈ C|D|, it is obvious that

ẽ ∼ AsCN(0|D|, I|D|×|D|). Following the sparse Bayesian formulation in [21], further assume
ẽ ∼ CN(0|D|, I|D|×|D|) for simplicity. Then, we have

p(c̃x|z, β) = CN(Φ̃z, I|D|×|D|). (33)

Adopt the two-stage hierarchical prior for z that p(z; ρ) =
∫

p(z|α)p(α; ρ)dα, in which

p(z|α) = CN(0I , Λ), (34)

p(α; ρ) =
I

∏
w=1

Γ(αw; 1, ρ), (35)

where ρ > 0, α ∈ RI , Λ = diag{α}, Γ(αw; 1, ρ) = ρe−ραw is the probability density function (PDF)
of the Gamma distribution with parameters (1, ρ), and αw is the wth entry of α. Here the Gamma
hyperprior is assumed for αw, since it is a conjugate prior of the Gaussian distribution, and it is widely
used in SBL techniques and demonstrated with good performance and robustness [13,21,27,28].

Assume a uniform prior for β: β ∼ U([−r/2, r/2]I). By combining the stages of the hierarchical
Bayesian model, the joint PDF is

p(z, c̃x, α, β) = p(c̃x|z, β)p(z|α)p(α)p(β). (36)

The posterior distribution of z can be obtained

p(z|c̃x, Λ, β) = CN(µ, Σ), (37)

with

µ = ΣΦ̃Hc̃x (38)

Σ = (Φ̃HΦ̃ + Λ−1)−1 = Λ−ΛΦ̃H(I + Φ̃ΛΦ̃H)−1Φ̃Λ. (39)

As a single snapshot case of the OGSBI method, we can obtain the following updates of α from
the deduction in [21]:

αnew
w = (

√
1 + 4ρE{|zw|2} − 1)

/
(2ρ), (40)
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where E{|zw|2} = |µw|2 + Σww, µw is the wth entry of µ, and Σww is (w, w)th entry of Σ. For β, by
maximizing E{logp(c̃x|z, β)p(β)}, we can obtain the updates

βnew = arg min
β∈[−r/2,r/2]I

{βTPβ− 2qTβ}, (41)

where P = R
{
[(Ã′D)

HÃ′D]
∗ � (µµH + Σ)

}
, q = R{diag{µ∗}(Ã′D)H(c̃x − ÃDµ)

}
−

R
{

diag{(Ã′D)HÃDΣ}
}

, R(·) takes the real part of a complex variable and � is the Hadamard
product. An easier way to estimate β is provided in [21]. We use β, P, and q hereafter to denote their
truncated versions for simplicity. By (41) and ∂

∂β{β
TPβ− 2qTβ} = 2(Pβ− q), we have βnew = β̌ if P

is invertible and β̌ = P−1q ∈ [−r/2, r/2]K. Otherwise, we update β elementwise. That is, at each step

we update one βw by fixing up the other entries of β. For w = 1, ..., K, we first let β̌ =
qk−(Pk)

T
−k β−k

Pkk
,

where β−k denotes β without the kth entry. Then, by constraining βk ∈ [−r/2, r/2], we have

βnew
k =

{β̌k, if β̌k ∈ [−r/2, r/2];

− r/2, if β̌k < −r/2;

r/2, otherwise.

(42)

The OGSBI is terminated if ‖ακ+1 − ακ‖2
/
‖ακ‖2 < τ or the maximum number of iterations is

reached, where κ is the iteration and τ is the predefined tolerance parameter. Then, α can be treated as
the pseudo-spectrum

Pw = αw. (43)

By finding the grid indices of highest K peaks of P , denoted by p̂k, k = 1, ..., K, we can obtain K
estimated DOAs by

θ̂k = θ̂wk + β̂wk . (44)

Note that the parameter ρ in the method should be given in advance. According to associated
information in [21] and our testing results, the OGSBI method is insensitive to ρ if ρ is not too large.
Furthermore, we have observed that by setting ρ = 0.01, the sparse Bayesian learning methods
in [13,21,28] always achieve a good performance in a wide range of scenarios. By contrast, the 4-L1
method [16–18] is sensitive to the parameter of allowable error bound, which is not easy to estimate
(it was chosen to give the best results through trial-and-error for each scenario in the corresponding
simulations in [16–18]). Therefore, compared with the 4-L1 method, the OGSBI method has the
advantage of convenience in setting parameters.

Finally, we summarize our method in Algorithm 1.

Algorithm 1 The proposed sparse method using denoised FOCs vector

1) Input: x, S, and d.
2) Initialization: r, α, ρ, ε, and τ.
3) According to the associated scenarios, calculate ĉx by (19) or (29).
4) According to the associated scenarios, calculate Q̂ by (27), (28), (30), or (31).
5) Calculate J, ÃD, Ã′D, and c̃x by Definition 2, (10), (11), and (14), respectively.
6) Repeat the following:

a) Calculate µ and Σ by (38) and (39), respectively.
b) Update α by (40).
c) Update β by (42).
d) If ‖ακ+1 − ακ‖2

/
‖ακ‖2 < τ or the maximum number of iterations is reached, iteration

terminates.
7) Find the grid indices of the highest peaks of (43), and output the DOAs by (44).
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3.5. Identifiability of the Number of Sources

According to the theorems about parameter identifiability in [29–31] and the model (8), we have
the following proposition.

Proposition 1. Any K sources can be uniquely identified from model (17) if and only if

K < spark{Bθ}/2, (45)

where spark{Bθ} is defined as the smallest number of elements in Bθ that are linearly dependent [32],
Bθ = {b(θ) : θ ∈ Θ} ⊂ C|D|, and Θ is [−π/2, π/2) for linear array and [−π, π) for planar array.

It is generally difficult to compute spark{Bθ}, except for when D is a uniform linear array (ULA).
In this circumstance, D is hole-free, spark{Bθ} = |D|+ 1, and then K < (|D|+ 1)/2 sources can be
identified. However, hole-free FODCA with O(M4) DOFs has not been studied so far to the best of
our knowledge. Recently, [16–18] provided several methods to construct FODCA with larger ULA
segments, with which K < (|DULA|+ 1)/2 sources can be identified, where DULA is defined as the
largest ULA segment in D.

For general arrays, because Bθ ⊂ C|D|, it is obvious that

spark{Bθ} ≤ |D|+ 1. (46)

According to Property 3, (46), and Proposition 1, we can obtain a necessary condition regarding
the identifiability of the number of sources.

Theorem 1. Consider model (17), a necessary condition to uniquely identify all sources is that the number of
sources K fulfills

K ≤ (M4 − 2M3 + 7M2 − 6M)/8. (47)

Proof. See Appendix E.

In other words, any more than (M4 − 2M3 + 7M2 − 6M)/8 sources cannot be uniquely identified
by model (17).

In addition, there are O(M4) distinct elements in DULA for certain sparse linear arrays (SLAs),
such as four-level nested arrays [8] and arrays constructed from a expanding and shift scheme which
consists of coprime arrays or nested arrays [18]. Therefore, our proposed method can identify O(M4)

sources at most, if these arrays (not limited to) are used.

3.6. Complexity

Consider the worst case of complexity. For non-circular sources, the estimation of cx using (19)
needs O(LM4) multiplications. The estimation of Q using (27) or (28) needs O(LM8) multiplications.
Note that all the symmetries of cx and Q are not taken into account here, while it does not affect the
order of complexity. Each iteration of (38) and (39) needs O(I2|D|) multiplications, which are much
more than each iteration of (40) and (42). Let T denote the iteration number, and consider the worst
case that O(|D|) = O(M4). Combing all of the above processes, we can obtain that the complexity of
the proposed method is O(LM8 + I2M4T).

3.7. Comparison with State-of-the-Art Methods

In this subsection, we compare the proposed method with state-of-the-art FOCs-based ones,
in terms of required geometry, identifiability, prior knowledge of the number of sources, ability to
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handle correlated sources, numerical complexity, and sensitivity to parameters. Associated methods
are listed as follows:

• 4-MUSIC [5,6]: non-redundant version with averaging strategy [7], denoted by A-4-MUSIC;
• 4-SS-MUSIC [8]: with averaging strategy, denoted by A-4-SS-MUSIC;
• 4-L1 [16–18].

Associated comparison results are illustrated in Table 1.

Table 1. Comparison with state-of-the-art methods. 4-L1: fourth-order cumulants (FOCs) vector-based
L1-norm method; A-4-MUSIC: non-redundant version of 4-MUSIC with averaging strategy;
A-4-SS-MUSIC: FOCs vector-based spatial smoothing (SS)-MUSIC with averaging strategy; FODCA:
fourth-order difference co-array; ULA: uniform linear array.

A-4-MUSIC A-4-SS-MUSIC 4-L1 Proposed

Required geometry Any geometry
LA, with FODCA-
containing ULA

segment
Any geometry Any geometry

Maximum
identifiability O(M2) O(M4) O(M4) O(M4)

Prior knowledge
of the number of sources Need Need No need No need

Handles
correlated sources Yes No No No

Parameters and
sensitivity With no parameters With no parameters With sensitive

parameters
With insensitive

parameters

Complexity O(LM4 + IM4 + M6) O(LM4 + IM8 + M12) O(LM4 + I3T2) O(LM8 + I2 M4T1)

In Table 1, T1 and T2 denote the iteration number of the proposed method and 4-L1, respectively.
All comparison results are obvious or were discussed in the previous subsections, except for the
comparison of complexity. Recall that M is the number of sensors, L is the number of snapshots,
and I is the number of grid points. It should be noted that the complexities of four methods are
derived under the assumption that O(|D|) = O(M4), which gives the best identifiability and highest
complexities for all methods. Due to the condition I � |D| required to perform the sparsity in the
proposed method and 4-L1, it is clear that O(I) ≥ O(M4), which results in O(I3T2) > O(IM8) and
O(I2M4T1) > O(IM8). Consequently, the proposed method and 4-L1 always have higher complexity
than A-4-MUSIC and A-4-SS-MUSIC.

Next, we make a comparison of complexity between the proposed method and 4-L1. Firstly,
if the number of snapshots L is large enough that the terms O(I3T2) and O(I2M4T1) can be negligible,
the proposed method has higher complexity than 4-L1 due to the term O(LM8) which is caused by
the estimation of Q. Secondly, if L is small, we limit the comparison between O(I3T2) and O(I2M4T1).
It is clear that O(I3) ≥ O(I2M4), implying that the proposed method has lower complexity than 4-L1
in one iteration. However, it is a fact that 4-L1 always has less iterations than the proposed method
(i.e., T1 > T2). Thus, it is not easy to draw a conclusion. In fact, to achieve the super resolution,
4-L1 needs a dense grid, while the proposed method only needs a coarser grid due to the off-grid
parameter estimation, which gives our method an advantage for complexity comparison. It should
be noted that off-grid parameter estimation technique has been successfully applied to L1-norm
minimization methods in [33,34]. However, to the best of our knowledge, the off-grid version of the
4-L1 method has not been published, and it is beyond the scope of this paper.

4. Numerical Simulations

Numerical simulations were carried out to demonstrate the superior performance of the proposed
method. In the following simulations, the sampled analytic signals of statistically independent
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quaternary phase-shift keying (QPSK) signals were used as circular sources. The RMSE was chosen as
the performance criterion, and is computed by

RMSE =

√√√√ 1
FK

F

∑
f=1

K

∑
k=1
|θ̂k, f − θk|2, (48)

where F is the number of independent experiments, and θ̂k, f is the estimate of θk in the f th independent
experiment. The RMSE performances of the four methods in Table 1 with respect to number of
snapshots, grid, adjacent sources, SNR, modelling errors, geometry, and circularity of sources were
further investigated. In the proposed method, we set that ρ = 0.01 and τ = 10−4 for all scenarios,
and set ε1 = 10−5 or ε2 = 10−5 for the case that K < M and SNR ≥ 8 dB. 4-L1 was solved by the
SeDuMi toolbox [35], and the associated allowable error bound was chosen to give the best results
through trial-and-error for each scenario as done in [16–18]. Each simulation executed F = 200
independent experiments for all methods.

4.1. Identifiability

Consider an SLA with three sensors located at S = {1, 2, 6} × d. It can be deduced that the
associated FODCA has 19 distinct elements. That is, |D| = 19, which is equal to sup{H} when M = 3.
According to Theorem 1, any greater than nine sources cannot be uniquely identified for the proposed
method. Let us consider nine sources with DOAs {−60◦,−45◦,−30◦,−15◦, 0◦, 15◦, 30◦, 45◦, 60◦}.
The number of snapshots and SNR were set as L = 104 and SNR = 20 dB, respectively. Grid resolution
was set to r = 0.5◦. Figure 1a,b shows the normalized spectra of the proposed method and 4-L1,
respectively. As can be seen, all DOAs of the sources were identified successfully. Note that this
was unachievable for A-4-MUSIC and A-4-SS-MUSIC. The virtual array of A-4-MUSIC contained
seven distinct virtual sensors, which could identify six sources at most. The largest ULA segment of
the FOCDA contained 13 distinct elements, giving rise to a maximum identifiable number of six for
A-4-SS-MUSIC.

-90 -60 -30 0 30 60 90

DOA (°)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 s
pe

ct
ru

m

True DOAs

Normalized spectrum

(a)

-90 -60 -30 0 30 60 90

DOA (°)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 s
pe

ct
ru

m

True DOAs
Normalized spectrum

(b)

Figure 1. Normalized spectra of (a) the proposed method and (b) 4-L1. S = {1, 2, 6} × d, K = 9,
L = 104, signal–noise ratio (SNR) = 20, and r = 0.5◦. DOA: direction of arrival.

4.2. Impact of the Grid Resolution

Consider an SLA {1, 2, 4, 11, 25} × d, which is constructed from an expanding and shift scheme
that consists of two nested arrays {1, 2, 4} × d and {1, 2, 4} × d [18]. It can be obtained that the number
of distinct elements of the corresponding FODCA and associated largest ULA segment is |D| = 85 and
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|D|ULA = 55, respectively. Consider two independent sources with DOAs {0◦, 20◦}+ ζ1, where ζ1 is
a random variable chosen uniformly within [−1◦, 1◦]. SNR was set at SNR = 3 dB.

Figure 2a,b shows the RMSE performance of the four methods with respect to number of snapshots,
with grid resolution r = 0.5◦ and r = 0.1◦, respectively. In Figure 2a, when snapshots number was
large, the RMSEs of A-4-MUSIC, A-4-SS-MUSIC, and 4-L1 did not reduce as snapshots increased,
mainly because of the mismatch errors between grid and true DOAs. Due to the off-grid parameters
estimation, the proposed method outperformed the other three methods for most of simulated snapshot
numbers. In Figure 2b, the grid resolution is r = 0.1◦, and it is clear that the RMSEs of A-4-MUSIC,
A-4-SS-MUSIC, and 4-L1 increased to the same level of the proposed method when snapshots were
greater than 50 and less than 2000. Nonetheless, the proposed method still outperformed the other
three methods when snapshots were more than or equal to 2000. It can also be observed that the
proposed method had smaller RMSE than A-4-MUSIC and 4-L1 when snapshots were less than 100.
The RMSEs of A-4-SS-MUSIC were slightly larger than the other three methods when snapshots were
greater than 50 and less than 5000, which may be caused by the fact that 4-SS-MUSIC does not utilize
all the virtual sensors in associated FODCA. In addition, the dashed line in Figure 2b gives the RMSEs
of the proposed method for r = 0.5◦, and it is clear that the grid resolution seldom affected the RMSEs
of the proposed method when snapshots were less than 2000, which implies that when snapshots are
not too large, the proposed method can reduce the computational complexity by selecting a relatively
coarser grid without heavy loss of RMSE performance.
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Figure 2. Root mean square error (RMSE) performance of four methods versus number of snapshots.
S = {1, 2, 4, 11, 25} × d, K = 2, SNR = 3 dB, (a) r = 0.5◦ and (b) r = 0.1◦.

4.3. Identifiability for Adjacent Sources

Next, we investigated the identifiability of adjacent sources using the proposed method. The array
and parameters were set as in Section 4.2, except the grid resolution was set to r = 0.1◦, and the DOAs
of sources were set to {ζ2, ζ2 +4θ}, where ζ2 is a random variable chosen uniformly within [−1◦, 1◦],
and4θ = 0.5◦, 1◦, ..., 5◦ are the different DOA intervals. Figure 3a,b shows the RMSE performance of
four methods with different DOA intervals, when the number of snapshots is 300 and SNR is 3 dB,
and when the number of snapshots is 1000 and SNR is 10 dB, respectively. It is clear that the proposed
method had smallest RMSEs for most simulated DOA intervals in both simulations, demonstrating
the superior identifiability of adjacent sources with the proposed method.
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Figure 3. RMSE performance of four methods with different DOA intervals, S = {1, 2, 4, 11, 25} × d,
K = 2, r = 0.1◦, (a) L = 300 and SNR = 3 dB, (b) L = 1000 and SNR = 10 dB.

4.4. Impact of SNR

The array and parameters were set as in Section 4.2, except the grid resolution was set to r = 0.1◦.
Figure 4 plots the RMSEs of four methods as a function of SNR, where the number of snapshots was set
to L = 500. It is clear that the four methods had almost equal RMSEs when SNR was smaller than 4 dB.
In the high SNR region, a relatively better performance of the proposed method appeared, benefiting
from the off-grid parameter estimation as discussed in the large snapshot number region in Section 4.2.
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Figure 4. RMSE performance of four methods versus SNR, S = {1, 2, 4, 11, 25} × d, K = 2, r = 0.1◦,
L = 500.

4.5. Impact of Modelling Errors

We also studied the effect of modelling errors on the proposed method. We used the same
array geometry and parameters, and the same way of generating K = 2 DOAs as in Section 4.4.
We perturbed the steering vector by adding a modelling error vector ea(θk)

to get the perturbed steering
vector as ã(θk) = a(θk) + ea(θk)

, where k = 1, ..., K, and ea(θk)
are assumed to be zero mean statistically

independent Gaussian distributed with E{ea(θk)
eH

a(θk)
= σ2

a(θk)
I, where σ2

a(θk)
= 0.0025. Figure 5 shows

the RMSE performance of four methods with such modelling errors. In order to facilitate comparison,
the RMSEs of the proposed methods with no modelling errors are also plotted in a dashed line. It can
be observed that the RMSE performance of the four methods did not degrade heavily. However,
when snapshots were more than 1000, the superior performance of the proposed method disappeared,
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suggesting that modelling errors did have a large impact on the off-grid parameters estimation of the
proposed method.
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Figure 5. RMSE performance of four methods with modelling errors, S = {1, 2, 4, 11, 25} × d, K = 2,
r = 0.1◦, SNR = 3 dB.

4.6. Underdetermined Case

We investigated the performance of the proposed method in underdetermined cases. The same
array {1, 2, 4, 11, 25} × d was used, and the grid resolution r = 0.1◦, while six independent sources
with DOAs {−45◦,−30◦,−15◦, 0◦, 25◦, 40◦} were set. Figure 6 shows the RMSE performance of the
four methods. In Figure 6a, the number of snapshots varying from 100 to 10,000 and the SNR was
fixed at 20 dB. It is clear that the proposed method had the smallest RMSEs for most of the simulated
snapshot numbers. In Figure 6b, SNR varied from −4 dB to 28 dB and the snapshots number was fixed
at 1000. It can be observed that the proposed method had smaller RMSEs when SNR > 4 dB, but had
slightly larger values when SNR ≤ 4 dB, when compared with the other three methods. The RMSE
performance of A-4-SS-MUSIC was obviously outperformed by the other three methods in the large
snapshot number and high SNR regions, because 4-SS-MUSIC does not utilize all the virtual sensors
in the associated FODCA. Moreover, the RMSEs of each method seemed to converge to a positive
constant as SNR increased. A similar phenomenon can be observed and explained in covariance
vector-based methods in the underdetermined case [22,26].
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Figure 6. RMSE performance of four methods in the underdetermined case, S = {1, 2, 4, 11, 25} × d,
K = 6, r = 0.1◦, (a) SNR = 20 dB, (b) snapshots number is L = 1000.
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4.7. Non-Linear Array Case

We now give an example to show the effectiveness of the proposed method in the non-linear
array case. We randomly generated a planar array as shown in Figure 7a, where the minimum
distance between sensors was half of the wavelength. The corresponding FODCA geometry is also
illustrated, which had |D| = 131 distinct elements. Note that the A-4-SS-MUSIC cannot be applied for
the non-linear array case. We set three sources with DOAs {−60◦, 0◦, 40◦}+ ζ3, where ζ3 is a random
variable chosen uniformly within [−1◦, 1◦]. SNR was set at SNR = 6 dB, and the RMSEs of A-4-MUSIC,
4-L1, and the proposed method were plotted as a function of the number of snapshots (Figure 7b).
It can also be seen that the proposed method had better RMSE performance when snapshots were
greater than 200.
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Figure 7. RMSE performance of three methods in the non-linear array case. M = 5, K = 3, r = 0.1◦,
(a) the array geometry and the corresponding FODCA geometry, (b) RMSE versus the number of
snapshots, SNR = 6 dB.

4.8. Effectiveness for Non-Circular Sources

Finally, we consider the case of non-circular sources, using the same array {1, 2, 4, 11, 25} × d,
and six independent sources with DOAs {−45◦,−30◦,−15◦, 0◦, 25◦, 40◦} as in Section 4.6. In contrast,
we replaced the imaginary parts of sources by their real parts. That is, sNC(t) = R{s(t)}+ jR{s(t)},
where sNC(t) is the non-circular sources to be simulated. We set SNR = 20 dB and r = 0.1◦.
We estimated the FOCs by (19) for all the methods, and estimated Q̂ by (27) for the proposed method.
Figure 8 shows the RMSEs of the four methods versus the number of snapshots. Similar to Figure 6a,
it is clear that the proposed method had the smallest RMSEs for all simulated snapshot numbers.
Beyond doubt, all the methods were effective for non-circular sources with the estimation of FOCs
by (19).
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Figure 8. RMSE performance of four methods with non-circular sources, M = 5, K = 6, r = 0.1◦,
SNR = 6 dB.

5. Conclusion

In this paper, a novel SMV sparse model for non-Gaussian sources using denoised FOCs vector is
established to perform DOA estimation, and solved efficiently by the OGSBI method. An advanced
denoising and dimension reduction procedure of FOCs vector is provided. The estimation errors
of FOCs are integrated in the proposed SMV model, and are approximately estimated in a simple
way. The proposed method suits any geometry, does not need prior knowledge of the number of
sources, has maximum identifiability O(M4), and is insensitive to associated parameters. The off-grid
parameter estimation in our method promotes superior performance when the number of snapshots
is large and SNR is high, and also ensures good performance when choosing a relatively coarse
grid. Numerical simulations illustrate that the proposed method has superior identifiability or RMSE
performance in different scenarios, namely grid resolution, adjacent sources, SNR, modelling errors,
geometry, and non-circular sources, when compared with other state-of-the-art methods.
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Appendix A. The Proof of Property 1

Proof. Consider the linear equation ∑
|D|
ξ=1 υξJξ = 0, where Jξ is the ξth column vector of J. For any

ni1 , ni2 , ni3 , ni4 ∈ S, it can be deduced that 0 = [∑
|D|
ξ=1 υξJξ ]i = ∑

|D|
ξ=1 υξJi,ξ = υξ0 , where the index ξ0

satisfies that associated vector mξ0 = ni1 +ni2 −ni3 −ni4 . Due to the arbitrariness of ni1 , ni2 , ni3 , ni4 ∈ S,
the coefficients υξ = 0 for all υξ = 1, 2, ..., |D|, implying that J has full column rank. The proof is
completed.

Appendix B. The Proof of Property 2

Proof. It is obvious that JaD(θ) = ∑
|D|
ξ=1 Jξej2πuTmξ . According to Definition 2, we can obtain

[∑
|D|
ξ=1 Jξej2πuTmξ ]i = ej2πuT(ni1

+ni2−ni3−ni4
). On the other hand, the ith row of b(θ) is [b(θ)]i =
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ai1(θ)ai2(θ)a∗i3(θ)a∗i4(θ) = ej2πuT(ni1
+ni2−ni3−ni4

). Thus, we have b(θ) = JaD(θ). The proof is
completed.

Appendix C. The Proof of Property 3

Proof. Consider Definition 1. For groups {ni1 , ni2} and {ni3 , ni4}, we have two cases as follows.
Case 1: the same element does not exist between {ni1 , ni2} and {ni3 , ni4}. If ni1 = ni2 and ni3 = ni4 ,

there are (M
1 )(

M−1
1 ) distinct elements at most; if ni1 = ni2 and ni3 6= ni4 , there are (M

1 )(
M−1

2 ) distinct
elements at most; if ni1 6= ni2 and ni3 = ni4 , there are (M

2 )(
M−2

1 ) distinct elements at most; if ni1 6= ni2
and ni3 6= ni4 , there are (M

2 )(
M−2

2 ) distinct elements at most.
Case 2: the same element exists between {ni1 , ni2} and {ni3 , ni4}. Without loss of generality,

assuming ni2 = ni4 , if ni1 = ni3 , there is one element 0; if ni1 6= ni3 , there are M(M − 1) distinct
elements at most.

If there is no other redundancy, the max |D| is obtained by summing over all the cases, which is

|D|max(M) = (M4 − 2M3 + 7M2 − 6M + 4)/4. (A1)

Next, we provide an example to show that the maximum |D|max(M) can be achieved for any
M. Consider the linear array S = {100, 101, ..., 10M−1}. It is not hard to find that in both of the above
cases all the maxima can be achieved due to the different orders of magnitude of the elements in
S. Thus, |D|max(M) can be achieved for any M. Therefore, combining the definition of H, it is clear
that the supremum of H is sup{H} = (M4 − 2M3 + 7M2 − 6M + 4)/4 for given M. The proof is
completed.

Appendix D. The Proof of Lemma 1

Proof. It is clear that var(YtZt) = var(∑L
t=1 YtZt/L) = var(YtZt)/L, and var(YtZt) = var(∑L

t1=1 Yt1 ·
∑L

t2=1 Zt2 /L2) = var(YtZt)/L3 + var(Yt)var(Zt)(L− 1)/L3. Since var(YtZt) and var(Yt)var(Zt) are
independent from L, it can be deduced that as L approaches to infinity, var(YtZt)/var(YtZt) = O(L).
The proof is completed.

Appendix E. The Proof of Theorem 1

Proof. Due to Proposition 1, if any K sources can be uniquely identified from model (8), we have
K < spark{Bθ}/2. From (46), we obtain K < (|D| + 1)/2. Applying Property 3, we can obtain
K < (M4− 2M3 + 7M2− 6M)/8+ 1. As K is an integer, it is obvious K ≤ (M4− 2M3 + 7M2− 6M)/8.
The proof is completed.
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