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ABSTRACT
Objectives To determine the reproducibility and 
replicability of studies that develop and validate 
segmentation methods for brain tumours on MRI and that 
follow established reproducibility criteria; and to evaluate 
whether the reporting guidelines are sufficient.
Methods Two eligible validation studies of distinct deep 
learning (DL) methods were identified. We implemented 
the methods using published information and retraced 
the reported validation steps. We evaluated to what extent 
the description of the methods enabled reproduction of 
the results. We further attempted to replicate reported 
findings on a clinical set of images acquired at our institute 
consisting of high- grade and low- grade glioma (HGG, LGG), 
and meningioma (MNG) cases.
Results We successfully reproduced one of the two 
tumour segmentation methods. Insufficient description of 
the preprocessing pipeline and our inability to replicate 
the pipeline resulted in failure to reproduce the second 
method. The replication of the first method showed 
promising results in terms of Dice similarity coefficient 
(DSC) and sensitivity (Sen) on HGG cases (DSC=0.77, 
Sen=0.88) and LGG cases (DSC=0.73, Sen=0.83), 
however, poorer performance was observed for MNG 
cases (DSC=0.61, Sen=0.71). Preprocessing errors were 
identified that contributed to low quantitative scores in 
some cases.
Conclusions Established reproducibility criteria do not 
sufficiently emphasise description of the preprocessing 
pipeline. Discrepancies in preprocessing as a result of 
insufficient reporting are likely to influence segmentation 
outcomes and hinder clinical utilisation. A detailed 
description of the whole processing chain, including 
preprocessing, is thus necessary to obtain stronger 
evidence of the generalisability of DL- based brain tumour 
segmentation methods and to facilitate translation of the 
methods into clinical practice.

INTRODUCTION
The scientific community has directed 
substantial efforts at developing deep- learning 
(DL) methods for medical image analysis. 

DL methods have become the default choice 
under the claim of superior performance 
over classical algorithms.1–3 However, their 
outstanding performance comes at the cost 
of high complexity and inherent variability in 
model performance.3 Consequently, assessing 
which model design choices determine the 
empirical gains is challenging.3–5 Critics have 
also pointed out that scientific reporting of 
study designs has often been insufficient, and 
that the analysis of results tends to be biased 
towards authors’ desired outcomes.4 6 7 These 
issues present critical challenges to realising 
the potential of artificial intelligence and 
translating promising scientific algorithms 
into reliable and trusted clinical decision 
support tools.

In our previous work,5 we systematically 
explored the literature to identify whether 
prevalent brain lesion segmentation methods 
are a suitable basis for developing a tool that 
supports radiological brain tumour status 
assessment. Our findings corroborated the 
issues with reporting that may affect repro-
ducibility.5 In particular, reporting of the 
preprocessing steps is inadequate in many 
instances.

The problem has been recognised by 
researchers, and efforts have been made 
to standardise reporting practices of DL 
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validation studies. The checklist proposed by Pineau et 
al6 8 identifies a set of items to be reported pertaining 
to the presented models/algorithms, theoretical claims, 
data sets, code and experimental results. The reproduc-
ibility problem in relation to the specific field of medical 
image segmentation was highlighted by Renard et al in 
a literature review.3 The authors present recommenda-
tions for the framework description that provides specific 
context for medical image segmentation. Their recom-
mended items to be reported3 are largely congruent with 
those proposed by Pineau.6 8 Renard et al,3 however, group 
their items by sources of variability in the model and eval-
uation framework, in contrast to grouping by scientific 
article section, as originally proposed by Pineau et al.6 8

Furthermore, Renard et al3 only identified three out 
of 29 studies included in their review to be sufficiently 
described according to their reproducibility recommen-
dations. Two9 10 of the three were algorithms for brain 
tumour segmentation on MRI. To continue our pursuit 
of a technically validated DL brain tumour segmenta-
tion algorithm that is suitable for clinical validation, we 
attempted to reimplement the two methods.9 10

The two DL brain tumour segmentation methods 
were technically validated convolutional neural networks 
(CNNs). Kamnitsas et al9 developed a three- dimensional 
(3D) dual- pathway CNN with fully connected 3D condi-
tional random fields.11 The method will be referred 
to as 3D dual- path CNN in this article. The authors 
made the method available for independent evaluation 
(https://github.com/deepmedic) but did not provide a 
trained model. The software came with a set of config-
urable network parameters and requirements for the 
input data. The input data requirements were: images 
in Neuroimaging Informatics Technology Initiative 
(NIfTI) file format12; images for each patient and refer-
ence labels with optional brain tissue masks (regions of 
interest—ROIs) had to be coregistered; all images fed 
to the network had to have the same voxel size; and for 
optimal performance, MRI signal intensities had to be 
standardised to have zero- mean and unit variance within 
each ROI.

Pereira et al developed a two- dimensional (2D) single- 
pathway CNN, referred to as 2D single- path CNN in this 
article. The authors published two network architectures 
(HGG—high- grade glioma and LGG—low- grade glioma) 
with trained weights.13 The preprocessing described in 
the original publication consisted of bias field correc-
tion with N4ITK,14 followed by intensity normalisation15 
of each image. The input patch intensities were finally 
normalised with the mean and SD calculated from the 
training patches across each sequence. A roughly similar 
number of patches was extracted for each class (approx-
imately 50 000 per class for HGG to match the number 
of patches extracted for training as stated in the original 
article). The segmentation result was further processed 
by removing clusters of voxels smaller than a predefined 
threshold of 10 000 mm3 and 3000 mm3 in HGG and 
LGG, respectively.

The aim of this study was therefore to determine the 
reproducibility and replicability of the two methods for 
brain tumour segmentation9 10 that Renard et al identi-
fied as adequately reported3; and to evaluate whether 
Renard’s and Pineau’s reproducibility recommendations 
are sufficient also for the task to segment an in- house clin-
ical data set of brain tumours.

MATERIAL AND METHODS
Overview
The study design is based on the assumption that the 
reproducibility items proposed by Renard et al are suffi-
cient for reproduction and replication. We used the 
definitions of reproduction and replication from the 
National Academies of Sciences, Engineering and Medi-
cine,16 which Pineau et al also refer to.6 Renard et al iden-
tified two methods for brain lesion segmentation9 10 as 
adequately reported,3 and we chose these two for the 
present study. Our goal was to implement the respective 
original methods with all processing steps and parameters 
and test them on the same data on which they were origi-
nally validated (reproducibility). As a measure of success, 
we compared quantitative results on segmentation accu-
racy to those reported in the original studies. We then 
attempted to replicate6 16 the findings: we performed an 
external validation on a clinically obtained data set from 
our institution.

Patient and public involvement
No patient involved.

Statistical analysis
We provide descriptive statistics (means and when 
possible SD) of segmentation evaluation metrics. The 
metrics we used are: Dice similarity coefficient—DSC, 
positive predictive value—PPV and sensitivity.

Reproducibility analysis
Evaluated segmentation algorithms
We implemented the two previously proposed DL algo-
rithms for brain tumour segmentation: 3D dual- path 
CNN9 and 2D single- path CNN.10 In table 1, these algo-
rithms are described in compliance with the reproduc-
ibility categories listed by Renard et al,3 together with 
libraries and computational parameters we used in our 
implementations. For our implementation, we used 
hyperparameters reported in the original articles. We 
trained the 3D dual- path CNN and tested both algorithms 
on a cluster with a Tesla V100 GPU (5120 cores; Nvidia, 
Santa Clara, California, USA), 32 GB RAM, and two 8- core 
Xeon Gold 6244 @ 3.60 GHz processors (Intel, Santa 
Clara, California, USA).

Image data set used for reproducibility analysis
Both algorithms were originally validated in the 2015 
Brain Tumour Segmentation Challenge (BraTS),17 which 
consists of training and testing image sets of patients 
diagnosed with HGG and LGG. The training set contains 

https://github.com/deepmedic
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Table 1 Description of the two algorithms implemented in the reproducibility analysis, 3D dual- path CNN9 and 2D single- path 
CNN,10 according to the reproducibility categories proposed by Renard et al3

Main category Subcategory 3D dual- path CNN 2D single- path CNN

Algorithm/model Description of the DL architecture Dual- path 3D CNN with a fully 
connected 3D CRF.11

Single- path 2D CNN; two 
network architectures for 
HGG and LGG.

Dataset description Image acquisition parameters BraTS 2015 dataset18

Image size

Data set size

Link to the data set

Preprocessing 
description

Data excluded +reason None None

Augmentation transformation Sagittal reflection of images Rotation with multiples of 
90° angles

Final sample size Not specified ~1 800 000 for HGG
~1 340 000 for LGG

Training/validation/ 
testing split

Explanation if validation set not 
created

Training and testing sets provided by the BraTS challenge

CV strategy +no of folds Not specified 5- fold CV on training set (n=274) 1 subject in both HGG 
(n=220) and LGG (n=54)

Optimisation strategy Optimisation algorithm +reference RMSProp optimiser30and 
Nesterov’s momentum31

Stochastic Gradient 
Descent and Nesterov’s 
momentum31

Hyperparameters (learning rate a, 
batch size n, drop- out d)

a=10-3 (halved when the 
convergence plateaus);
n=10
d=50% (in the last 2 hidden layers)

ainital=0.003
afinal=0.00003
n=128
dHGG=0.1 (in FC layers)
dHGG=0.5 (in FC layers)

Hyperparameter selection strategy CRF: 5- fold CV on a training 
subset HGG (n=44) and LGG 
(n=18)

Validation using 1 subject in 
both HGG (n=220) and LGG 
(n=54)

Computing 
infrastructure

Name, class of the architecture, 
and memory size

NVIDIA GTX Titan X GPU using 
cuDNN V.5.0, 12 GB

GPU NVIDIA GeForce GTX 
980

Middleware Toolbox used/in- house code +build 
version

Theano32

Python V.3.6.5,
Tensorflow V.2.0.0/1.15.0, Nibabel 
V.3.0.2
Numpy V.1.18.2

Theano V.0.7.032

Lasagne V.0.1dev33

Python V.2.7.10
Numpy V.1.9.2

Source code link +dependencies https://github.com/deepmedic http://dei-s2.dei.uminho.pt/
pessoas/csilva/brats_cnn/

Evaluation Metrics average +variations Mean of DSC, Precision, and 
Sensitivity (calculated by the online 
evaluation system)

Boxplot and mean of DSC 
(calculated by the online 
evaluation system)

Our implementation middleware

Python version 3.8.2 3.7.4

DL library Tensorflow 2.2.1 Theano (git version 
eb6a412), Lasagne (git 
version 5d3c63c)

Numpy 1.18.5 1.17.3

Nibabel 3.0.2 3.2.1

All the parameters and versions found in the first part of the table were specified in the original articles. The selection strategy of images to 
respective cross- validation folds was not specified. In the part ‘our implementation middleware’, we specify the Python version and libraries 
used for our implementations.
BraTS, Brain Tumour Segmentation Challenge; CNN, convolutional neural networks; CRF, conditional random field; CV, cross- validation; 2D, 
two dimensions; 3D, three dimensions; DL, deep learning; DSC, Dice similarity coefficient; FC, fully connected; HGG, high- grade glioma; 
LGG, low- grade glioma.

https://github.com/deepmedic
http://dei-s2.dei.uminho.pt/pessoas/csilva/brats_cnn/
http://dei-s2.dei.uminho.pt/pessoas/csilva/brats_cnn/


4 Gryska E, et al. BMJ Open 2022;12:e059000. doi:10.1136/bmjopen-2021-059000

Open access 

274 examinations (HGG n=220, LGG n=54). Each exam-
ination consists of T1- weighted (T1w) images before 
and after injection of contrast material (CM), T2w, and 
FLAIR (fluid- attenuated inversion recovery) images. The 
training data set additionally contains manual segmenta-
tions of tumour structures that serve as a criterion stan-
dard and delineate necrotic core, CE core, non- CE core 
and oedema. For the test set containing 110 examinations 
the criterion standard segmentations are not publicly 
available. Users can upload their segmentation results to 
an online system18 19 that internally compares the results 
with the hidden reference to determine per- case metrics 
(DSC, PPV, sensitivity and kappa). The system then 
returns summary measures (means and ranking position) 
to the user. Images in both sets are provided in .mha 
format and have been preprocessed with spatial normali-
sation,20 skull- stripping,21 and resampling to an isotropic 
resolution of 1 mm3 (linear interpolator).

Outcome parameters
We experimentally evaluated whether the two methods 
that Renard et al3 identified as reproducible according 
to their proposed criteria were possible to reproduce. 
Specifically, we examined whether enough informa-
tion was given in the original articles or supplementary 
information for each processing step. If reimplementa-
tion did not reproduce the originally reported results, 
we contacted the authors directly to follow- up on any 
missing details and added this information to the results. 
Pereira et al13 supplied a pretrained model; for 3D dual- 
path CNN, we trained our reimplementation on the 
BraTS 2015 training data. Thereafter, we segmented the 
BraTS 2015 test set with both methods. We submitted 
the resulting segmentations to the online evaluation 
system18 and recorded the summary measures returned 
(mean DSC, mean sensitivity and mean PPV). Finally, we 
compared the summary measures with those available in 
the original publications.

Replication analysis
Evaluated segmentation algorithm
Only the 3D dual- path CNN was successfully reimple-
mented (cf. Results—Reproducibility study). External 
validation (replication analysis) on in- house clinical data 
was therefore carried out with this method. The segmen-
tation models trained on the BraTS training data in the 
reproducibility analysis were applied to our dataset using 
a workstation with an Intel Core i7- 6700HQ CPU @ 2.60 
GHz processor and Nvidia GTX960M graphics card.

Image data set used for the replication analysis
The clinical in- house testing data set consisted of images 
from 27 cases (HGG n=12; LGG n=10; meningioma – 
MNG n=5). The set was selected for this study from a larger 
sample of image data. Data were anonymised and inclu-
sion criteria were preoperative examinations, availability 
of manual expert reference segmentations, and imaging 
findings typical for the included types of pathology.

As in the BraTS data set, each MR examination 
included non- CM T1w, CM T1w, T2w, and FLAIR images. 
The images were provided in NIfTI12 format. Since we 
used a model trained on BraTS data to segment these 
images, we used the BraTS- Processor module from the 
BraTS Toolkit22 for preprocessing. Binary lesion segmen-
tations had been prepared by trained raters and revised 
by a senior neurosurgeon (ASJ). Whole- tumour labels 
generated by delineation of T2/FLAIR hyperintensities 
were used for LGG. For HGG and MNG, the tumour core 
label was used, which had been delineated on CM T1w 
images and included CE tumour as well as any compo-
nents enclosed by CE tumour. The reference segmenta-
tions were registered from the native space to the BraTS 
space following the transformation steps and using the 
registration matrices generated by the BraTS- Processor.22

Outcome parameters
The replicability of the 3D dual- path CNN was assessed 
by comparing DSC, sensitivity, and PPV derived from 
processing the clinical in- house data with those provided 
by the online system18 during the reproducibility analysis 
on the BraTS test set. We visually evaluated individual 
cases to determine causes of segmentation errors.

Based on findings from the reproducibility and the 
replication analysis we reviewed recommendations on 
reporting items proposed by Renard et al3 and Pineau 
et al.8 Challenges and failures in our attempts at repro-
duction and replication were documented and exam-
ined throughout the processes above. We then assessed 
and summarised these outcomes with suggested specific 
improvements to the reproducibility items for lesion 
segmentation on MRI for brain segmentation.

RESULTS
Reproducibility study
3D dual-path CNN
BraTS data fulfilled most of the input requirements for 
the 3D dual- path CNN, apart from the format and the 
image intensity normalisation. To reproduce the study, all 
images were converted to NIfTI format, and MR signal 
intensities were normalised to have zero- mean and unit- 
variance within each ROI. We implemented these steps 
using SimpleITK for image conversion and an in- house 
python programme for signal intensity normalisation. 
Since the BraTS images are already skull- stripped, we 
generated brain masks for each patient by thresholding 
each image to include only non- zero voxels in order to 
reduce the runtime of the algorithm. The only changes 
we made in the 3D dual- path CNN configuration file were 
to set the number of input channels to all four available, 
as described in the original article (default in the source 
code was CE T1w and FLAIR), and to specify not to 
perform validation of the available samples, as the hyper-
parameters had already been defined for the model. 
Training the algorithm took approximately 27 hours, and 
testing took 14.5 min.
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The quantitative evaluation shows that our reimple-
mentation and testing of the 3D dual- path CNN on the 
BraTS 2015 data set achieved comparable results to those 
presented in the original study (table 2). We, therefore, 
deem the method reproducible.

2D single-path CNN
The preprocessing description by Pereira et al lacked 
certain parameters pertaining to the intensity normalisa-
tion: percentile points used to create a reference histo-
gram for each sequence and glioma grade, and intensity 
parameters of the training patches. Furthermore, it was 
not specified which model architecture was used on the 
BraTS 2015 test set, where the data include both HGG 
and LGG. Despite the missing parameters, we made an 
attempt to reproduce the study. We used N4ITK bias 
field correction (as implemented in SimpleITK) with 
default parameters and a histogram normalisation proce-
dure adapted from Reinhold et al.23 We decided on this 
implementation instead of the corresponding function in 
SimpleITK, because the latter requires a reference image 
or histogram, neither of which was available. For the final 
patch- normalisation step, the intensity parameters were 
not available, so we normalised each test image ROI to 
have zero- mean and unit variance. Finally, the results were 
postprocessed according to the procedure described by 
the authors. The testing time of the 2D single- path CNN 
was approximately 8 hours.

As the attempt was unsuccessful (results of the quan-
titative evaluation presented in table 2), we approached 
the lead author of the method and requested the missing 
information. The author generously provided informa-
tion on the bias field correction as well as image histo-
gram normalisation parameters.

Following this input, the N4ITK bias field correction 
was conducted using the implementation in Advanced 
Normalization Tools (ANTs)24 with the wrapper in 
Nipype25 with the following parameters specified: n_iter-
ations=(20, 20, 20, 10), dimension=3, bspline_fitting_
distance=200, shrink_factor=2, convergence_threshold=0. 
A visual inspection of the field inhomogeneity correc-
tion with ANTs/Nipype and the parameters given versus 
SimpleITK showed signal intensity differences in the 
tumour region (figure 1) that plausibly explained the 
failure to reproduce.

The implementation of Nyul’s algorithm15 for intensity 
normalisation was developed in the lead author’s former 
lab, and the author was not at liberty to share the code. 
Instead, the author provided percentile points and corre-
sponding intensity landmarks for each MR sequence used 
in their implementation. In the original study, however, 

Table 2 Reproducibility results on BraTS 2015 presented in the original paper for the 3D dual- path CNN9 and for the 2D 
single- path CNN10 (original) and for our independent reproducibility analysis (this work)

Dice similarity coefficient Positive predictive value Sensitivity

Whole 
tumour

Tumour 
core CE tumour

Whole 
tumour

Tumour 
core CE tumour

Whole 
tumour

Tumour 
core CE tumour

3D dual- path CNN

Original 0.85 0.67 0.63 0.85 0.85 0.63 0.88 0.61 0.66

This work 0.85 0.68 0.64 0.85 0.83 0.62 0.88 0.64 0.70

2D single- path CNN

Original 0.78 0.65 0.75 – – – – – –

This work 
(HGG)

0.36 0.25 0.17 0.36 0.21 0.29 0.54 0.58 0.17

This work 
(LGG)

0.25 0.14 0.13 0.40 0.51 0.37 0.25 0.10 0.10

Our analysis was carried out for HGG and LGG model parameters of the 2D single- path CNN. The results were congruent with the original 
analysis for the 3D dual- path CNN but they show an unsuccessful attempt to reproduce the 2D single- path CNN validation. The higher 
score in each column is emphasised in bold. Measures of dispersion or significance of differences were not available for the original method 
evaluation.
BraTS, Brain Tumour Segmentation Challenge; CE, contrast- enhanced; CNN, convolutional neural network; 2D, two dimensions; 3D, three 
dimensions; HGG, high- grade glioma; LGG, low- grade glioma.

Figure 1 Comparison of the field inhomogeneity correction 
with ANTs/Nipype (left) and SimpleITK (right). Distinct 
differences in the FLAIR signal intensity of tumour tissue 
are visible (red squares). FLAIR, fluid- attenuated inversion 
recovery. ANTs, Advanced Normalization Tools. 
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the authors trained separate sets of parameters for LGG 
and HGG and could not retrieve the patch intensity 
parameters for patch normalisation. To compensate, we 
extracted the mean and SD from the training images by 
collecting intensity information of patches sampled from 
various brain regions to ensure class balance. We imposed 
a condition that for a given class, a certain percentage 
of patch pixels are labelled as that class. The values of 
mean and SD depended on the percentage value, and 
we did not succeed at finding a value that would improve 
the segmentation results. At this point, we decided not to 
pursue further efforts to reproduce the study.

Replication analysis
The replication analysis was conducted on the 3D dual- 
path CNN only. Quantitative results of the comparison of 
automatic segmented MRI collected in- house and expert 
delineations of the chosen tumour labels are presented 
in table 3.

The average performance results of the replicability 
analysis using the in- house image set and the reproduc-
ibility results are compiled in table 4 for comparison.

The visual evaluation of individual cases revealed a 
variety of causes of poor performance. In HGG visual 
inspection of Case #07 results showed that the 3D dual- 
path CNN misclassified brain tissue voxels in the vicinity 
of the tumour core (figure 2, top row). A similar problem 
was observed in case #12 (figure 2, middle row). The 
algorithm failed to segment a tumour in MNG case #04 
(figure 2, bottom row). While the tumour location and 
appearance (uncharacteristic for glioma) may be the 
reason for a poor result, we also note that the brain mask 
generated in the preprocessing by BraTS Processor failed 
to include a part of the reference label. For LGG the algo-
rithm achieved relatively poor results for cases #01 and 
#09. The results obtained for LGG Case #01 revealed a 
segmentation error as a result of a preprocessing error: the 

brain mask included periocular tissue that was classified 
as tumour by the segmentation algorithm (figure 3, top 
row). In LGG Case #09, the 3D dual- path CNN labelled a 
substantial portion of the brain that was not included in 
the reference segmentation (figure 3, bottom row).

Proposed updates to the checklist
From our results we deducted that insufficient descrip-
tion of the preprocessing was the main obstacle to repro-
ducing Pereira’s et al10 results. We; therefore, present an 
updated reproducibility and replicability checklist for 
medical segmentation studies (table 5).

Table 3 3D dual- path CNN9 replication analysis results on in- house data for high- grade glioma (HGG) cases and meningioma 
(MNG) cases evaluated on the tumour core and for low- grade glioma (LGG) cases evaluated on the whole tumour label

ID 01 02 03 04 05 06 07 08 09 10 11 12 Mean SD

HGG cases tumour core

DSC 0.88 0.85 0.80 0.85 0.89 0.85 0.57 0.89 0.86 0.81 0.87 0.14 0.77 0.22

PPV 0.84 0.86 0.72 0.84 0.85 0.79 0.41 0.85 0.80 0.73 0.80 0.08 0.72 0.23

Sen 0.93 0.85 0.89 0.87 0.92 0.91 0.89 0.93 0.93 0.91 0.96 0.61 0.88 0.09

MNG cases tumour core

DSC 0.84 0.80 0.56 0.09 0.77 n.a. 0.61 0.31

PPV 0.89 0.72 0.41 0.60 0.66 0.66 0.18

Sen 0.79 0.90 0.92 0.05 0.93 0.71 0.38

LGG cases whole tumour

DSC 0.35 0.70 0.89 0.58 0.93 0.85 0.83 0.85 0.54 0.77 n.a 0.73 0.18

PPV 0.27 0.55 0.86 0.43 0.93 0.77 0.88 0.90 0.43 0.74 n.a 0.67 0.24

Sen 0.52 0.93 0.92 0.89 0.93 0.95 0.78 0.80 0.75 0.80 n.a 0.83 0.13

DSC, Dice similarity coefficient; n.a, not available; PPV, positive predictive value; Sen, sensitivity.

Table 4 Comparison of the mean results of the 
reproducibility (BraTS 2015 test set) and replicability (in- 
house image set) analysis of the 3D dual- path CNN9

Data set: In- house image set

BraTS 2015 
test image 
set

Cases: HGG MNG LGG+HGG

Tumour core DSC 0.77 0.61 0.68

PPV 0.72 0.66 0.83

Sen 0.88 0.71 0.64

Cases: LGG LGG+HGG

Whole 
tumour

DSC 0.73 0.85

PPV 0.83 0.85

Sen 0.67 0.88

BraTS, Brain Tumour Segmentation Challenge; CNN, convolutional 
neural network; 3D, three dimensions; DSC, Dice similarity 
coefficient; HGG, high- grade glioma; LGG, low- grade glioma; 
MNG, meningioma; PPV, positive predictive value; Sen, sensitivity.
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DISCUSSION
Reproducibility and replicability of scientific results are 
the foundation of evidence- based medicine. In this work, 
we show that current guidelines for publishing valida-
tion studies on DL algorithms are incomplete. While 
attempting to reproduce the two studies on MR brain 
lesion segmentation that were identified as meeting 
current reproducibility recommendations,3 we found that 
only one of them was reproducible based on the published 
information. Remarkably, even after consultation with the 

authors of the second method, we were not able to obtain 
satisfactory segmentation results with their method. Our 
claims of reproducibility/non- reproducibility could not 
be supported with advanced statistical analysis; the online 
evaluation system18 (used to evaluate the segmentations 
in the original validation papers and our study) provides 
arithmetic means of the evaluation metrics without 
measures of dispersion. The small sample size of the 
in- house data along with the difference in tumour compo-
nents segmented as a reference for HGG (tumour core) 
and LGG (whole tumour) further precludes a meaningful 
analysis of the statistical difference between the results 
obtained in the reproducibility and replicability analysis. 
We believe that our findings are nevertheless sufficient to 
support our conclusions.

We furthermore attempt to externally validate the find-
ings reported for the 3D dual- path CNN on a set of own 
data. We found that the available preprocessing pipeline 
is not free from producing errors, which directly influ-
ences the segmentation outcome. Moreover, we observed 
a poorer performance of the algorithm in MNG cases. 

Figure 2 Comparison of the expert segmentation (reference) 
and the three- dimensional (3D) dual- path CNN tumour core 
segmentation in the in- house data for high- grade glioma 
(HGG) and meningioma (MNG) cases overlaid on contrast 
enhanced T1 weighted. Voxels misclassified by the 3D dual- 
path CNN are visible in HGG cases #07 and #12 (top and 
middle row). The 3D dual- path CNN failed to correctly outline 
the tumour and included normal brain structures in the left 
medial temporal lobe for MNG case #04 (bottom row). CNN, 
convolutional neural network.

Figure 3 Comparison of the expert segmentation 
(reference) and the three- dimensional (3D) dual- path CNN 
whole tumour segmentation in the in- house data for low- 
grade glioma cases displayed overlaid on FLAIR images. 
Voxels misclassified by the 3D dual- path CNN are visible 
bilaterally in the orbit in case #01 (top row), which should 
have been excluded by the skull stripping procedure. In 
case #09 (middle row), the 3D dual- path CNN misclassified 
contralateral, sequence- depended FLAIR hyperintensities. 
CNN, convolutional neural network; FLAIR, fluid- attenuated 
inversion recovery.
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This is, however, a somewhat expected behaviour since 
the training set did not contain any MNG tumours. On 
the other hand, visual inspection also revealed that the 
3D dual- path CNN segmentation errors may arise from 
preprocessing errors. Nonetheless, our results acquired 
with the BraTS- Processor and the 3D dual- path CNN are 
promising, and we have begun to explore the potential of 
this pipeline for clinical application. Unfortunately, the 
experience gained through this study suggests that the 
available algorithms are not, in their present form, ready 
to be implemented in clinical routines. This, despite their 
meeting the recommended criteria for reproducibility as 
outlined by Pineau et al6 8 and Renard et al.3 Improving 
the reproducibility of technical validation studies of DL 
segmentation methods will lay a foundation for producing 
strong evidence for what algorithms work best, when, and 
why. It will furthermore facilitate creating standardised 
evaluation frameworks and create a solid base for imple-
menting DL tools in clinical routines.

Reproducibility criteria
The items that Renard et al3 identified as necessary to 
reproduce a DL methodology study are divided into infor-
mation about hyperparameters (optimisation, learning 
rate, drop- out, batch size) and the data set used (training 
proportion, data augmentation and validation set). All 
these items are indeed included in the two studies we 
attempted to reproduce.9 10 The current recommenda-
tions do not, however, sufficiently stress the importance 
of thorough documentation of the image preprocessing 
chain.

The approach to preprocessing of the training and 
testing data is different between the two highlighted 
segmentation studies. The authors of the 3D dual- path 
CNN guarantee optimal performance of the algorithm 
on images prepared for the BraTS segmentation chal-
lenge (skull stripping, spatial normalisation, and resam-
pling) with an additional intensity normalisation step. 
The 2D single- path CNN, on the other hand, achieved 
its reported high accuracy after more complex prepro-
cessing had been applied. For our study, intensities of the 
whole images were corrected for field inhomogeneity, and 
histograms normalised across each sequence. The final 

Table 5 A suggested reproducibility and replicability 
checklist for automatic medical image segmentation studies

Data set—description of the image data set used 
for model development and validation

 ► Image acquisition parameters
 ► Data set size
 ► Data excluded +reason
 ► Link to the data set (if available)

□
□
□
□

Data set preprocessing—description of the 
processing steps applied to the raw images before 
they can be fed to the segmentation model:

  

 ► List of all processing steps and corresponding 
parameters developed for the implementation

 ► List of processing steps not included in 
the implementation (when segmentation 
model developed and validated on partially 
preprocessed data)

 ► Statement if proprietary software was used
 ► Link to the source code +dependencies

□
□
□
□

Segmentation model—description of the model’s 
architecture used for the segmentation:

  

 ► Description of the model (layers, nodes, 
functions, etc)

 ► Trained model
 ► Framework used to build the model +version
 ► Statement if proprietary software was used
 ► Link to the source code +dependencies

□
□
□
□
□

Postprocessing—description of all processing 
steps and corresponding parameters applied to 
the output of the segmentation algorithm before 
evaluation:

  

 ► List of all processing steps and corresponding 
parameters developed for the implementation

 ► Statement if proprietary software was used
 ► Link to the source code +dependencies

□
□
□

Model development—description of the training/
validation and optimisation strategies:

  

 ► Augmentation transformations and 
corresponding parameters used for training

 ► Training/validation/testing split
 ► Final training sample size
 ► CV strategy +no of folds /no of training and 
evaluation runs

 ► Optimisation algorithm +reference
 ► Hyperparameter selection strategy
 ► Hyperparameters (learning rate a, batch size n, 
drop- out d)

 ► Link to the training source code +dependencies

□
□
□
□
□
□
□
□

Computing infrastructure—description of the 
hardware used:

  

 ► Name
 ► Class of the architecture
 ► Memory size

□
□
□

Model evaluation—description of the model 
evaluation:

  

Continued

Data set—description of the image data set used 
for model development and validation

 ► Metrics average +variations
 ► Reference segmentation source
 ► Failed cases: number and reasons
 ► Training and testing runtime
 ► Link to the evaluation source code or platform

□
□
□
□

The update from the established checklists3 8 includes a new 
category data set preprocessing, and a new item in model 
evaluation category: Failed cases: number and reasons. We also 
regrouped the items into categories that provide a clearer structure 
for reporting in particular of reproducibility and replicability studies.

Table 5 Continued
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preprocessing step involved patch normalisation. These 
procedures were not explicitly described. We requested 
the missing information from the authors, and while they 
were supportive in principle, they were unable to supply 
the patch intensity information. Unsurprisingly, the 
results show poor accuracy due to our inability to repro-
duce the intensity normalisation procedures conducted 
in the original study.

The problem of insufficient reporting of the prepro-
cessing procedures has been recognised previously.5 
While preprocessing may be less important in the 
context of segmentation challenges, evaluating the whole 
processing chain, from raw images to the final segmen-
tation, is crucial in the context of application to inde-
pendently collected data. Without the ability to reproduce 
the whole processing chain, meaningful method compar-
ison and validation on external data becomes impossible.

Our findings prompt us to propose a significant modifi-
cation to the previously reported reproducibility checklist 
by Pineau et al6 and Renard et al’s guidelines.3 We present 
this new checklist in table 5. First, we add what we conclude 
to be a necessary and sufficient description of the prepro-
cessing. Second, we regroup the items to provide a clearer 
distinction between the various elements and aspects that 
are involved in the algorithm development versus the 
validation of the medical image segmentation tool: such 
a structure for providing a more transparent and easily 
implemented way of reporting is specifically designed to 
help those who seek to reproduce and replicate. More 
generally, these modifications are critical to improving 
the reproducibility and replicability of medical image 
segmentation methods. Since our updates are based on 
reproducibility and replicability of only two segmenta-
tion algorithms, we encourage researchers to compre-
hensively evaluate our checklist by including a broader 
selection of independently implemented algorithms for 
medical image segmentation.

Replication analysis
The external validation was conducted on locally acquired 
images. We cannot draw definitive conclusions regarding 
the 3D dual- path CNN’s performance in a clinical setting 
as statistical analysis would not be meaningful; in the 
in- house data, we evaluated separately tumour core label 
in HGG examinations and whole tumour label in LGG 
examinations. The BraTS evaluations for both tumour 
components are, on the other hand, done on a mix of 
HGG and LGG cases. Because of our small sample size, we 
also cannot make inferences about applying DL methods 
trained on glioma cases to other tumour cases. Our 
results, however, are promising. The analysis further high-
lighted how essential the preprocessing chain is for accu-
rate brain tumour segmentation with the 3D dual- path 
CNN and likely with any other DL segmentation method.

In our pipeline, we used BraTS- Processor to take advan-
tage of a tool that will automatically apply all the prepro-
cessing steps that were also applied to the training set. 
Our analysis revealed segmentation errors that could be 

traced to errors in the preprocessing. Cases of errors in 
the skull stripping, which we observed in the in- house 
data, have been reported previously26 27 and will likely 
cause occasional problems in the future. Nonetheless, 
the processing pipeline generates segmentations that, 
even if erroneous in a few cases, will be easy to correct if 
the operator is equipped with a suitable interactive label 
editing tool. Developers of clinical tools should be aware 
of the issue and enable users to easily remove mislabelled 
regions.28

In addition to the noted preprocessing errors, we 
encountered another problem that likely influenced the 
results: the BraTS- Processor outputs images in the BraTS 
(MNI15229) space. To evaluate the automatic segmenta-
tions quantitatively, we had to transform the reference 
segmentations from the native space to the BraTS space 
as well. This resulted in visible distortions to the reference 
segmentations. Accordingly, the results we presented 
(table 5) likely underestimate the performance of the 
method (BraTS- Processor plus the 3D dual- path CNN) 
on externally acquired data. For a more accurate evalua-
tion of a given processing pipeline, reference segmenta-
tions should be delineated on images in the BraTS space. 
While it may not be feasible in retrospective studies, it is a 
vital study design step for prospective studies.

CONCLUSIONS
Established reproducibility criteria for studies developing 
and validating DL lesion segmentation algorithms are 
not sufficient with regard to the preprocessing steps. The 
results of the reproducibility analysis led us to propose a 
new reproducibility checklist for medical image segmen-
tation studies, especially if clinical utility of the algo-
rithms is the goal. We further highlighted that even a fully 
reproducible preprocessing method is prone to errors 
on routine clinical images, which is likely to impair the 
segmentation outcome. We encourage researchers in the 
field of medical image segmentation to follow our modi-
fied checklist and assess it in terms of practical utility.
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