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Simple Summary: Recent progress in research on the biology of cancer-associated fibroblasts (CAFs)
in pancreatic ductal adenocarcinoma (PDAC) indicates their diverse states and plasticity, which may
lead to good and bad stroma, suppressing and promoting cancer progression, respectively. The char-
acteristics of the stroma differ spatially, even within the same tumors, based on the balance between
cancer-restraining CAF and cancer-promoting CAF proliferation at the site. These heterogeneous
CAFs also influence the sensitivity of PDAC to anticancer therapeutics. Further preclinical and
clinical studies will advance our understanding of the roles of CAFs in disease progression and aid
the development of therapeutics that modulate or ameliorate the tumor microenvironment in PDAC.

Abstract: A well-known feature of human pancreatic ductal adenocarcinoma (PDAC) is the extensive
proliferation of cancer-associated fibroblasts (CAFs) and highly fibrotic stroma. Recent evidence,
based mainly on single-cell analyses, has identified various subsets of CAFs in PDAC mouse models.
However, we do not know how these CAF subsets are involved in the progression and drug resistance
of human PDAC. Additionally, it remains unclear whether these diverse CAFs have distinct origins
and are indicators of genuinely distinct CAF lineages or reflect different states of the same CAFs
depending on the tumor microenvironment. Interestingly, recent preclinical studies have started
to characterize the nature of cancer-restraining CAFs and have identified their markers Meflin and
collagen type I alpha 1. These studies have led to the development of strategies to induce changes
in CAF phenotypes using chemical reagents or recombinant viruses, and some of them have been
tested in clinical studies. These strategies have the unique potential to convert the so-called bad stroma
to good stroma and may also have therapeutic implications for non-cancer diseases such as fibrotic
diseases. Together with recently developed sophisticated strategies that specifically target distinct
CAF subsets via adoptive cell transfer therapy, vaccination, and antibody–drug conjugates, any future
findings arising from these clinical efforts may expand our understanding of the significance of CAF
diversity in human PDAC.

Keywords: pancreatic cancer; cancer-associated fibroblasts; stroma; tumor microenvironment; Meflin;
immunoglobulin superfamily containing leucine-rich repeat; fibrosis

1. Overview of Pancreatic Cancer-Associated Fibroblasts

Cancer-associated fibroblasts (CAFs) are among the major components of the tumor
microenvironment (TME) [1–7]. CAF proliferation is conspicuous, particularly in intractable
and aggressive cancers such as pancreatic ductal adenocarcinoma (PDAC) (Figure 1) [8,9].
Ever since the significance of fibroblasts in the progression of prostate cancer was first
demonstrated using a mouse model [10], CAFs have attracted considerable attention from
researchers. Subsequently, the notion that CAFs promote cancer progression and could
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therefore be a target for the development of new anti-cancer therapeutics has become
widely accepted [1–7].
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Figure 1. A representative histology of human pancreatic cancer. A low-magnification image of a 
tissue section of human pancreatic ductal adenocarcinoma (PDAC) stained with hematoxylin and 
eosin is shown in the top left panel. The areas outlined in green (A–E) are magnified in the adjacent 
right and lower panels. The areas outlined in black (a–e) are magnified in the lower panels with the 
same magnification. The circles represent stromal cells with CAF morphology. Viable cancer cell 

Figure 1. A representative histology of human pancreatic cancer. A low-magnification image of
a tissue section of human pancreatic ductal adenocarcinoma (PDAC) stained with hematoxylin and
eosin is shown in the top left panel. The areas outlined in green (A–E) are magnified in the adjacent
right and lower panels. The areas outlined in black (a–e) are magnified in the lower panels with
the same magnification. The circles represent stromal cells with CAF morphology. Viable cancer
cell nests and islets of Langerhans/acinar cells are shaded in green and blue, respectively. ECM,
extracellular matrix.
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One major function of CAFs is the production of extensive amounts of extracellular
matrix (ECM) proteins, such as collagen and fibronectin [1–7,11,12]. These proteins are
produced by CAFs deposited in the stroma, leading to changes in the mechanical properties
of tumor tissues, such as stiffness, interstitial pressure, and collagen configuration [13].
CAFs also produce several growth factors, cytokines, and chemokines, many of which
promote cancer cell proliferation and motility [1–7]. These liquid factors subsequently
attract and recruit many types of immune cells, including lymphocytes and myeloid cells,
to tumor sites, thereby suppressing anti-tumor immunity [14]. Furthermore, CAFs produce
various proteases that degrade and remodel the ECM to help cancer cell groups invade
the stroma effectively and collectively [15–19]. They are eventually activated downstream
of many growth factors produced by cancer cells [1–7,20]. Thus, CAFs are generally
considered to be promoters or accelerators of cancer progression. There is ample evidence
to prove that cancer cells co-opt preexisting normal fibroblasts to become CAFs and shape
the TME, which facilitates cancer progression [1–3]. Many published review articles focus
on describing the cells of origin, activating mechanisms, and functions of CAFs, which
readers should refer to in order to understand the current review better [1–7].

The morphological diversity of CAFs in human PDAC can be better appreciated by
the close histological examination of tissue sections stained with conventional hematoxylin
and eosin (H&E) (Figure 1). By moving the field of view by several millimeters, one can
easily recognize that the morphology, nucleus and cell sizes, and density of CAFs, as well
as the patterns of ECM deposition, are completely different between the lesions, even
within the same patient (Figure 1a–e). Accordingly, advanced technologies for single-cell
transcriptomic analysis have clearly shown that CAFs are molecularly heterogeneous,
or diverse in terms of gene expression (Figure 2) [4,5,21]. Several different CAF classifica-
tions based on different clustering methods and differing focal points for research have
been summarized in many review articles and will not be repeated in this review [4,5,21].
The most established CAF classification in PDAC was proposed by Tuveson et al., who
categorized CAFs into three subsets: myofibroblastic CAFs (myCAFs), which robustly
express α-smooth muscle actin (α-SMA); inflammatory CAFs (iCAFs), which produce
inflammatory cytokines such as interleukin (IL)-6; and antigen-presenting CAFs (apCAFs),
which have recently displayed the potential to induce regulatory T cells and suppress
anti-tumor immunity [22–24] (Figure 2). One of the unaddressed issues, however, is that
we still do not know whether these different CAFs are indicators of genuinely distinct CAF
lineages, or if the same CAFs reflect different states depending on the changes in the TME;
an exception is apCAFs, which are derived from mesothelial cells [25]. Another issue with
these CAF classifications seems to be that the biological significance of the given CAF
marker genes or the given CAF subsets has not been demonstrated clearly, mainly because
of the lack of specific markers for the given CAF subsets, and genetically engineered mouse
models that enable us to specifically deplete or ablate the given CAF subsets. The clinical
relevance of these CAF subsets in human PDAC has not yet been fully elucidated.

As an alternative method of CAF classification, we considered a simple CAF classifica-
tion which categorizes CAFs based on whether they are pro- or anti-tumorigenic [1,2,26,27]
(Figure 2). This classification was originally proposed by Kalluri and his colleagues and
assumes the existence of cancer-promoting CAFs (pCAFs) or tumor-promoting CAFs
(TP-CAFs) and cancer-restraining CAFs (rCAFs) or tumor-restraining CAFs (TR-CAFs),
and the balance between these CAFs is crucial for cancer progression, the regulation of anti-
tumor immunity, and sensitivity to anti-cancer therapeutics [2,5]. In recent years, our group
has focused on understanding the nature of rCAFs, and the data obtained so far imply that
the nature of rCAFs may be similar to that of tissue-resident fibroblasts, mesenchymal stem
cells (MSCs), or pancreatic stellate cells (PSCs) [28,29]. Interestingly, this balance between
rCAFs and pCAFs can be modulated by therapeutic reagents, as shown through a pio-
neering study by Sherman et al., who first showed that the vitamin D analog calcipotriol
changes the phenotype of CAFs, thereby improving tumor sensitivity to chemotherapeutics
in a PDAC mouse model [30]. In this short review, we summarize recent studies on rCAFs
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in PDAC and the relevance of therapeutic strategies which convert pCAFs into rCAFs or
modulate their balance. We speculate that the diversity and complexity of CAFs could be
demonstrated through a simple model wherein CAFs exist on an overlapping functional
spectrum from anti-tumor rCAFs to pro-tumor pCAFs, which constitute the “good” and
“bad” stroma, respectively, of human PDAC.
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Figure 2. Current classification of CAFs in PDAC. The expression of the indicated CAF marker genes
(Islr, Il6, Fap, Acta2, and Cd74) in CAFs isolated from tumors of the KPC mouse model of PDAC
was visualized using t-distributed stochastic neighbor embedding (t-SNE) plots. Publicly available
single-cell RNA sequence data of all fibroblasts isolated from four KPC mouse with PDAC tumors
(GEO accession code: GSE129455, Elyada et al. [24]) were analyzed and visualized using the Bioturing
Bbrowser. It should be noted that different CAF marker genes were expressed in different CAFs
at varying degrees of overlap. Recent studies have shown that Meflin protein encoded by the Islr
gene possesses cancer-suppressing roles; however, the precise roles of Meflin+ CAFs have not been
demonstrated clearly. α-SMA+ myCAFs play a role in suppressing the progression of pancreatic
cancer in mice; however, the functions of α-SMA protein and other proteins expressed in myCAFs
have not yet been demonstrated. apCAFs are derived from mesothelial cells and have a different
origin from other types of CAFs.
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2. Current Understanding about rCAFs in PDAC

Rhim et al. [31], Özdemir et al. [32], and Lee et al. [33] first reported that all or some
CAFs have tumor-suppressive functions in PDAC. They also showed that suppression of
CAF proliferation, either through genetic depletion of sonic hedgehog (SHH) in cancer cells,
use of SHH inhibitors, or genetic ablation of α-SMA+ CAFs, resulted in the progression of
PDAC in mouse models. These data raised the hitherto unconsidered question of whether
some, but possibly not all, populations of CAFs play an inhibitory role in cancer progression
in mice, and α-SMA is a candidate marker of those CAFs [32]. Based on these findings,
researchers have hypothesized that CAFs can be categorized into two functionally distinct
subsets: pCAFs and rCAFs [2]. In contrast, other studies have suggested the involvement
of TGF-β, a potent cytokine that induces α-SMA expression in fibroblasts and stromal
fibrosis, and its downstream signaling pathways in the progression of pancreatic cancer
in the advanced stages [34]. In mechanistic terms, another study showed that the RNA
interference-mediated depletion of the α-SMA gene led to a significant decrease in the nu-
clear accumulation of the mechanosensitive transcription factor YAP/TAZ in cultured
MSCs, which are known to be one of the origins of CAFs [35]. YAP/TAZ expression
in CAFs is crucial for cancer cell invasion and ECM stiffening [36]. Therefore, it seems
appropriate to argue that the α-SMA protein expressed in CAFs may enhance the malig-
nant features of cancer; however, its precise in vivo roles remain undetermined. Taken
as a whole, the most reasonable interpretation of previous studies is that α-SMA+ CAFs
suppress cancer progression, whereas the role of α-SMA protein remains elusive in in vivo
contexts, including human cancers (Figure 2). The Kaplan–Meier analysis is not considered
helpful in determining the functions of the genes of interest in terms of whether they are
pro-tumorigenic or anti-tumorigenic. For example, the expression of an rCAF marker gene
may be high in aggressive tumor cases with desmoplastic and fibroinflammatory reactions,
because they are heavily infiltrated with both rCAFs and pCAFs. Those stromal reactions
are often associated with poor outcomes, which does not necessarily mean that the product
encoded by the CAF marker gene promotes tumor progression.

Recent studies have gone a step further in determining the role of α-SMA+ CAFs.
Researchers have engineered a genetically modified mouse model in which the gene encod-
ing collagen type I alpha 1 (Col1α1) was specifically depleted in α-SMA+ cells (Col1smaKO

mouse) [37]. When crossed with autochthonous PDAC model mice, Col1smaKO mice devel-
oped pancreatic tumors that were more aggressive and exhibited poorer outcomes than
the control mice did; this observation was associated with the recruitment of myeloid-
derived suppressor cells and the suppression of CD8+ cytotoxic T cells. These data showed
that Col1α1 is a protein that functionally defines rCAFs in PDAC.

Our group recently focused on another protein, Meflin, which is specifically expressed
in CAFs in both human and mouse PDAC [26,28,29,38]. It is a glycosyl-phosphatidylinositol-
anchored protein encoded by the gene immunoglobulin superfamily containing leucine-rich
repeats (ISLR), which is also secreted into media containing cultured fibroblasts [29,39].
To date, two proteins have been identified as Meflin-interacting proteins. One protein is
bone morphogenetic protein (BMP) 7, which is a cytokine that functionally counteracts
the pro-fibrotic function of TGF-β and restrains fibrosis in multiple organs [40–42]. Meflin
binds with BMP7 to augment its downstream activation of Smad1/5, thereby inducing
the expression of inhibitors of DNA binding proteins Id2 and Id3. Another Meflin ligand
is lysyl oxidase (Lox), which is a crosslinker of collagen fibers that promotes fibrosis and
tissue stiffening [43–46]. Our biochemical analysis showed that Meflin interacts with Lox
to inhibit its collagen cross-linking activity [43]. Consistent with this result, the Meflin
expression levels in CAFs are anti-correlated with straighter and wider collagen structures
in PDAC mouse models. Furthermore, Meflin deficiency in CAFs is associated with a more
aggressive histology of PDAC and resistance to chemotherapeutics, suggesting that Meflin
may be a functional marker of rCAFs in PDAC [28,43]. Our study showed that Meflin
exhibits cancer-restraining activity; however, the precise role of Meflin+ CAFs has not been
demonstrated clearly.
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Functional rCAF marker proteins other than Col1α1 and Meflin may exist. Some studies
have shown that decorin, a matricellular protein that has multiple functions, including
the modulation of receptor tyrosine kinase signaling, is expressed in CAF subsets and plays
a role in suppressing cancer progression [47,48]. According to a previous study, the expression
of nerve growth factor receptor (NGFR, also known as CD271) in CAF is correlated with
a favorable prognosis in patients with PDAC [49]. We speculate that future studies will further
identify the functional rCAF marker proteins. Most importantly, no master transcription
factor(s) that determines the identity of rCAFs has been identified to date.

3. States of CAFs, Not CAF Subsets, May Be Responsible for “Good” or “Bad” Stroma
in Human PDAC

It is difficult to distinguish between CAF subsets based on gene expression because no
markers are specific to any CAF subset and their gene expression profiles overlap with each
other. As is evident from single-cell transcriptomic analyses, highly specific and sensitive
multiplex in situ hybridization (ISH) assays show that CAFs positive for Meflin (ISLR)
mRNA are also positive for α-SMA (ACTA2) mRNA to varying degrees (Figure 3) [28]. No-
tably, Meflin and α-SMA mRNA expression levels are inversely correlated with each other:
CAFs that are highly positive for Meflin mRNA are weakly positive for α-SMA mRNA,
whereas those weakly positive for Meflin mRNA are highly positive for α-SMA mRNA
(Figure 3) [28]. According to our research, this continuity in gene expression between
different CAFs is better demonstrated using ISH, which detects the mRNA expression level,
rather than immunostaining, which detects the protein level. This proved true when we in-
vestigated the relationship between α-SMA and matrix-remodeling-associated 8 (MXRA8),
a new CAF-specific marker which is co-expressed with Meflin in both human and mouse
PDAC [50].

These observations led us to hypothesize that, other than apCAFs, which are derived
from mesothelial cells [25], CAFs cannot be clearly separated into subsets with distinct
cells of origins and functions (Figure 2). Nevertheless, they are skewed or polarized to any
one type of CAFs, and diverse CAFs reflect different “states” of the same CAF, depending
on the TME (Figure 4). Given the heterogeneous features of human PDAC, as revealed by
conventional H&E staining (Figure 1), it is plausible that the TME of PDAC is composed
of varying quantities of good stroma, which is rich in CAFs that express rCAF markers,
and bad stroma, which is rich in CAFs that express pCAF markers, and the net balance
between the good and bad stroma determines the progression, drug sensitivity, and tumor
immunity of human PDAC (Figure 4). The significance of the balance between rCAFs
and pCAFs has also been shown in mouse and human colorectal cancer. The ratio of
Meflin+ rCAFs and pCAFs that are positive for Gremlin 1, a potent BMP antagonist, is
crucial for the outcome of patients with colorectal cancer, and the exogenous manipulation
of the balance between Meflin+ rCAFs and Gremlin 1+ pCAFs improves liver metastasis
in colorectal cancer [41].

As extensively reviewed in other review articles on CAFs, the state of CAFs, or whether
a stroma is good or bad, may be associated with the tumor response to immune checkpoint
inhibitors (ICIs), and there is accumulating evidence that CAF phenotypes are involved
in anti-tumor immunity, which will not be reiterated here [1–5,51,52]. We recently showed
that the number of Meflin+ rCAFs is associated with a favorable objective response rate
in patients with non-small-cell lung cancer treated with ICIs [53]. Again, this observation
seems to contradict the prevailing notion that CAFs generally contribute to tumor resistance
to ICIs [54,55]. A recent study showed that IL-6 production from α-SMA+ myCAFs, but not
pCAFs, marked by the expression of fibroblast activation protein-α (FAP-α), contributes to
the resistance of pancreatic cancer to chemotherapy and ICIs (Figure 2) [56]. Thus, the rCAF
and pCAF balance seems to be important for regulating antitumor immunity and sensitivity
to ICIs, although currently no ICIs have been shown to be effective in the treatment of
human PDAC.
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Figure 3. Overlap and continuity in the expression of genes encoding Meflin and α-SMA between
different CAFs. Duplex in situ hybridization (ISH) assay shows an overlapping but inverse correlation
between Meflin (ISLR; green) and α-SMA (ACTA2; red) expression in CAFs infiltrating human PDAC.
The boxed areas (a–c) are magnified in adjacent panels. The arrows indicate CAFs that exhibit variable
levels of Meflin and α-SMA expression. Statistical analysis of the inverse correlation between Meflin
and α-SMA expression in CAFs was performed in Mizutani et al. [28].
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Figure 4. Hypothesis regarding the states of CAFs that determine the properties of the stroma of
PDAC. The state of individual CAFs may be regulated by the balance between the expression of rCAF
and pCAF marker proteins, which results in the formation of good (left) or bad (right) PDAC stroma.
Good and bad stromata affect the properties of tumor vessels and immune cells, which determine
the progression and drug sensitivity of PDAC. Recent studies have suggested that rCAFs and pCAFs
are plastic and can be converted into each other during disease progression and pharmacological
interventions [21,43].

4. CAF Conversion and Plasticity

The regulatory mechanisms of the conversion between rCAFs and pCAFs have begun
to be elucidated [1,2,21]. The stimulation of cultured fibroblasts with TGF-β was shown to
induce the rapid downregulation of Meflin expression, whereas α-SMA was significantly
upregulated [40,41]. Fibroblasts cultured on stiff substrates, such as the plastic dishes gener-
ally used in laboratories, also induce Meflin downregulation and α-SMA upregulation [40].
Meflin is expressed in undifferentiated MSCs, and its expression is downregulated upon
their differentiation into adipo-, osteo-, and chondrogenic cell lineages and myofibrob-
lasts [57,58]. Other factors that downregulate Meflin expression include hypoxic conditions,
microgravity, and continuous cell passage on plastics [29,40,59]. Consistent with these
study findings, the lineage tracing of Meflin+ CAFs revealed that they give rise to α-SMA+

CAFs during PDAC progression in mice, supporting the speculation that rCAFs convert
into α-SMA+ CAFs, which may contribute to CAF heterogeneity [28]. In contrast, Col1α1
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expression is downregulated by a soft substrate, but the detailed mechanisms by which
Col1α1 expression is regulated in rCAFs are not well known [35,60]. Col1α1 expression was
recently examined in a breast cancer cell line and found to be upregulated by the transcrip-
tion factor MRTF-A, on which the TGF-β, Wnt/β-catenin, and Rho/Rho-kinase signaling
pathways converge [61]. Thus, the transcription of the same rCAF marker proteins, namely,
Meflin and Col1α1, is differentially regulated, which may complicate our understanding
of the nature of rCAFs. Although not described in detail in this review, there is strong
evidence of the involvement of epigenetic regulation in altering the CAF phenotype [1,2].
Therefore, it is reasonable to speculate that the conversion of rCAFs into pCAFs is also
regulated by histone modification and DNA methylation.

We recently showed that exogenous delivery of Meflin through a recombinant Sendai
virus vector into tumors that were developed in a subcutaneous transplantation model of
PDAC induced an increase and decrease in the numbers of Meflin+ and α-SMA+ CAFs,
respectively [43]. Thus, tumor sensitivity to the chemotherapeutic agent gemcitabine
was improved. This observation suggests that the CAF phenotype can be genetically
manipulated, which may help in developing a therapeutic strategy in the future.

Another strategy that has been recently developed is the pharmacological conversion
of the CAF phenotype using chemical reagents [21]. As described above, Shermann et al.
showed that activated PSCs, which are almost equivalent to CAFs, are reprogrammed into
quiescent PSCs upon treatment with the vitamin D analog calcipotriol [30]. The admin-
istration of calcipotriol to an autochthonous PDAC mouse model (KPC model) resulted
in the decreased expression of several iCAF and myCAF markers, such as IL-6 and α-SMA,
accompanied by the increased tumor vascular area and chemosensitivity of the developed
tumors. Thus, the study by Sherman et al. showed that calcipotriol has the potential to
revert pCAFs to rCAFs or quiescent PSCs. PSCs are resident stromal cells of the pancreas
which are characterized by an abundance of vitamin A in their cytoplasm [62]. Consistent
with this study finding, the administration of all-trans retinoic acid (ATRA) exerts an effect
similar to that of vitamin D in reverting activated PSCs to quiescent PSCs and consequently
suppressing the progression of PDAC in mice [63,64]. Based on these observations, multiple
clinical trials investigating the efficacy of the combination of calcipotriol or ATRA with
conventional chemotherapeutics or ICIs in patients with PDAC are underway [21].

Our group recently discovered that Am80, a non-natural synthetic retinoid, effectively
upregulates the expression of Meflin in CAFs from PDAC mice, suggesting that Am80
may have the potential to convert Meflin-negative or weakly positive pCAFs into Meflin-
positive rCAFs [43]. Consistent with the antifibrotic role of Meflin, enacted by augmenting
BMP7 signaling and suppressing Lox activity, the oral administration of Am80 induced
changes in collagen configuration, decreased tumor tissue stiffness, and increased tumor
vessel area. These effects were accompanied by an increase in drug delivery efficiency and
chemosensitivity in the PDAC mouse model. Interestingly, a comparison of genes that were
differentially expressed between Am80- and calcipotriol-treated CAFs revealed that Meflin
expression was more significantly upregulated by Am80 than by calcipotriol [43]. Our pre-
liminary experiments on a subcutaneous transplantation PDAC mouse model showed that
the oral administration of Am80 significantly improved gemcitabine efficacy compared to
the intraperitoneal administration of calcipotriol (T.I. and A.E., unpublished observation).
Based on these findings, our institution started a clinical study that investigated the safety
and efficacy of the combination of Am80 and conventional chemotherapeutics, such as
gemcitabine and nab-paclitaxel, in patients with advanced unresectable PDAC [65].

Another strategy for converting CAFs was suggested in a recent study which showed
that targeting Pin1, which is a proline isomerase involved in multiple oncogenic pathways,
significantly attenuated the expression of α-SMA in myCAFs as well as of inflammatory
cytokines (IL-6, LIF, CXCL12) in iCAFs in the tumor stroma of a PDAC mouse model,
which was accompanied by a significant increase in the sensitivity of tumors to chemother-
apeutics [66].
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5. Conclusions

In this short review focusing on rCAFs in PDAC, we describe our current understand-
ing of the nature and identity of rCAFs and their phenotypic conversion and plasticity
during disease progression. We believe that different “states” of CAFs may exist in human
PDAC and influence the formation of good or bad stroma, depending on the TME and
disease stages (Figure 4). Good stroma may be mainly composed of rCAFs, normal tumor
vessels, and immune cells with higher anti-tumor activity, whereas bad stroma may be
composed of pCAFs, structurally and functionally abnormal tumor vessels, and immune
cells with lower anti-tumor activity, and the net balance of these compartments may de-
termine the progression and drug sensitivity of PDAC. However, the master regulators
which orchestrate CAF states are not completely understood. The roles of rCAFs in rare
types of cancer remain elusive [67,68]. Interestingly, Meflin+ fibroblasts have been found
in the stroma of non-tumor fibrotic diseases, such as cardiac fibrosis, idiopathic pulmonary
fibrosis, and kidney fibrosis, where they seem to be essential for tissue repair, but also
play a role in suppressing fibrosis, unlike α-SMA+ myofibroblasts, which promote tis-
sue fibrosis and stiffening [40,69,70]. These findings suggest common mechanisms and
etiologies of cancer and fibrotic diseases. Thus, further understanding of the biology of
rCAFs could be helpful for the development of therapeuti not only for cancer, but also for
fibroinflammatory diseases.
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