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SUMMARY

The erythropoietin receptor (EPOR) plays an essential role in erythropoiesis and other cellular pro-

cesses by forming distinct signaling complexes composed of EPOR homodimers or hetero-oligomers

between the EPOR and another receptor, but the mechanism of heteroreceptor assembly and

signaling is poorly understood. We report here a 46-residue, artificial transmembrane protein ap-

tamer, designated ELI-3, that binds and activates the EPOR and induces growth factor independence

in murine BaF3 cells expressing the EPOR. ELI-3 requires the transmembrane domain and JAK2-bind-

ing sites of the EPOR for activity, but not the cytoplasmic tyrosines that mediate canonical EPOR

signaling. Instead, ELI-3-induced proliferation and activation of JAK/STAT signaling requires the trans-

membrane and cytoplasmic domains of the cytokine receptor b-common subunit (bcR) in addition to

the EPOR. Moreover, ELI-3 fails to induce erythroid differentiation of primary human hematopoietic

progenitor cells but inhibits nonhematopoietic cell death induced by serum withdrawal.
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INTRODUCTION

Many aspects of cell behavior are controlled by cell surface receptors that receive extracellular signals and

orchestrate the cellular response. The formation and activation of alternative receptor complexes with

different subunits and signaling properties can dictate receptor output (e.g., Kovacs et al., 2015). The cyto-

kine erythropoietin (EPO) can activate alternative complexes of the EPO receptor (EPOR), a transmem-

brane (TM) cell surface protein lacking intrinsic kinase activity. Binding of EPO to the EPOR can trigger

the homodimerization of EPORs in a productive orientation, leading to the transphosphorylation of Janus

kinase 2 (JAK2), which is constitutively associated with the EPOR (Constantinescu et al., 1999a, 2001; Wa-

towich et al., 1999). Activated JAK2 phosphorylates multiple tyrosines in the intracellular domain of EPOR,

allowing the recruitment and phosphorylation of downstream signaling proteins, including signal trans-

ducer and activator of transcription 5 (STAT5) (Barber et al., 1997; Kuhrt and Wojchowski, 2015; Sawyer

and Penta, 1996; Lodish et al., 2009). This signaling pathway is essential for the survival, proliferation,

and differentiation of erythroid progenitors.

In addition to erythropoiesis, the EPOR can mediate non-erythroid outcomes in response to EPO treat-

ment, including a tissue-protective response that prevents apoptosis and promotes proliferation in non-

hematopoietic cells subjected to injury or metabolic stress (Acharya et al., 2010; Brines, 2010; Jubinsky

et al., 1997; Siren and Ehrenreich, 2001; Siren et al., 2001a, 2001b; Jelkmann et al., 2009), reviewed in Jelk-

mann et al. (2009). The protective effect of EPO appears to require the activation of a heteroreceptor

composed of EPOR and the cytokine receptor b-common subunit (b-common receptor [bcR] also known

as CD131). In addition to constitutively binding EPOR, bcR also binds the a-chain of interleukin (IL)-3 recep-

tor, granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GM-CSFR), and IL-5 receptor

(Blake et al., 2002; Jubinsky et al., 1997; Hercus et al., 2013; Lopez et al., 1992). bcR plays an essential role in

signaling by these receptors, which lack JAK2 binding or a significant cytoplasmic domain, by providing

bound JAK2 and cytoplasmic tyrosines for phosphorylation (Hansen et al., 2008; Hercus et al., 2013). bcR�/�

mice lack EPO-induced tissue protection but retain normal hematopoiesis, showing that bcR is required for

tissue protection but not for erythroid differentiation in at least some settings (Weber et al., 2005; Brines

et al., 2004). In addition, certain modified versions of EPO, such as lysine-carbamylated EPO, specifically

induce the tissue-protective, but not the erythroid, effects of EPO (Erbayraktar et al., 2009; Leist et al.,

2004; Murphy and Young, 2006; Yamanaka et al., 2018). These results suggest that the tissue-protective
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effect of EPO is mediated by an EPOR/bcR heteroreceptor, and not by EPOR homodimerization (Bohr et al.,

2015). However, the role of the heteroreceptor in tissue protection remains controversial (see citations in

Cheung Tung Shing et al. 2018), and in some situations a classical EPOR homodimer can provide a protec-

tive signal (Um et al., 2007). Notably, the elements on the EPOR and bcR required for heteroreceptor for-

mation and the molecular mechanism of signaling by the bcR/EPOR heteroreceptor are unknown.

Various receptors, including the EPOR, can be activated through interactions involving their TM domain

(TMD). The murine spleen focus-forming virus envelope protein gp55-P specifically binds to the TMD of

the mouse EPOR (mEPOR), triggering EPOR activation, erythroid cell proliferation, and polycythemia (Li

et al., 1990; Constantinescu et al., 1999b). The platelet-derived growth factor b receptor (PDGFbR) can

be activated by the bovine papillomavirus E5 oncoprotein, a 44-residue TM protein that binds specifically

to the TMD of the PDGFbR (DiMaio and Petti, 2013; Petti and DiMaio, 1992; Petti et al., 1991). We devel-

oped a genetic approach to isolate small biologically active TM proteins in which we construct libraries ex-

pressing up to millions of different, small, artificial TM proteins (termed traptamers, for TM aptamers) with

randomized, hydrophobic segments. Traptamer libraries are expressed in mammalian cells, and active

traptamers are recovered from cells selected for particular biological activities, with the rationale that,

by chance, rare traptamers interact with cellular TM proteins and modulate their activity or expression

(Cammett et al., 2010; Freeman-Cook et al., 2004; Freeman-Cook and DiMaio, 2005; Scheideman et al.,

2012). We have isolated traptamers that specifically activate human EPOR (hEPOR) or mEPOR and cause

EPOR-dependent proliferation of murine BaF3 cells (Cammett et al., 2010; Cohen et al., 2014; He et al.,

2017). These traptamers bind the TMD of the EPOR and induce hEPOR homodimerization and tyrosine

phosphorylation of EPOR and JAK2.

Here, we isolate and characterize a new traptamer, ELI-3, that induces proliferation of BaF3 cells that ex-

press the EPOR. ELI-3 interacts with the hEPOR and, unlike EPO or previously isolated traptamers that acti-

vate the EPOR, does not require intracellular hEPOR tyrosines, but instead requires the endogenously ex-

pressed bcR in addition to the EPOR. ELI-3 does not support differentiation in erythroid cells and inhibits

serum withdrawal-induced apoptosis in non-hematopoietic cells. These results show that small TM pro-

teins can specifically activate either the EPOR homodimer or the EPOR/bcR heteroreceptor, with distinct

biological outcomes. Our results also demonstrate that the EPOR in the EPOR/bcR heteroreceptor uses

a non-canonical mechanism to generate a proliferative signal.
RESULTS

Isolation of a Traptamer that Confers Growth Factor Independence in Cells Expressing

hEPOR

The strategy used to isolate new traptamers that cooperate with the EPOR is shown in Figure 1A. We used

the YX4 traptamer expression library, in which the TMD of the bovine papillomavirus E5 protein is replaced

with a 24-residue stretch of randomized, primarily hydrophobic amino acids (Figure 1B) (Scheideman et al.,

2012). The traptamers also contain an N-terminal hemagglutinin (HA) epitope tag. The YX4 library was

packaged into retrovirus and used to infect BaF3 cells expressing the hEPOR (BaF3/hEPOR cells) at a

low MOI so that most cells received a single infectious retrovirus particle. As a control, cells were infected

with empty retrovirus vector, MSCVpuro. BaF3/hEPOR cells normally require IL-3 for proliferation, but EPO

or proteins that activate the hEPOR can replace EPO. After puromycin selection, transduced cells were

incubated in medium lacking growth factors. As expected, cells expressing MSCVpuro died, but cultures

infected with the YX4 library proliferated. After 8 days in medium lacking growth factors, genomic DNAwas

extracted from proliferating cells and the retroviral inserts were amplified and subjected to next-genera-

tion sequencing, which produced over 4 million proper read pairs consistent with the design of the library.

We focused on the 278most abundant sequences. Sequences that lacked frameshift mutations were sorted

into 105 groups based on sequence similarity. The frequency of sequences in each group ranged from

0.01% to 6.99%. Sequencing of the starting library plasmid DNA showed no abundant sequences.

We expressed seven of the most abundant selected sequences (Figure 1C) in parental BaF3 cells and

in BaF3/hEPOR cells. Most of these constructs conferred growth factor independence in both cell lines

(Figure 1D), suggesting that they acted through a protein expressed in parental cells. In contrast, the

46-residue ELI-3 traptamer conferred growth factor independence in BaF3/hEPOR cells, but not in parental

BaF3 cells, demonstrating that ELI-3 required the hEPOR for activity.
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Figure 1. Isolation of a New Traptamer that Cooperates with the EPOR to Confer Growth Factor Independence

(A) Scheme to isolate traptamers that cooperate with the hEPOR. BaF3/hEPOR cells were infected with retroviruses expressing the YX4 traptamer library,

selected with puromycin, and then incubated in medium lacking growth factors. Genes encoding traptamers were recovered from genomic DNA isolated

from live cells after selection and then subjected to deep sequencing. Abundant sequences were synthesized and tested for activity. Black bars represent

exogenous hEPOR; black and gray ‘‘X’’s represent traptamers.

(B) The design of the YX4 library is shown in the single-letter amino acid representation. Randomized residues are colored red. The X’s represent randomized

positions, each with an 80% probability of encoding a hydrophobic amino acid. The Z’s represent randomized amino acids with an �30% chance of being a

stop codon. The N-terminal HA tag is underlined.

(C) Abundant sequences recovered from growth factor-independent BaF3/hEPOR cells. The randomized regions are colored red. The invariant YW are

colored black. The frequency of the sequence (and closely related sequences) and its proportion among all sequences obtained are listed.

(D) BaF3 and BaF3/hEPOR cells stably expressing empty vector (MSCVp) or a traptamer listed in (C) were incubated in medium lacking IL-3. The number of

live cells 4 days after IL-3 removal is shown for a representative experiment.

(E) BaF3 cells expressing hEPOR, mEPOR, PDGFbR, stem cell factor receptor (SCFR), or human thrombopoietin receptor (hTPOR) were infected with MSCVp

or MSCVp expressing ELI-3. After puromycin selection, cells were incubated in medium lacking IL-3. Where indicated, cells expressing MSCVp were also

incubated in medium containing the cognate ligand: EPO for hEPOR andmEPOR, PDGF-BB for PDGFbR, stem cell factor for SCFR, and TPO for hTPOR. The

number of live cells 4 days after IL-3 removal is shown. The averaged results and standard deviation of three independent experiments are shown. Statistical

significance was evaluated by two-tailed Student’s t test with unequal variance.
To examine the specificity of ELI-3, we introduced it into BaF3 cells expressing hEPOR, mEPOR, the human

thrombopoietin receptor, PDGFbR, or stem cell factor receptor. After IL-3 removal, cells expressing each

receptor proliferated in response to its ligand, but not in the absence of ligand (Figure 1E). Notably, ELI-3

induced IL-3 independence only in cells expressing hEPOR or mEPOR (Figure 1E), indicating that ELI-3 ac-

tivity was specific to EPOR and that it cooperated with either hEPOR or mEPOR, whose TMDs differ at only

three residues and adopt a similar a-helical structure (Li et al., 2015).
ELI-3 Forms a Stable Complex with the hEPOR and Requires Specific Residues in the EPOR

Transmembrane Domain

We used co-immunoprecipitation to determine if ELI-3 and hEPOR were present in a stable complex.

First, the HA epitope tag at the N terminus of ELI-3 was replaced with a FLAG epitope tag to generate

F-ELI-3. The FLAG tag did not affect the ability of ELI-3 to induce IL-3 independence in BaF3/hEPOR cells

(Figure S1). Detergent extracts were prepared from BaF3/hEPOR cells expressing either MSCVpuro or

F-ELI-3 and immunoprecipitated with anti-FLAG antibody. After gel electrophoresis and transfer, mem-

branes were immunoblotted with an anti-HA antibody, which recognizes HA-tagged hEPOR. As shown
iScience 17, 167–181, July 26, 2019 169
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Figure 2. ELI-3 Interacts with the Transmembrane Domain of hEPOR

(A) Extracts prepared from BaF3/hEPOR and BaF3/hEPOR(mPR) cells growing in IL-3 expressing MSCVp (V), ELI-3, or

FLAG-tagged ELI-3 (F-ELI-3) were subjected to gel electrophoresis either directly (middle and bottom panels) or after

immunoprecipitation with anti-FLAG agarose beads (top panel). After transfer, membranes were immunoblotted with

anti-HA antibody to detect EPOR or anti-pan-actin antibody as a loading control.

(B) BaF3/hEPOR and BaF3/hEPOR(mPR) cells stably expressing MSCVp or ELI-3 were incubated in medium lacking IL-3.

Where indicated, cells expressing MSCVp were incubated in medium containing EPO. The number of live cells 4 days

after IL-3 removal is shown. The averaged results and standard deviation of three independent experiments are shown.

Statistical significance was evaluated by two-tailed Student’s t test with unequal variance.

(C) The sequences of EBC5-16 and ELI-3. Randomized hydrophobic segments are shown in red.

(D) BaF3 cells expressing the wild-type hEPOR, hEPOR mutant L234A, or mutant L241A were infected with retroviruses to

express MSCVp, EBC5-16, or ELI-3. After puromycin selection, cells were incubated in medium lacking IL-3. The number

of live cells 4 days after IL-3 removal is shown. The averaged results and standard deviation of three independent

experiments are shown. Statistical significance was evaluated by two-tailed Student’s t test with unequal variance,

comparing cell number in cells expressing wild-type receptor to cell number in cells with mutant receptor expressing the

same traptamer. *p < 0.05, **p < 0.01.

See also Figure S1.
in Figure 2A, anti-FLAG co-immunoprecipitated the hEPOR from cells expressing F-ELI-3, but not from cells

expressing MSCVpuro, demonstrating that F-ELI-3 and the hEPOR co-existed in a physical complex.

To determine whether the TMD of hEPOR is required for ELI-3 function, a chimeric hEPOR was used in

which the TMD of hEPOR was replaced with the TMD of mouse PDGFbR (designated hEPOR(mPR)).

BaF3/hEPOR(mPR) cells were able to grow when IL-3 in themedium was replaced with EPO, demonstrating

that hEPOR(mPR) was functional (Figure 2B). However, ELI-3 did not confer growth factor independence on

BaF3/hEPOR(mPR) cells (Figure 2B), and F-ELI-3 did not co-immunoprecipitate with hEPOR(mPR) (Fig-

ure 2A), showing that the TMD of hEPOR was critical for ELI-3 activity and complex formation between

ELI-3 and EPOR.

We next identified hEPOR TMD residues required for the activity of ELI-3 and the previously described trap-

tamer EBC5-16, which activates hEPOR but not mEPOR (Cohen et al., 2014). The TMD sequences of EBC5-

16 and ELI-3 are entirely different (Figure 2C). We tested two hEPOR TMD mutants, L234A and L241A. As

expected, these receptor mutants did not confer IL-3 independence in BaF3 cells lacking traptamer expres-

sion but allowed the cells to proliferate in response to EPO (data not shown). EBC5-16 cooperated well with

both EPOR mutants to confer growth-factor independence, whereas ELI-3 failed to cooperate with L234A

and displayed markedly reduced activity with L241A (Figure 2D). These results showed that the traptamers

required different amino acids in hEPOR TMD, suggesting that the two traptamers interact with the TMD of

the hEPOR in distinct manners.

The experiments described above imply that ELI-3 recognizes the TMD of the hEPOR. We conducted bio-

physical experiments to explore this possibility in more detail. We expressed recombinant ELI-3 in bacteria,
170 iScience 17, 167–181, July 26, 2019



purified it, and subjected it to circular dichroism analysis in detergent micelles. As shown in Figure S2, ELI-3

displayedminima at 208 and 222 nm, characteristic of a-helical structure, as expected.We thenmixed ELI-3

with purified 15N-labeled TMD plus flanking sequences of the hEPOR (residues 217–252) and conducted

solution NMR spectroscopy in the presence of different concentrations of the detergent, 1,2-dihexanoyl-

sn-glycero-3-phosphocholine (DHPC) (Figure S3, red peaks). For comparison, the same analysis was also

performed for 15N-labeled hEPOR217-252 in the absence of ELI-3 (Figure S3, black peaks). The addition of

ELI-3 caused a detergent-sensitive perturbation of the majority of the hEPOR-TMD chemical shifts toward

the dimeric state (Figures S3A and S3B). This suggests that the presence of ELI-3 stabilizes a dimeric state

of the hEPOR-TMD, as we showed previously with other hEPOR-specific traptamers (He et al., 2017). This

effect likely occurs through direct interactions between these two proteins, because detergent alone could

not populate the dimer to the same extent as did ELI-3. Because of the inherent challenges in using NMR

spectroscopy to study the interaction of these hydrophobic peptides, we focused our further efforts on

analyzing ELI-3 activity in cells.

ELI-3 Does Not Induce Erythroid Differentiation

We previously showed that EBC5-16 supported erythroid differentiation of CD34+ human hematopoietic

progenitor cells (hHPCs) in vitro in the absence of EPO (Cohen et al., 2014). Here, we used a more quanti-

tative assay to assess whether EBC5-16 or ELI-3 promoted erythroid differentiation in primary human

megakaryocyte-erythroid progenitor (MEP) cells, which give rise to colonies containing erythroid or mega-

karyocytic cells (or both) when cultured in vitrowith a cocktail of cytokines including EPO.MEP cells isolated

on the basis of expression of cell surface markers (see Methods, Sanada et al., 2016) were infected with

MSCVpuro or with retroviruses expressing EBC5-16 or ELI-3. Transduced cells were plated as single cells

in medium containing puromycin supplemented with stem cell factor, IL-3, IL-6, and thrombopoietin

with or without EPO. After 12–14 days, colonies were stained with antibodies recognizing glycophorin A

and CD41a (markers of erythroid and megakaryotic differentiation, respectively). Colonies were classified

as megakaryocytic-only (CFU-Mk), erythroid-only burst forming unit (BFU-E), or megakaryocytic/erythroid

(CFU-Mk/E) (Xavier-Ferrucio et al., 2018). As shown in Figure 3A, in the presence of EPO, all cultures differ-

entiated into erythroid lineage, megakaryotic lineage, andmixed colonies. In the absence of EPO, >50% of

colonies induced by EBC5-16 were BFU-E or CFU-Mk/E, consistent with its ability to induce erythroid dif-

ferentiation of hHPCs. In contrast, fewer than 5% of the colonies induced by ELI-3 in the absence of EPO

were BFU-E or CFU-Mk/E, comparable with control cells lacking traptamer expression. These results

demonstrated that ELI-3, unlike EBC5-16, does not promote erythroid commitment and differentiation

in human MEP cells. We also note that ELI-3 does not interfere with the ability of EPO to induce erythroid

differentiation.

The Cytokine Receptor b-Common Subunit Is Required for ELI-3-Induced Growth Factor

Independence

Because ELI-3 did not induce erythroid differentiation, we considered the possibility that ELI-3 utilized a

non-canonical EPOR signaling pathway to induce growth factor independence in BaF3 cells. EPOR and

bcR can constitutively associate in the absence of EPO (Brines et al., 2004). We hypothesized that ELI-3

might activate the EPOR/bcR complex to induce proliferation of BaF3/hEPOR cells. We first confirmed

that bcR was endogenously expressed in BaF3 cells, consistent with published results (Sakamaki et al.,

1992) (Figure S4A, bottom panel, lanes 1 and 2). We next used co-immunoprecipitation to determine if

EPOR was in complex with bcR. As shown in Figure S4A (top panel, lanes 7 and 8), the anti-bcR antibody

co-immunoprecipitated hEPOR from BaF3/hEPOR cells in the presence or absence of ELI-3, showing

that EPOR and bcR were in a physical complex even in the absence of ELI-3.

To assess the role of bcR in ELI-3 activity, we used CRISPR-Cas9 to knockout the endogenous Csf2rb gene,

which encodes bcR, in BaF3 cells expressing the hEPOR. BaF3/hEPOR cells were infected by lentiviruses

expressing Cas9 and one of four different single guide RNAs (sgRNAs) targeting Csf2rb. Csf2rb knockout

by each sgRNA in clonal cell lines was confirmed by immunoblotting with an antibody recognizing the C

terminus of bcR (Figure S4B, top panel) and by deep DNA sequencing (data not shown).

The activity of ELI-3 was determined in four bcR knockout cell lines (termed BaF3/h-bcKO cells), each gener-

ated by a different sgRNA. As shown in Figures 4A and S4C, EPO and EBC5-16 induced IL-3 independence

in BaF3/h-bcKO cells, demonstrating that bcR was not required for proliferation in response to these

agents. In sharp contrast, ELI-3 did not induce growth factor independence in bcR knockout cells, but
iScience 17, 167–181, July 26, 2019 171



A B

Figure 3. Biological Consequences of ELI-3-Induced EPOR Signaling

(A) Human MEP cells were infected with retrovirus expressing empty vector MSCVp (v), EBC5-16 (5–16), or ELI-3. After puromycin selection, cells were plated

in medium supplemented with a cytokine cocktail with or without EPO, as indicated. After 12–14 days, the colonies were stained with anti-GpA and anti-

CD41a antibodies and scored by fluorescence microscopy as megakaryocyte-only (CFU-Mk, blue), erythroid-only burst forming unit (BFU-E, red), or

megakaryocyte/erythroid (CFU-Mk/E, purple). Top panel, numbers of each type of colony are shown. The averaged results and standard deviation of three

independent experiments are shown. Bottom panel, the same data from top panel are shown as the relative percentage of each type of colony.

(B) Top left panel, P19 cells were infected with MSCVp empty retrovirus vector (Vec) or MSCVp expressing ELI-3. After puromycin selection, cells were plated

in the presence or absence of serum for 24 h. Statistical significance was evaluated by two-tailed Student’s t test with unequal variance. Where indicated,

cells were treated with 2 U/mL rhEPO as described in Methods. Cells were then stained with DAPI and examined by fluorescence microscopy. Each symbol

represents the fraction of cells displaying fragmented nuclei in an independent experiment. The mean G standard deviation for each condition is shown.

Top right panel, P19 cells were treated as above. Twenty-two hours later, cells were detached from the plate with trypsin, stained with fluorescein

isothiocyanate-annexin V, and PI, and analyzed by flow cytometry. Each symbol represents the fraction of PI-negative cells that displayed annexin V staining

in an independent experiment. The mean G standard deviation for each condition is shown. Bottom panel, P19 cells were treated as above, except JAK2

inhibitor IV was added where indicated at time of starvation. Cells were analyzed by flow cytometry as mentioned above.

See also Figure S7.
re-expression of wild-type bcR in the knockout cells rescued the activity of ELI-3 (Figure 4A). These results

demonstrate that bcR is necessary for ELI-3-induced cell proliferation.
The Cytoplasmic Tyrosines of hEPOR Are Not Required for ELI-3-Induced Cell Proliferation

but the Cytoplasmic and Transmembrane Domains of the bcR Are Required

We next identified elements in hEPOR and bcR required for ELI-3-induced growth factor independence.

The cytoplasmic domain of the hEPOR contains eight conserved tyrosines that are phosphorylated by

JAK2 in response to EPO and serve as docking sites for signaling proteins. To determine whether ELI-3

required these tyrosines, we constructed an F8 hEPOR mutant in which all of them were mutated to phe-

nylalanines. Parental BaF3 cells, BaF3/hEPOR cells, and BaF3/F8 cells expressing MSCVpuro, EBC5-16, or

ELI-3 were cultured in the absence of IL-3 (Figure 4B). As expected, in all cases parental BaF3 cells died and

BaF3/hEPOR cells incubated with EPO or expressing either traptamer grew robustly. BaF3/F8 cells grew

poorly in response to EPO or EBC5-16, also as expected. Surprisingly, ELI-3 induced robust factor-indepen-

dent growth of BaF3/F8 cells, indicating that ELI-3-induced mitogenic signaling did not require the

conserved cytoplasmic tyrosines in the EPOR. In addition to the eight conserved tyrosines, the hEPOR cyto-

plasmic domain contains a non-conserved tyrosine at position 285 (Arcasoy and Karayal, 2005). We also

tested whether ELI-3 conferred growth factor independence in cells expressing the F9 mutant, in which

tyr285 in F8 was replaced with phenylalanine. As shown in Figure 4B, BaF3/F9 cells grew robustly in

response to ELI-3, showing that tyr285 was also not essential for ELI-3 activity.
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Figure 4. ELI-3-Induced Growth Factor Independence Requires bcR, but Not Cytoplasmic Domain of hEPOR

(A) BaF3/hEPOR cells, BaF3/h-bcKO cells (expressing hEPOR but knocked-out for bcR [bcR knockout]), and BaF3/h-bcKO

cells reconstituted with the wild-type bcR gene (bcR add-back) were infected with empty MSCVhyg vector (no traptamer)

or MSCVhyg expressing EBC5-16 or ELI-3. After hygromycin selection, cells were incubated in medium lacking IL-3, and

the number of live cells was counted 6 days after IL-3 removal. Where indicated, EPO was added. The average results and

standard deviation of three independent experiments are shown. Statistical significance for all panels in this figure

evaluated by two-tailed Student’s t test with unequal variance.

(B) Parental BaF3 cells and cells expressing the wild-type hEPOR or hEPOR mutants lacking eight (F8) or nine (F9)

cytoplasmic tyrosines were infected with retroviruses to express MSCVp, EBC5-16, or ELI-3. After puromycin selection,

cells were incubated in medium lacking IL-3. Where indicated, cells expressing MSCVp were incubated in medium

containing EPO. The number of live cells 4 days after IL-3 removal was counted. The averaged results and standard

deviation of three independent experiments is shown.

(C) BaF3 cells expressing the wild-type hEPOR or an hEPOR truncation mutant were infected with retroviruses to express

MSCVp or ELI-3. After puromycin selection, cells were incubated in medium lacking IL-3. Where indicated, cells

expressingMSCVpwere incubated in medium containing EPO. The number of live cells is shown 4 days after IL-3 removal.

The averaged results and standard deviation of three independent experiments are shown.

(D) BaF3/h-bcKO cells were infected with MSCVzeo empty vector or MSCVzeo expressing wild-type bcR or a bcR truncation

mutant. After zeocine selection, cells were infected with MSCVhyg (no traptamer) or MSCVhyg expressing EBC5-16 or

ELI-3. After hygromycin selection, IL-3 independence assays were performed as in (A). Where indicated, EPO was added.

See also Figures S4 and S5.
We also tested C-terminal truncation mutants of hEPOR lacking various portions of the cytoplasmic domain.

As shown schematically in Figure S4D, three truncation mutants (D259, D289, and D310) were constructed

deleting all sequences downstream of trp258, gly288, and leu309, respectively. D259 and D289 mutants

are defective for JAK2 binding, whereas D310 retains JAK2 binding. We assessed the effect of EPO or ELI-

3 in cells expressing these truncation mutants. As expected, EPO did not induce IL-3 independence in cells

expressing any of the hEPOR truncation mutants (Figure 4C). Similarly, ELI-3 did not confer growth factor in-

dependence in BaF3/D259 or BaF3/D289 cells, which do not bind JAK2. Strikingly, however, ELI-3 (but not

EBC5-16, data not shown) induced growth factor independence in BaF3/D310 cells, confirming that ELI-3,

unlike EPO or EBC5-16, does not require the conserved cytoplasmic tyrosines or any other sequences down-

stream of position 309. These results also suggest that ELI-3 requires JAK2 binding to the EPOR. Similarly,

ELI-3 cooperated with an mEPOR mutant lacking most of its cytoplasmic domain (data not shown).

We also tested whether the cytoplasmic domain or TMD of the bcR was required for ELI-3 activity. We con-

structed two C-terminal bcR truncation mutants, bcRD452 and bcRD514, which lacked most of the cyto-

plasmic domain and intracellular tyrosines of bcR (Figure S5A). D452 removed the JAK2-binding site,

whereas D514 left the JAK2-binding site intact (Quelle et al., 1994; Sakamaki et al., 1992). Expression of
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Figure 5. Cytoplasmic Tyrosines of hEPOR Are Not Required for ELI-3 Signaling

(A) Extracts were prepared from starved BaF3/D259, BaF3/D310, and BaF3/hEPOR cells expressing MSCVp (V) or ELI-3.

Where indicated, cells expressing MSCVp were acutely treated with EPO. Extracts were electrophoresed and

immunoblotted with anti-phospho-JAK2 (P-JAK2), anti-phospho-STAT5 (P-STAT5), anti-phospho-MEK (P-MEK), and anti-

phospho-ERK1/2 (P-ERK) antibodies (top panel in each pair). Membranes were stripped and re-probed for total JAK2,

STAT5, MEK, and ERK1/2 (bottom panel in each pair).

(B) BaF3 cells expressing the hEPOR and tTA tetracycline transactivator and ELI-3 expressed from a tetracycline-

responsive promoter were incubated for 48 h at the indicated concentration of doxycycline and starved of IL-3 for 3 h.

Extracts were electrophoresed and subjected to western blot with anti-phospho-STAT5 antibody or anti-HA antibody (to

detect ELI-3). Membranes were stripped and re-probed with antibody recognizing total STAT5.

See also Figures S4 and S5.
the truncated bcR in bcR knockout cells expressing wild-type hEPOR was confirmed by blotting for the myc

tag (Figure S5B, middle panel). As shown in Figure 4D, unlike wild-type bcR, the truncation mutant did not

rescue the activity of ELI-3, whereas EBC5-16 activity was not affected by wild-type or mutant bcR. These

results show that elements in the cytoplasmic domain of bcR are required for ELI-3 to cooperate with hE-

POR to induce growth factor independence in BaF3 cells. Finally, replacing the TMD of bcR with the TMD of

PDGFbR eliminated its ability to cooperate with ELI-3, even though this chimeric receptor still cooperated

with EPO (Figure S6A).

ELI-3 Activates JAK2, STAT5, and Mitogen-Actiavted Protein Kinase Signaling

We next determined whether ELI-3 expression induced tyrosine phosphorylation of JAK2 and its downstream

signaling proteins. BaF3/D259, BaF3/D310, and BaF3/hEPOR cells stably expressing MSCVpuro or ELI-3 were

starved of IL-3 overnight and then either left untreated or acutely stimulated with 5 units/mL EPO for 5 min

at 37�C. Cell lysates were subjected to SDS-polyacrylamide gel electrophoresis and immunoblotting with anti-

bodies recognizing the phosphorylated forms of JAK2, STAT5, MEK, and ERK1/2. Membranes were then strip-

ped and re-probed to determine the total amounts of these proteins.

As expected, JAK2 and its downstream signaling proteins STAT5, MEK and ERK1/2 were phosphorylated

in response to EPO in BaF3/hEPOR cells (Figure 5A, lanes 7 and 8). In BaF3/D259 cells, none of these

proteins were phosphorylated upon EPO treatment, because of the lack of the JAK2-binding sites on

the mutant EPOR (lanes 1–3). Similarly, ELI-3 induced robust phosphorylation of JAK2 and its down-

stream signaling proteins in BaF3/hEPOR cells, but not in BaF3/D259 cells (lanes 3 and 9). Importantly,

in BaF3/D310 cells, STAT5, MEK, and ERK1/2 were robustly phosphorylated in response to ELI-3 expres-

sion but displayed minimal phosphorylation upon EPO stimulation (Figure 5A, lanes 5 and 6). There were

only minor differences in the total amounts of any of these proteins. Thus, phosphorylation of STAT5,

MEK, and ERK1/2 in response to ELI-3 does not require EPOR sequences downstream of the JAK2-bind-

ing sites. JAK2 itself was phosphorylated in D310 cells treated with EPO or (to a lesser extent) expressing

ELI-3 (Figure 5A, lanes 5 and 6).
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Figure 6. JAK2 and STAT Inhibitors Block ELI-3-Induced Growth Factor Independence

(A) BaF3/D310 and BaF3/hEPOR cells expressing MSCVp or ELI-3 were incubated in medium lacking IL-3. On day 0, cells

were treated with DMSO (�) or 7.5 mM JAK2 inhibitor IV (+). Where indicated, BaF3/hEPOR cells expressing MSCVp were

incubated in medium containing EPO. The number of live cells 4 days after IL-3 removal is shown. The averaged results

and standard deviation of three independent experiments are shown. Statistical significance was evaluated by two-tailed

Student’s t test with unequal variance.

(B) BaF3/D310 cells expressing ELI-3 were incubated in medium lacking IL-3 for 2 h and then treated for 30 min with DMSO

(D) or the indicated concentrations of JAK2 inhibitor IV. Cell extracts were electrophoresed and immunoblotted with anti-

phospho-JAK2 (P-JAK2), anti-phospho-STAT5 (P-STAT5), anti-phospho-MEK (P-MEK), and anti-phospho-ERK1/2 (P-ERK)

antibodies. Membranes were then stripped and re-probed for total JAK2, STAT5, MEK, and ERK1/2.

(C) Cells were treated and analyzed as in (A), except STAT5 inhibitor SH-4-54 was used.

(D) As in (B), except SH-4-54 was used.
We also expressed ELI-3 under the control of a doxycycline-regulated promoter in BaF3/hEPOR cells and

tested its ability to induce STAT5 tyrosine phosphorylation. As shown in Figure 5B, ELI-3 caused a dose-

dependent increase in STAT5 phosphorylation without affecting the level of total STAT5. Thus, STAT5

phosphorylation is a relatively rapid and dose-dependent response to ELI-3 expression, suggesting that

it is directly induced by ELI-3.

JAK-STAT Inhibitors Inhibit ELI-3-Induced Growth Factor Independence

We used chemical inhibitors to test the importance of JAK/STAT signaling for ELI-3 activity. BaF3/hEPOR and

BaF3/D310 cells expressing either MSCVpuro or ELI-3 were transferred to IL-3-free medium and cultured in the

presence or absence of EPO. To test the requirement for JAK2, 7.5 mg/mL JAK2 inhibitor IV was added to the IL-

3-free medium, and cells were counted on day 4. As expected, growth of BaF3/hEPOR cells in the presence of

EPO was reduced�90% by JAK2 inhibition (Figure 6A). JAK2 inhibition also greatly reduced the ability of ELI-3

to support growth factor-independent growth in BaF3/D310 cells and, to a lesser extent, in BaF3/hEPOR cells.

ELI-3 activity was also inhibited by JAK inhibitor I (data not shown).

We next determined the effect of the JAK2 inhibitor on phosphorylation of downstream signaling proteins.

BaF3/D310 cells expressing ELI-3 were starved overnight in IL-3-free medium, and then treated with either

DMSO or JAK2 inhibitor IV for 3 hours. Cell lysates were analyzed by immunoblotting with antibodies

recognizing phosphorylated JAK2, STAT5, MEK, and ERK1/2. As shown in Figure 6B, the JAK2 inhibitor

did not inhibit JAK2 phosphorylation but caused dose-dependent reduction in phosphorylation of

STAT5, MEK, and ERK. The total amounts of these proteins were largely unaffected by the inhibitor. These

data indicated that the JAK2 activity is important for ELI-3 signaling.

Similarly, cells were treated with 3 mM SH-4-54, a STAT3/5 inhibitor. As expected, growth of the BaF3/hEPOR

cells cultured in IL-3-free medium containing EPO was abolished by SH-4-54 (Figure 6C). ELI-3-induced growth
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in the absence of IL-3 was reduced by�80% in BaF3/hEPOR or BaF3/D310 cells, suggesting an important, but

not absolute, requirement for STAT5 in ELI-3-induced cell proliferation. Figure 6D showed that STAT5 inhibition

greatly reduced the phosphorylation of STAT5,MEK, and ERK in BaF3/hEPOR cells without affecting the overall

abundance of these proteins, suggesting that STAT5 is upstream of the mitogen-activated protein kinase

pathway in ELI-3-induced signaling.

Requirements for Complex Formation between ELI-3, hEPOR, and bcR

To explore the requirement for assembly of a signaling complex, we first showed that the EPOR truncation

mutants constitutively associated with bcR (Figure S4A, top panel). Thus, hEPOR sequences downstream of

trp258, including the JAK2-binding sites, were not required for this interaction. Similarly, the D452 cyto-

plasmic truncation mutant of bcR retained the ability to form a complex with hEPOR (Figure S5C). In

contrast, heteroreceptor formation was inhibited by replacing the TMD of either hEPOR or bcR with a

foreign TMD (Figures S6B and S6C).

To determine if bcR was required for complex formation between ELI-3 and EPOR, we expressed

MSCVpuro or F-ELI-3 in BaF3, BaF3/h-bcKO, and BaF3/hEPOR cells. Protein extracts were immunoprecip-

itated with anti-FLAG antibodies and immunoblotted with antibodies recognizing the HA epitope on

hEPOR. As expected, anti-FLAG antibodies co-immunoprecipitated little hEPOR in cells lacking ELI-3

expression, presumably due to non-specific sticking of EPOR to the anti-FLAG beads (Figure 7A, lanes 1

and 3). In contrast, anti-FLAG antibodies co-immunoprecipitated abundant hEPOR from cells expressing

F-ELI-3, whether or not the bcR was present (Figure 7A, lanes 4 and 6), showing that complex formation

between ELI-3 and the hEPOR did not require the bcR.

We also determined whether ELI-3 and bcR were in a complex. Anti-FLAG immunoprecipitates were

immunoblotted with an antibody recognizing the bcR. As shown in Figure 7B, anti-FLAG immunoprecipi-

tated a small amount of bcR from cells expressing hEPOR (lane 6), but not from cells that did not express

hEPOR (lane 5). The bcR antibody also reacted with a major non-specific band migrating at�120 kDa in the

immunoprecipitated samples, even in the bcR knockout cells. These results indicated that ELI-3 and the bcR

are present in a stable complex and that complex formation required co-expression of the hEPOR.

bcR and hEPOR Are Mutually Required for Signaling in Response to ELI-3

To examine bcR phosphorylation, lysates prepared from parental BaF3 cells, BaF3/hEPOR cells, and BaF3/

h-bcKO cells were immunoprecipitated with anti-bcR antibody and immunoblotted with a broadly reactive

anti-phosphotyrosine antibody. As expected, bcR was phosphorylated at only a low level in cells expressing

MSCVhyg in the presence or absence of EPO treatment (Figure 7C, lanes 1 and 2), but was phosphorylated

in cells stimulated with IL-3 (Figure 7C, lane 3). Importantly, phosphorylation of bcR was also observed in

cells co-expressing ELI-3, hEPOR, and bcR (Figure 7C, lane 4), but not in cells expressing ELI-3 in the

absence of hEPOR (Figure 7C, lane 6), indicating that the hEPOR was required for ELI-3-induced bcR acti-

vation. Furthermore, ELI-3 did not induce bcR tyrosine phosphorylation in cells expressing hEPOR/D259

(Figure 7D, lane 4), suggesting that the JAK2-binding boxes on hEPOR were required for bcR phosphory-

lation in response to ELI-3 (but not in response to IL-3 [Figure 7D, lane 3]). Even though the cytoplasmic

tyrosines of EPOR are not required for ELI-3 activity, phosphotyrosine blotting showed that ELI-3 induced

phosphorylation of hEPOR, but only when bcR was co-expressed (Figure 7E, lanes 4 and 5).

We also examined phosphorylation of downstream signaling proteins. Extracts were prepared from IL-3-

starved cells (treated, where indicated, with EPO). ELI-3 induced phosphorylation of JAK2, STAT5, MEK,

and ERK1/2 in cells with intact bcR (Figure 7F, lane 4), but phosphorylation was eliminated in all four bcR

knockout cell lines (Figure 7F, lanes 6 and 8, and data not shown). bcR knockout did not affect phosphor-

ylation induced by EBC5-16 (Figure 7F, lanes 5 and 7). Thus, downstream signaling by ELI-3 required bcR.

ELI-3 Confers Tissue Protection

Finally, we assessed the tissue protection activity of ELI-3 in mouse P19 teratocarcinoma cells, which un-

dergo apoptosis when cultured in medium lacking serum (Galli and Fratelli, 1993; Siren et al., 2001a).

Apoptosis is reduced by treating the cells with high concentrations of EPO or with EPO derivatives that acti-

vate the EPOR/bcR heteroreceptor (Erbayraktar et al., 2003). Here, we removed serum from P19 cells ex-

pressing ELI-3 or MSCVpuro. Twenty-four hours later, nuclei were stained with DAPI and cells were exam-

ined by fluorescence microscopy. As shown in Figure 3B, top left panel, �20% of control cells lacking ELI-3
176 iScience 17, 167–181, July 26, 2019



Figure 7. EPOR and bcR Requirements for Complex Formation and Signaling

(A and B) Extracts prepared from BaF3, BaF3/h-bcKO (clone 12-1), and BaF3/hEPOR cells expressing MSCVhyg or F-ELI-3 were immunoprecipitated with

anti-FLAG magnetic beads (FLAG IP) or directly subjected to gel electrophoresis (input). The membranes were immunoblotted with anti-HA antibody to

probe for hEPOR (A) or with anti-bcR antibody (B). Arrow in (B) indicates the band of co-immunoprecipitated bcR. Non-specific bands at �120 kDa are

marked with an asterisk.

(C) Extracts were prepared from IL-3-starved BaF3 cells (lane 6), BaF3/hEPOR cells (lanes 1 to 4), and BaF3/h-bcKO cells (clone 12-1) (lane 5) expressing

MSCVhyg (V) or ELI-3. Where indicated, BaF3/hEPOR cells expressing MSCVhyg were also acutely treated with EPO or IL-3. Extracts were

immunoprecipitated with anti-bcR antibody and immunoblotted with anti-phosphotyrosine antibody PY100 (top panel). The same membrane was stripped

and re-probed with anti-bcR antibody (bottom panel).

(D) Extracts prepared from starved BaF3/D259 cells expressingMSCVhyg vector (lanes 1–3) or ELI-3 (lane 4) were immunoprecipitated with anti-bcR antibody

and immunoblotted with anti-phosphotyrosine antibody (top panels). Cells were treated with EPO or IL-3 as indicated. Membranes were stripped and re-

probed with anti-bcR antibody (bottom panel). An irrelevant lane was excised as indicated (between lanes 3 and 4).

(E) Extracts were prepared from IL-3-starved BaF3/hEPOR (lanes 1–4), BaF3/h-bcKO (lane 5), and parental BaF3 (lane 6) cells expressing ELI-3, treated with

EPO or IL-3, or left untreated, as indicated. Extracts were immunoprecipitated with anti-HA to precipitate hEPOR and then blotted with anti-

phosphotyrosine antibody (top panel) or with anti-HA antibody to visualize tyrosine-phosphorylated or total hEPOR (bottom panel).

(F) Extracts prepared from starved BaF3/hEPOR (intact bcR) and the indicated clonal BaF3/h-bcKO cells expressing MSCVhyg (V) or ELI-3 were

immunoblotted with anti-phospho-JAK2 (P-JAK2), anti-phospho-STAT5 (P-STAT5), anti-phospho-MEK (P-MEK), and anti-phospho-ERK1/2 (P-ERK)

antibodies (top panels in each pair). In lane 2, BaF3/hEPOR cells expressing MSCVhyg were also acutely treated with EPO. The membranes were then

stripped and re-probed for the total JAK2, STAT5, MEK, and ERK1/2 (bottom panels).
expression underwent apoptosis in the absence of EPO, as assessed by nuclear fragmentation. Consistent

with published reports, 2 U/mL EPO caused an �50% reduction in apoptosis. P19 cells expressing ELI-3 in

the absence of EPO were protected against apoptosis to a similar extent. We also used flow cytometry for

annexin V staining to test the ability of ELI-3 to protect P19 cells from apoptosis. Cells treated as above

were stained with annexin V and propidium iodide (PI) and analyzed by flow cytometry. Apoptotic cells

were scored as cells showing annexin V staining to the outer leaflet of the plasmamembrane in the absence

of PI uptake (Figure S7). As shown in Figure 3B, top right panel, EPO and ELI-3 caused about a 2-fold reduc-

tion in apoptotic cells in this assay as well. JAK2 inhibitor IV abrogated the ability of EPO or ELI-3 to protect

cells (Figure 3B, bottom panel). These results showed that ELI-3 can protect non-hematopoietic cells from

stress-induced apoptosis and suggest that protection requires JAK2 activity.
DISCUSSION

Although EPO is best known for its role in erythropoiesis, it can activate distinct EPOR complexes with

different biological outcomes. A homodimeric form of the EPOR binds EPO with high affinity and drives
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production of red blood cells, and a heteromeric complex containing both the EPOR and the bcR binds

EPO with lower affinity, is inactive in erythropoiesis, and appears to mediate tissue protection. The molec-

ular basis underlying cooperation between the EPOR and bcR deserves attention because induction of the

tissue protective response may provide opportunities to limit tissue damage following injury, but little is

known about how the heteroreceptor complex forms or initiates signaling. We report here the character-

ization of a small TM protein that induces EPOR/bcR signaling by interacting with the TMD of the EPOR.We

demonstrated that most of the cytoplasmic domain of the EPOR is not required for heteroreceptor

signaling in response to ELI-3 and identified elements in EPOR and bcR that are required for formation

of the heteroreceptor.

Both ELI-3 and EBC5-16 target the EPOR TMD and induce growth factor independence in BaF3 cells, but

they have completely different hydrophobic sequences and use fundamentally different mechanisms to

trigger EPOR signaling. EBC5-16, like EPO, required cytoplasmic tyrosines on the EPOR, was independent

of bcR, and supported erythropoiesis in vitro, whereas ELI-3 was active in the absence of these tyrosines but

required bcR as well as hEPOR, failed to induce erythroid differentiation, and conferred tissue protection.

ELI-3 induced phosphorylation of EPOR and downstream substrates only if bcR is present, indicating that

ELI-3 does not cause productive EPOR homodimerization, consistent with its lack of erythropoietic activity.

Although hEPOR can productively couple tomurine bcR, we have not tested whether hEPOR can cooperate

with human bcR to mediate ELI-3 activity. In addition to bcR, mouse cells express a closely related IL-3-spe-

cific b-chain receptor, but the inability of bcR knockout cells to respond to ELI-3 indicates that the IL-3-spe-

cific isoform cannot cooperate with hEPOR to support ELI-3-induced proliferation or signaling in BaF3 cells.

This work provides important new insight into cooperative signaling by the EPOR and bcR. First, little if any

of the cytoplasmic domain of either receptor is required for heteroreceptor formation in the absence of

ELI-3, but the TMDs of both proteins are required. In addition, the extracellular domains of the EPOR

and bcR do not physically interact in vitro (Cheung Tung Shing et al., 2018). These findings suggest that

the TMD and/or the TMD-proximal segments of the EPOR and bcRmediate heteroreceptor formation. Sec-

ond, EPOR/bcR signaling can be activated by proteins that interact non-covalently with the TMD of EPOR,

in contrast to previously known activators of this complex, which bind to the ligand-binding domain (Brines

et al., 2004). Third, productive signaling is dependent on the intracellular domain of bcR and intact JAK2-

binding sites on the EPOR. Importantly, EPOR/bcR-mediated proliferation induced by ELI-3 does not

require phosphorylated tyrosines or most of the cytoplasmic domain of the EPOR. Previous reports study-

ing phosphotyrosine-null mutants of EPOR suggested that the receptor can initiate phosphotyrosine-inde-

pendent signaling. Yoon and Watowich showed that EPOR can provide a phosphotyrosine-independent

survival signal in 32D cells (Yoon and Watowich, 2003), and EPOR-HM, a mutant removing all cytoplasmic

tyrosines, induced attenuated signaling in primary hematopoietic progenitor cells (Li et al., 2003). Mice ex-

pressing EPOR-HM maintained steady-state erythropoiesis but were impaired for stress erythropoiesis

(Menon et al., 2006; Zang et al., 2001). It has been proposed that STAT5 can bind directly to phosphorylated

JAK2 bound to EPOR to mediate some of these responses (Fujitani et al., 1997), but the role of bcR in these

situations was not assessed.

Complex formation between ELI-3 and EPOR does not require bcR, and ELI-3 does not associate with bcR in

the absence of the EPOR. In addition, ELI-3 does not interact with EPOR containing a foreign TMD and

point mutations in the EPOR TMD can inhibit ELI-3 activity. Finally, our NMR experiments conducted in

the absence of other protein components suggest that peptides composed of ELI-3 and hEPOR TMD

interact in vitro. Taken together, these findings suggest that ELI-3 and the EPOR TMD contact one another

directly, as has been shown for other small TM proteins that activate the hEPOR or PDGFbR (Edwards et al.,

2013; He et al., 2017).

After GM-CSF binds to the GM-CSF receptor a-chain in complex with bcR, JAK2 associated with bcR phos-

phorylates multiple cytoplasmic tyrosines on bcR that then serve as docking sites for signaling factors,

including STAT5 (Brizzi et al., 1994; Quelle et al., 1994; Sakamaki et al., 1992). Based on structural and

biochemical studies of GM-CSFR, Hansen et al. proposed that the active GM-CSFR/bcR heteroreceptor

is a dodecameric structure containing four bcR molecules, four GM-CSFR molecules, and four molecules

of GM-CSF ligand (Hansen et al., 2008). This complicated architecture appears to be required to bring

two JAK2 molecules into juxtaposition to autophosphorylate because GM-CSFR itself does not

contain JAK2-binding sites, and the JAK2 sites in a bcR dimer are otherwise too far apart to allow
178 iScience 17, 167–181, July 26, 2019



autophosphorylation (Carr et al., 2001). EPOR/bcR heteroreceptor signaling does not necessarily require

this complex arrangement, because hEPOR itself contains JAK2-binding sites, which are required for

ELI-3 signaling. Furthermore, the EPOR/bcR heteroreceptor does not utilize the cytoplasmic tyrosines in

the EPOR to signal, suggesting that the overall architecture of the EPOR/bcR signaling complex is pro-

foundly different from the active EPOR homodimer.

We propose that the TMD of ELI-3 binds directly to the TMD of EPOR in the EPOR/bcR heteroreceptor and

that ELI-3 binding recruits another EPOR molecule into the complex or causes a conformational change in

the EPOR/bcR heteroreceptor. This allows JAK2 to autophosphorylate and phosphorylate tyrosines in the

cytoplasmic domain of bcR, thereby generating the docking platform that assembles the signaling com-

plex. Consistent with this model, ELI-3-induced phosphorylation of the receptors and downstream sub-

strates requires both EPOR and bcR, and the membrane-distal cytoplasmic segment of bcR, but not

EPOR, is required for ELI-3 activity. Thus, signaling in response to ELI-3 requires true cooperation between

EPOR and bcR: EPOR provides the binding site for ELI-3 as well as required JAK2-binding sites, and bcR

provides tyrosines to serve as docking sites. Further analysis of the ability of additional EPOR and bcR mu-

tants to support ELI-3 action is required to refine and test this model.

EPOR/bcR heteroreceptor signaling has previously been implicated in the tissue-protective effects of EPO

(Bohr et al., 2015; Brines et al., 2004; Kahn et al., 2013; reviewed in Brines, 2010). Our results confirm that the

activated EPOR/bcR complex lacks erythropoietic activity but confers tissue protection. In this regard, ELI-3

is similar to carbamylated EPO and short fragments of EPO that activate EPOR/bcR signaling and confer

tissue protection but do not induce erythropoiesis. It is not clear whether EPOR/bcR signaling induced

by ELI-3 is the same as that induced by soluble molecules that bind to the extracellular domain of the

EPOR, or whether ELI-3 has revealed the existence of a previously unknown EPOR output.

Our inhibitor studies indicate that JAK2/STAT5 signaling is important for growth factor independence and

tissue protection in response to ELI-3. EPO also activates additional signaling pathways, including GATA1

and nuclear factor-kB signaling, some of which have been implicated in the tissue-protective effects of EPO

(e.g., Digicaylioglu and Lipton, 2001). Further analysis of signaling induced by ELI-3 and EBC5-16 will deter-

mine whether these pathways are triggered by traptamers and provide new insights into the signal trans-

duction pathways that mediate these important cellular responses.

This work also highlights the power of specific TM interactions to regulate cell behavior. We show here that

specific TM interactions involving different traptamers with the same target TMD can activate different re-

ceptor complexes. We previously showed that the ability of traptamers to distinguish between the hEPOR

and the mEPOR can be determined by differences as minimal as the position of a single side-chain methyl

group in a traptamer (He et al., 2017). The chemical basis for the ability of traptamers to distinguish be-

tween closely related targets and to activate different receptor complexes remains to be determined.
Limitations of the Study

Further experiments are required to establish whether ELI-3 binds directly to the EPOR TM domain, refine

the model of EPOR/bcR heteromeric receptor activation, and determine the signaling pathways required

for ELI-3-induced tissue protection and proliferation.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental Figure Legends 

Figure S1. Activity of FLAG-tagged ELI-3, Related to Figure 2A. BaF3/hEPOR cells expressing ELI-3 
or FLAG-tagged ELI-3 (F-ELI-3) were incubated in medium lacking IL-3. The number of live cells four 
days after IL-3 removal is shown. The averaged results and standard deviation of three independent 
experiments are shown. 

Figure S2. ELI-3 forms an α-helix in detergent micelles, Related to Figure 2A. Far-UV circular 
dichroism (CD) spectrum of 8 μM ELI-3 in 80 times molar excess DHPC, 10 mM Na2HPO4/NaH2PO4 
buffer (pH 7.2). Minima at 208 and 222 nm indicate significant α-helical structure. 

Figure S3. ELI-3 shifts the EPOR transmembrane domain equilibrium towards the dimer state in 
DHPC micelles, Related to Figure 2A. (A) 1H, 15N- HSQC spectra of 220 μM 15N-labeled hEPOR217-252 +/- 
285 μM ELI-3 in different DHPC ratios in accordance with the color key. (B) Zoom on Leu230 (grey box in 
A) and (C) Zoom on Ala245 (grey box in A). For both residues, addition of ELI-3 caused a shift towards
the dimer state of EPOR-TMD (arrows) and decreased the sensitivity of the shift to the DHPC ratio. (D) 
Scatter plot of the average backbone amide chemical shift perturbations (CSPs) upon DHPC titration. In 
blue, average CSPs with (y-axis) or without (x-axis) molar excess ELI-3 added is plotted. In grey, the 
same x-values are plotted against an additional reference set without added ELI-3, which is mirrored 
along the diagonal. The substantial deviation of the blue data points from the diagonal suggests that 
addition of ELI-3 makes the dimer of EPOR-TMD less sensitive to dissociation upon dilution in DHPC 
micelles. 

Figure S4. Identification and analysis of βcR knockout cells, Related to Figure 4. (A) Parental BaF3 
cells or BaF3 cells expressing the wild-type hEPOR or the Δ259 or Δ310 hEPOR truncation mutant were 
infected with retroviruses to express MSCVp (V) or ELI-3. Cell extracts were immunoprecipitated with 
anti-βcR antibody and immunoblotted with the anti-HA antibody to detect EPOR in complex with βcR (top 
panel). The same membrane was stripped and reprobed with anti-βcR antibody (bottom panel). (B) 
Extracts prepared from BaF3/hEPOR cells (lane 1) or nine different clonal BaF3/h-βcKO cell lines 
generated with four different sgRNAs (1, 4, 12, 15) (lane 2 to lane 10) were immunoblotted with anti-βcR 
antibody (top panel). The same membrane was stripped and reprobed with anti-hsp90 antibody as a 
loading control (middle panel) and with anti-HA antibody to detect hEPOR (bottom panel). Arrow indicates 
band of expected size of full-length βcR. A band migrating with an apparent molecular mass of ~70 kDa 
may represent a different βcR isoform or a degradation product of βcR. (C) BaF3/hEPOR cells or the 
indicated clonal βcR knockout cells made in BaF3/hEPOR cell background were infected with MSCVhyg 
or MSCVhyg expressing EBC5-16 or ELI-3. After hygromycin selection, IL-3 was removed from the 
medium. Cells expressing MSCVhyg were incubated with medium containing EPO, as indicated. The 
number of live cells four days after IL-3 removal is shown. The averaged results and standard deviation of 
three independent experiments are shown. (D) Schematic diagram of the full-length hEPOR and the three 
hEPOR truncation mutants (Δ259, Δ289, and Δ310). The two JAK2 binding sites are shown in grey. 

Figure S5. βcR truncation mutants and chimeras, Related to Figure 4. (A) Schematic diagram of full-
length βcR and the two βcR truncation mutants (Δ452 and Δ514). JAK2 binding sites are shown in grey. 
(B) Myc/FLAG-tagged wild-type βcR and βcR truncation mutants were introduced into βcR knockout 
clone #15-10 by retroviral transduction and selection with Zeocin. Cell extracts were prepared, subjected 
to electrophoresis, and immunoblotted with anti-βcR (F12) antibody which recognizes only full-length βcR 
(top panel) or with anti-myc antibody (middle panel). Actin was used as loading control (bottom panel). (C) 
Extracts were prepared from BaF3/h-βcKO cells or these cells reconstituted with myc/FLAG-tagged wild-
type βcR or βcR truncation mutant Δ452. Samples were immunoprecipitated with anti-FLAG to precipitate 
βcR and associated proteins. After gel electrophoresis and transfer, EPOR in the precipitate was detected 
by immunoblotting with anti-HA antibody. 

Figure S6. Sequence elements required for complex formation between hEPOR and βcR, Related 
to Figure 7. (A) BaF3/h-βcKO cells expressing empty vector, wild-type βcR, or βcR containing the 
mPDGFβR TMD [βcR(mPR)] were infected with empty MSCVhyg vector or retrovirus expressing ELI-3 and 
selected with puromycin. Where indicated, MSCVhyg cells were also treated with EPO. The number of live 



 
 

 
 

cells after 4 days in the absence of IL-3 is shown. (B) Top panels. Extracts were prepared from parental 
BaF3 cells and from BaF3 cells expressing hEPOR (WT) or hEPOR containing the murine PDGFβR TMD 
(mPR). Samples were immunoprecipitated by anti-βcR antibody to precipitate βcR and associated 
proteins. After gel electrophoresis and transfer, hEPOR associated with βcR was detected by 
immunoblotting with anti-HA. Bottom panels show input EPOR and actin as a loading control. (C) BaF3/h-
βcKO cells were infected with empty vector (V) or reconstituted with myc/FLAG-tagged wild-type βcR 
(WT) or βcR chimera with the PDGFβR TMD (mPR). Samples were immunoprecipitated with anti-HA to 
precipitate hEPOR and associated proteins. After gel electrophoresis and transfer, βcR in the precipitate 
(arrow) was detected by immunoblotting with anti-FLAG antibody (top panel). Membrane was stripped 
and probed with anti-HA antibody to detect hEPOR. 
 
Figure S7. Measurement of apoptosis by flow cytometry, Related to Figure 3B. P19 cells were treated 
as described in the legend to Figure 7B, bottom panel. Live and apoptotic cells are shown in boxed areas 
labeled L and A, respectively. The percentage of total cells in each box is shown. The panels show a set 
of representative flow cytometry 2D density plots.  
 



 
 

TRANSPARENT METHODS 
 
Vectors and Cloning 
The HA-tagged hEPOR and HA-tagged mEPOR genes (originally obtained from S. Constantinescu, Ludwig 
Institute) were excised from the pBABE-puro retroviral vector and subcloned into pMSCV-neo (Clontech) 
using EcoRI and HpaI restriction sites. All positions in the hEPOR sequence are numbered according to the 
position in the mature, wild-type hEPOR. The Δ259, Δ289 and Δ310 hEPOR truncation mutants were 
constructed in pMSCV-neo by using Phusion High Fidelity DNA polymerase (New England Biolabs, 
#M0530L) to delete the DNA between codon 259, 289, and 310, respectively, and the stop codon. The F8 
and F9 mutants of the hEPOR were constructed by replacing sequences encoding the cytoplasmic segment 
of the HA-hEPOR gene with a DNA gBlockTM Gene Fragment [Integrated DNA Technologies (IDT)] 
containing eight and nine tyrosine-to-phenylalanine mutations, respectively. The hEPOR chimera containing 
the mouse PDGFβ receptor TMD hEPOR(mPR) was described previously (Cammett et al., 2010). The 
myc/FLAG-tagged mouse βcR (Csf2rb) ORF clone was purchased from OriGene (cat. # MR226890L1) and 
subcloned into pMSCV-zeo vector (Addgene #75088) using BglII and EcoRI restriction sites (New England 
Biolabs). This clone contains a myc epitope followed by a DDK epitope (recognized by anti-FLAG antibody) 
at its C-terminus. Multiple silent mutations were introduced into this construct at sequences complementary 
to sgRNA15 to avoid recurring Cas9 nuclease activity (aaaacagccagtgtc to gaagcaaccggtctc). βcRΔ452 and 
Δ514 truncation mutants were constructed in myc/FLAG-tagged βcR lacking the sgRNA binding site by 
replacing sequences encoding the cytoplasmic domain of the βcR gene with DNA gBlockTM Gene Fragments 
(IDT) by using BstZ17I and EcoRI restriction sites. The βcR chimera containing the mouse PDGFβR TM 
domain [βcR(mPR)] was constructed similarly by using BamHI and BstZ17I restriction sites. 
 
Cells and Retrovirus Infections 
Human embryonic kidney (HEK) 293T cells were maintained in DMEM-10 medium: Dulbecco’s Modified 
Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) (Gemini Bioproducts), 4 mM L-
glutamine, 20 mM HEPES (pH 7.3), and 1X penicillin/streptomycin (P-S). To produce retrovirus stocks, 2 μg 
pantropic pVSV-G (Clontech), 3 μg pCL- (Imgenex), and 5 μg of the retroviral expression plasmid of interest 
were mixed with 250 μl of 2x HEBS. 250 μl 0.25 M calcium chloride was then bubbled into each mixture. The 
mixture (~500 μl) was incubated for 20 minutes at room temperature and then added drop-wise into 2.0 x 106 
293T cells plated the day before in 100 mm tissue culture dishes in DMEM-10. The cells were incubated with 
the transfection mixture for 6-8 hours at 37°C, and the medium was replaced with 5 mL fresh DMEM-10 
medium. The cells were incubated for another 48 hours at 37°C, then the viral supernatant was harvested, 
filtered through a 0.45 μm filter (Millipore), and either used immediately or stored at -80°C. 

Murine interleukin-3 (IL-3)-dependent BaF3 and derivative cells were maintained in RPMI-10 media: 
RPMI-1640 supplemented with 10% heat-inactivated FBS, 5% WEHI-3B cell-conditioned medium (as the 
source of IL-3), 4 mM L-glutamine, 0.06 mM β-mercaptoethanol, and 1X P-S. BaF3 cells expressing HA-
tagged hEPOR, HA-tagged mEPOR, and all EPOR mutants were generated by infecting BaF3 cells with 
pMSCV-neo vector containing the desired EPOR gene. 5x105 BaF3 cells were washed with phosphate 
buffered saline (PBS) and then re-suspended in 500 μl RPMI-10 medium with 4 μg/mL polybrene. 500 μl 
retroviral supernatant or 500 μl DMEM-10 for mock-infection was added to re-suspended cells and incubated 
for six hours at 37°C. After incubation, 9 ml RPMI-10 was added and the cells were incubated overnight at 
37°C prior to selection in 1 mg/mL G418. Immunoblotting with anti-HA antibody confirmed the expression of 
full-length EPOR. Traptamers cloned in MSCV-puro were introduced into these cells by infection followed by 
selection in 1 μg/ml puromycin. 

For growth factor independence assays, 2x105 BaF3 and derivative cells expressing the appropriate 
genes were washed in PBS three times to remove IL-3. Cell pellets were resuspended in 10 mL RPMI-10 IL-
3-free medium, in which WEHI-3B cell-conditioned medium was not included. In control experiments, 0.6 
U/ml human erythropoietin (Epoetin Alfa, Amgen) was added to the growth medium. Viable cells were 
counted four to six days after IL-3 removal. All IL-3 tests were performed in three independent biological 
replicates (i.e., independent infections to express traptamers). All reported experiments included positive and 
negative controls that performed as expected, and no outliers in these experiments were excluded. All 
graphs show average values for IL-3 tests +/- SEM. Statistical significance of differences between control 
and experimental samples was evaluated by two-tailed Student’s t-tests with unequal variance, performed 
using T.TEST function in Microsoft Excel (2013). 
 
Retroviral Library Construction, Selection, and Deep Sequencing 
To isolate new traptamers that activated the hEPOR, we used the YX4 traptamer expression library, which 
encodes short proteins with a 24-residue randomized hydrophobic segment expressed from the MSCVpuro 



 
 

retroviral vector (Scheideman et al., 2012). Five wells of 5x105 BaF3/hEPOR cells were plated in a 12-well 
plate in 500 μL of RPMI-IL-3. Five hundred microliters of 20X concentrated MSCVpuro-YX4 virus was added 
to each well. Polybrene was added to a final concentration of 4 μg/mL. Cells were incubated for four hours at 
37°C and then transferred to individual 25 cm2 flasks containing 9 mL of RPMI-IL-3 with polybrene. One day 
post-infection, 1 μg/mL puromycin was added to each flask. After puromycin selection, 5x105 cells from each 
pool were washed once in PBS and resuspended in 10 mL RPMI-IL-3-free medium. After eight days of 
selection, 1x106 cells from each pool were combined and harvested, and genomic DNA was isolated. PCR 
primers were designed to anneal to the common flanking sequence on each side of the randomized segment 
of the library (forward: 5’-CTACGACGTGCCCGACTAC-3’; reverse: 5’-GCAGACCTGTACAGGAGCATT-3’). 
These primers were used to amplify the starting plasmid library or genomic DNA from selected cells. Illumina 
sequencing adapters were then ligated to the ends of the pooled amplification products after they were 
digested and repaired.  2x72bp sequence reads were generated by Genome Analyzer IIx sequencing 
(Illumina). ~9 million and ~4.5 million quality filtered reads with the proper forward and reverse sequences 
were obtained from genomic and plasmid DNA, respectively. The forward and reverse reads were aligned, 
assembled into open reading frames, and translated. After excluding frameshift mutations, the remaining 
abundant protein sequences were grouped according to sequence similarity, and the number of sequences 
in each group was counted to assess selection of optimal traptamers. Codon-optimized versions of enriched 
traptamer sequences identified by deep sequencing were constructed by using double-stranded DNA 
gBlockTM Gene Fragments (IDT) and cloned into pMSCVpuro using BstXI and BamHI restriction sites.  
 
Immunoprecipitation and Immunoblotting 
Prior to harvest, BaF3 cells and their derivatives were grown in medium containing IL3- and then starved in 
RPMI-10 IL-3-free media for 3 hrs at 37°C. In some cases, cells were acutely stimulated with 5 U/mL EPO 
for 5 min at 37°C or with 5% WEHI-3B cell-conditioned medium (as the source of IL-3) for 15 min at 37°C. 
Cells were then washed twice with ice-cold PBS containing 1 mM phenylmethylsulfonyl fluoride (PMSF). For 
phosphotyrosine and phospho-protein blots, 1X HALT Protease and Phosphatase Inhibitor Cocktail (Thermo 
Scientific) and 500 μM hydrogen peroxide-activated sodium metavanadate were also added to the wash 
solution. Cells were lysed in FLAG-lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton-
100) supplemented with protease and phosphatase inhibitors as described above. All lysates were incubated 
on ice for 20 minutes, followed by centrifugation at 14,000 rpm for 30 minutes at 4°C. The total protein 
concentration of the supernatants was determined using a bicinchoninic acid (BCA) protein assay kit 
(Pierce).  

To immunoprecipitate HA-tagged EPORs for phosphotyrosine blotting, either 8 μl of a rabbit anti-
EPOR polyclonal antibody (clone C-20, Santa Cruz Biotechnology) or 2 μl of anti-HA antibody (clone C29F4, 
Cell Signaling) was added to 0.4 mg of total protein and rotated overnight at 4°C. 50 μl Protein A Sepharose 
bead slurry was added and rotated for two hours at 4°C. To immunoprecipitate FLAG-tagged traptamers or 
myc/FLAG-tagged βcR, 50 μl of anti-FLAG M2 matrix gel (Sigma-Aldrich) was added to 0.5 mg of total 
protein and rotated overnight at 4°C. To immunoprecipitate βcR for phosphotyrosine blotting, 8 μl of a mouse 
anti-IL-3/IL-5/GM-CSFRβ antibody (Clone F-12, Santa Cruz Biotechnology) was added to 0.5 mg of total 
protein and rotated overnight at 4°C. 50 μl Protein A/G PLUS-Agarose bead slurry (Santa Cruz 
Biotechnology) was added and rotated for 2 h at 4°C. Immunoprecipitated samples were subjected to SDS-
PAGE and immunoblotting. 

Immunoprecipitated samples were washed four times with 1 mL NET-N buffer (100 mM NaCl, 0.1 
mM EDTA, 20 mM Tris-HCl pH 8.0, 0.1% Nonidet P-40) supplemented with protease and phosphatase 
inhibitors as above, pelleted and re-suspended in 2x Laemmli sample buffer (2x SB) with 200 mM 
dithiothreitol (DTT) and 5% β-mercaptoethanol (β-ME). Precipitated proteins and whole cell lysates were 
heated at 95°C for 5 min and then resolved by SDS-PAGE on either 7.5%, 10% or 20% polyacrylamide gels 
according to the size of the protein. The resolving gel was then transferred by electrophoresis to a 0.2 μm 
nitrocellulose membrane. SDS was added to the transfer buffer for membranes used to detect 
phosphorylated proteins. 

Membranes were blocked with gentle agitation for two hours at room temperature in 5% nonfat dry 
milk/TBST (1X Tris buffered saline plus 0.1% Tween-20). Mouse anti-phosphotyrosine monoclonal antibody 
PY100 (Cell Signaling) was used to detect the phosphorylated EPOR and βcR. To detect the phosphorylated 
forms of signaling proteins, the following antibodies were used: anti-phospho-JAK2 (Tyr1008) (clone D4A8, 
Cell Signaling); anti-phospho-STAT5 (Y694) #9351 (Cell Signaling); anti-phospho-MEK1/2 (Ser217/221) 
#9121 (Cell Signaling); anti-phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) #9101 (Cell Signaling). An 
HRP-conjugated mouse anti-HA (clone 6E2, Cell Signaling) was used to detect the HA-tagged EPORs and 
all EPOR mutants. An IL-3/IL-5/GM-CSFRβ antibody (clone F-12) (Santa Cruz Biotechnology) was used to 
detect the βcR. To detect total JAK2, STAT5, MEK and ERK, the following antibodies were used: anti-JAK2 



 
 

(clone D2E12, Cell Signaling); anti-STAT5 #9363 (Cell Signaling); anti-MEK1/2 #9122 (Cell Signaling); anti-
p44/42 MAPK (Erk1/2) Antibody #9102 (Cell Signaling). All antibodies were used at 1:1000 dilution except 
for the IL-3/IL-5/GM-CSFRβ antibody (clone F-12), which was used at 1:200 dilution. Membranes were 
incubated overnight with gentle agitation in primary antibody at 4°C, washed five times in TBST, and then 
incubated with gentle agitation for one hour at room temperature in donkey anti-mouse or donkey anti-rabbit 
HRP (Jackson Immunoresearch), as appropriate, at a 1:10,000 dilution. To re-probe, membranes were 
stripped in Restore Western Stripping Buffer (Thermo Scientific) for 15 min at room temperature with gentle 
agitation, washed five times in TBST, blocked in 5% milk/TBST for one hour at room temperature, and 
incubated overnight at 4°C with the corresponding antibody as described above. Membranes were incubated 
with Super Signal West Pico or Femto Chemiluminescent Substrates (Pierce) to detect protein bands. 
 
Expression and Purification of Peptides for Circular Dichroism and NMR Spectrometry 
FLAG-tagged ELI-3 was cloned into the pGEX-4T1 vector with an additional TEV cleavage site in the order: 
GST-thrombin cleavage site-TEV cleavage site- FLAG-tag-transmembrane sequence as described (He et 
al., 2017). DNA encoding hEPOR217-252 was previously described (Bugge et al., 2015). Plasmids were 
transformed into E. coli BL21(DE3), and the cells grown in either unlabeled LB medium or in 15N-labelled M9 
medium supplemented with ampicillin to a cell density of 0.8 at OD600. Protein expression was induced at 
37ºC with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), and cells were harvested 4 hours after 
induction. hEPOR217-252 and the ELI-3 fusion-proteins were expressed in inclusion bodies, which were 
harvested by three cycles of sonication and centrifugation. Inclusion bodies were washed in 50 mM Tris-HCl, 
pH 7.4 and solubilized in 1.5% (w/v) N-lauroylsarcosine and 100 mM dithiothreitol (DTT) in 50 mM Tris-HCl, 
pH 7.4. After gentle agitation overnight, the insoluble material was removed by centrifugation at 12,000 x g 
and the solubilized proteins dialyzed two times against four L of 0.5% (w/v) N-lauroylsarcosine in 50 mM 
Tris-HCl, pH 7.4. GST was cleaved off with thrombin (3 units/mL), and the released peptides were purified 
utilizing a chloroform/methanol extraction as described (Bugge et al., 2015), dried under a continuous flow of 
N2 gas, and stored at -20˚C until use. 
 
Circular Dichroism Spectrometry  
A far-UV CD spectrum was recorded on 8 µM ELI-3 in 80 times molar excess of 1,2-dihexanoyl-sn-glycero-3-
phosphocholine (DHPC) (0.6 mM), 10 mM Na2HPO4/NaH2PO4 buffer (pH 7.2) at 37°C using 10 nm/min scan 
speed, a bandwidth of 1 nm and 2 s response using a Jasco J-810 spectropolarimeter and a path length of 
0.1 cm. 15 scans were accumulated, averaged, background corrected and smoothened. The background 
spectrum was recorded with identical settings on 0.6 mM DHPC in 10 mM Na2HPO4/NaH2PO4 buffer (pH 
7.3) at 37°C. 
 
Nuclear Magnetic Resonance Spectrometry 
All 1H,15N-HSQC NMR spectra were recorded at 37˚C on a 750 MHz (1H) AVANCE III Bruker spectrometer 
equipped with a cryogenic probe using non-uniform sampling (Orekhov and Jaravine, 2011). Free induction 
decays were processed using the qMDD software (Orekhov and Jaravine, 2011) or Topspin (Bruker Biospin) 
and analysed using CcpNmr Analysis software (Vranken et al., 2005). Proton chemical shifts were 
referenced internally to 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) at 0.00 ppm, with heteronuclei 
referenced by relative gyromagnetic ratios. 

The concentration of hEPOR217-252 was determined based on comparing the NMR peak volumes of 
the backbone amide peak of Asp222 in the 1H,15N-HSQC spectra of 15N-hEPOR217-252 and 15N-hEPOR217-277 
recorded with the same number of transients. The concentration of 15N-hEPOR217-277 was determined by 
absorption at 280 nm. 

NMR spectra were recorded in 50 mM NaCl, 20 mM Na2HPO4/NaH2PO4 buffer (pH 7.3), 2 mM tris 
(2-carboxyethyl)phosphine (TCEP), 10% D2O (v/v), 1 mM DSS and assignments of isolated peaks 
transferred from previous work on EPOR-TMD (He et al., 2017). Two identical 15N-hEPOR217-252 NMR 
samples were prepared by splitting a single stock solution (150 nmol 15N-hEPOR217-252 and 7.5 μmol DHPC) 
in two. 100 nmol ELI-3 in 5 μmol DHPC was added to one of these samples, and the same volume of buffer 
was added to the other sample. This way, all component concentrations of the two NMR samples were kept 
identical, except for ELI-3 and DHPC, for which the ratio (50 times excess) to protein was kept constant. 
Subsequently, a titration series for each of the two samples were obtained by adding DHPC to a ratio of 80- 
and 160-times molar excess. 

Binding-induced weighted chemical shift perturbations (CSPs) were calculated as the weighted 
Euclidean distance between the peaks using |γN|/|γH| = 0.154. For each of the titration series (+/- ELI-3), the 
weighted CSPs were calculated relative to the shifts from the 50 times molar excess DHPC samples and 
averaged.  



 
 

 
Construction and Analysis of Inducible Cell Lines 
BaF3 cells were transduced to express an engineered version of the tetracycline-controlled transactivator 
protein, tTA-Advance, through retroviral infection with the pRetroX-Tet-Off Advanced (Clontech) vector and 
selection with G418. ELI-3 cloned in the expression vector pRetroX-TIGHT-puro (Clontech) was introduced 
into cells expressing tTA by retroviral infection and selection with puromycin. HA-hEPOR was retrovirally 
transduced with pMSCVneo (Clontech) and selected with EPO in the absence of IL-3. 

1x106 BaF3/hEPOR/tTA/ELI-3 cells were seeded in 10 ml cultures in RPMI-10/IL-3 in the absence of 
doxycycline (DOX) or with 20, 40, 80, or 160 pg/ml DOX for 48 hours. Cells were washed twice with PBS and 
resuspended in RPMI-10 lacking IL-3 but with the same DOX concentrations for 3.5 hours. Cells were 
pelleted on ice in the presence of 15 ml Halt Phosphatase inhibitor (ThermoFisher) and 75 ml sodium 
metavanadate for 10 min at 1,500 rpm at 4°C. Cell extracts were prepared and electrophoresed as described 
using 20-30 μg of total protein. After transfer to 0.2 micron nitrocellulose membranes and blocking in 5% milk 
in TBST, blots were incubated overnight 4°C with 1:1000 Anti-PhosphoStat5 (Cell Signaling Technology 
9351S) in 5% Milk in TBST. Blots were washed, incubated with 1:8000 secondary antibody, washed again 
and visualized using enhanced chemiluminescence. Blots were then stripped with stripping buffer 
(ThermoFisher), blocked, and re-probed with 1:1000 Anti-Total Stat5 (Cell Signaling Technology 94205).  
 
Inhibitor Assays 
To determine the effects of JAK2 and STAT5 chemical inhibitors on cell proliferation, 2x105 cells were 
washed twice and re-suspended in RPMI-10 IL-3-free media. JAK Inhibitor IV (Calbiochem) was used to 
inhibit JAK2-induced signaling, and SH-4-54 (SelleckChem) was used to inhibit STAT5-induced signaling. 
Both inhibitors were dissolved in DMSO. DMSO only was used as a negative control. Viable cells were 
counted on day 4. 

To determine the phosphorylation states of JAK2, STAT5, MEK, or ERK in cells treated with 
chemical inhibitors, cells were first starved in RPMI-10 IL-3-free media overnight. Then the chemical 
inhibitors were added for 30 min at 37°C before harvesting. In some cases, cells were acutely stimulated with 
5 U/mL EPO for 5 min at 37°C. 
 
Construction of βcR Knockout Cells and Rescue Experiments 
The CRISPR-Cas9-based knock-out was conducted following the protocol described by Ran, et al. (Ran et 
al., 2013, Cao et al., 2016, Shalem et al., 2014). Four sgRNAs were designed using the online tool: 
http://crispr.mit.edu/. Their sequences are as follows: sgRNA1: AAGCCCATCTCTAACTACGATGG; 
sgRNA4: GGTCCAGTACAAGAAGAAATCGG; sgRNA12: GTGATGGAAAATCGTGTATAGGG; sgRNA15: 
GACACTGGCTGTTTTCTGTTAGG. Each sgRNA was cloned into the lentiCRISPRv2 plasmid (Addgene, 
#52961) using FastDigest Esp3I (Thermo Scientific). The plasmids were co-transfected into 293T cells with 
pMD.2G (Addgene, #12259) and psPAX2 (Addgene, #12260) to generate lentivirus stocks. After infection of 
BaF3 cells and puromycin selection, single cells were sorted into 96-well plates using BD FACS Aria II and 
cultured for 7-10 days. EPO was supplied in the medium to support cell growth in case knocking-out βcR 
impaired IL-3-dependent proliferation. Cell lines expanded from single cells were then tested individually by 
western blotting and sequencing to confirm knock-out. Because the sgRNA lentivirus encodes puromycin 
resistance, ELI-3 and EBC5-16 were expressed from MSCVhyg, which encodes hygromycin resistance. To 
express the βcR exogenously, myc/FLAG-tagged wild-type, truncated, and chimeric βcR constructs were 
packaged into retroviral vectors and then used to infect BaF3 cells expressing hEPOR but knocked out for 
βcR (clone #15-10). Infected cells were selected in 150 ng/ml zeocin. Expression of exogenous βcR was 
confirmed by immunoblotting with anti-myc antibody. 
 
Erythroid Differentiation 
To evaluate the erythropoietic and megakaryotic potential of cells expressing ELI-3, we performed the dual 
Mk/E colony assay as previously described (Sanada et al., 2016). Human granulocyte colony-stimulating 
factor (G-CSF) mobilized human peripheral blood enriched for CD34 staining (CliniMACS; Miltenyi) was 
stained with Lineage cocktail-BV510 (BD), CD34-BUV421 (Biolegend), CD38-PECF594 (BD), CD45Ra-
BUV711, CD135-PE (Biolegend), CD36-PerCPCy5.5 (BD), CD110-APC (BD) and CD41a-APCH7 (BD) 
antibodies. Megakaryocyte erythroid progenitors (MEP: Lin-CD34+CD45Ra-CD135-CD38midCD110+CD36-

CD41a-), were sorted on a FACSAria, as previously described (Sanada et al., 2016). 
Sorted MEPs were cultured in expansion media (100 ng/mL hFLT3, 100 ng/mL SCF, 20 ng/mL IL-3, 

20 ng/mL IL-6, and 20 ng/mL hTPO, all from ConnStem) in StemSpan Serum Free Expansion Medium (Stem 
Cell Technologies) for 16 hours and transduced with retrovirus at MOI of 9. Briefly, 500 transduced cells 
were plated in two plates (250 cells/plate) of MegaCult C Medium plus Lipids (Stem Cell Technologies) with 

https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Fcrispr.mit.edu%2F&data=02%7C01%7C%7C5d806ea9bbad4e636f1708d5fc9ac1cb%7Cdd8cbebb21394df8b4114e3e87abeb5c%7C0%7C0%7C636692663949931735&sdata=fDQheRa9sOp45VD7aNULTs%2Fu2Fkdw36ytyhkZ8x0rCU%3D&reserved=0


 
 

0.5 μg/mL of puromycin (Sigma Aldrich), 10 ng/mL recombinant human interleukin 3 (rhIL-3), 10 ng/mL 
recombinant human interleukin 6 (rhIL-6), 25 ng/mL rhSCF (recombinant human stem cell factor), and 50 
ng/mL rhTPO (recombinant human thrombopoietin) in the presence or absence of 3.0 U/mL recombinant 
human erythropoietin (rhEPO). All cytokines were from ConnStem except rhEPO (Amgen). After 12-14 days, 
the colonies were stained overnight with CD41-PE (Biolegend) and GpA-APC (BD) (1:100 dilution) and 
assessed by fluorescence microscopy (DMI6000B, Leica). Colonies were scored based on GpA and CD41a 
staining as megakaryocyte only (CFU-Mk), erythroid only burst forming unit (BFU-E), or 
megakaryocyte/erythroid (CFU-Mk/E), as previously described (Xavier-Ferrucio et al., 2018). 

 
Tissue Protection Assays 
P19 cells purchased from ATCC (CRL-1825) were maintained in AMEM 7.5/2.5 medium: Alpha Minimal 
Essential Medium (AMEM) supplemented with 7.5% bovine calf serum and 2.5% FBS. 12 h before infection, 
cells were plated at 104 cells/cm2 in T-25 flasks. Cells were then infected with retroviruses expressing empty 
vector (MSCVp), FLAG-tagged EBC5-16, or FLAG-tagged ELI-3 and selected with 1μg/ml puromycin for 48 
h. For starvation tests, cells were dissociated with trypsin, washed in starvation medium (AMEM 
supplemented with 5 μg/ml recombinant human insulin, 100 μg/ml human transferrin, 20 nM progesterone, 
100 μM putrescine and 30 nM sodium selenite (all from Sigma-Aldrich)). For microscopic examination, cells 
were plated at 104 cells/cm2 in 24-well plates with poly-lysine coated coverslips. In some cases, 2 U/ml 
rhEPO was added both 24 h before the starvation and concomitant with the starvation test. After 24 h, wells 
were subjected to cytospin centrifugation at 600 rpm for 10 min to capture non-adherent cells. After staining 
with 0.0002% 4′,6-diamidino-2-phenylindole (DAPI) (Fluoroshield Mounting Medium (Abcam)), nuclear 
fragmentation was determined using a fluorescent microscope (Zeiss Axio Imager), as previously described 
(Siren et al., 2001, Galli and Fratelli, 1993). 300-600 cells were counted for each sample.  

For flow cytometry, P19 cells were plated at 104 cells/cm2 in T-25 flasks in starvation medium or 
AMEM-7.5/2.5 medium. In some cases, 2 U/ml rhEPO was added both 24 hrs before and concomitant with 
the starvation. In some experiments, 10 μM JAK2 inhibitor IV was added during the period of starvation. After 
22 hrs, cells were detached with trypsin and incubated in AMEM-7.5/2.5 medium at 37°C incubator for at 
least 30 min to allow membrane integrity to recover. Cells were then washed in cold PBS and stained with 
FITC-conjugated annexin V and propidium iodide (PI) using Dead Cell Apoptosis Kit (ThermoFisher, CAT# 
V13242) according to manufacturer’s protocol. Stained cells were analyzed by BD FACS Aria II using green 
and red laser and were categorized into three groups: dead cells with high PI signal; live cells with low PI and 
low annexin V signal (L); apoptotic cells with low PI, high annexin V signal (A) (Fig. S5). The proportion of 
apoptotic cells was calculated as the A cell fraction divided by the A + L fraction.  
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