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Background: Botulinum NeuroToxin-A (BoNT-A) relieves muscle spasticity and

increases range of motion necessary for stroke rehabilitation. Determining the effects

of BoNT-A therapy on brain neuroplasticity could help physicians customize its use and

predict its outcome.

Objective: The purpose of this study was to investigate the effects of Botulinum Toxin-A

therapy for treatment of focal spasticity on brain activation and functional connectivity.

Design: We used functional Magnetic Resonance Imaging (fMRI) to track changes in

blood oxygen-level dependent (BOLD) activation and functional connectivity associated

with BoNT-A therapy in nine chronic stroke participants, and eight age-matched controls.

Scans were acquired before BoNT-A injections (W0) and 6 weeks after the injections

(W6). The task fMRI scan consisted of a block design of alternating mass finger flexion

and extension. The voxel-level changes in BOLD activation, and pairwise changes in

functional connectivity were analyzed for BoNT-A treatment (stroke W0 vs. W6).

Results: BoNT-A injection therapy resulted in significant increases in brain activation

in the contralesional premotor cortex, cingulate gyrus, thalamus, superior cerebellum,

and in the ipsilesional sensory integration area. Lastly, cerebellar connectivity correlated

with the Fugl-Meyer assessment of motor impairment before injection, while premotor

connectivity correlated with the Fugl-Meyer score after injection.

Conclusion: BoNT-A therapy for treatment of focal spasticity resulted in increased brain

activation in areas associated with motor control, and cerebellar connectivity correlated

with motor impairment before injection. These results suggest that neuroplastic effects

might take place in response to improvements in focal spasticity.
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INTRODUCTION

Spasticity occurs in up to 40% of stroke survivors and is
associated with functional loss, based on correlations with
Barthel scores [see (1, 2) for review]. Botulinum Neurotoxin type
A (BoNT-A), which acts by blocking the release of acetylcholine
at the neuromuscular junction, temporarily relieves lower limb
(3), and upper limb spasticity in patients with stroke (4–6);
however, improvements in arm and hand function are not
consistently observed across individuals (4, 7). Care and comfort
of the hand are consistently improved with BoNT-A injections
(8, 9), despite the observation that broader function of the
hand is not reliably achieved (9, 10). When outcomes of BoNT-
A treatments are considered in terms of passive and active
function, passive functional goals are more often met compared
to placebo controls, while no differences in active functional goals
are observed (11). There is, however, some promise of BoNT-A
for targeted improvements in function. A recent titration study
demonstrated that increasing the dose of BoNT-A improves
the attainment of individual goals (12). With improved goal
attainment after BoNT-A treatment, it is possible that there
are underlying neuroplastic effects that contribute to functional
improvement. Thus, the purpose of the current study was to
determine whether there are changes in brain activation or
connectivity associated with hand function after BoNT-A that
could serve as the basis for restoration of functional movement.

Investigations of brain activation following BoNT-A therapy
have produced varying results. In contrast to dominant unilateral
activation of motor areas during hand movements in controls,
stroke survivors have extensive bilateral activation of primary
sensorimotor, premotor and supplementary motor areas during
movement of the affected hand (13–15). Changes in brain
activity patterns following BoNT-A injections have shown
variable results. Some reports indicate a reduction in the
bilateral volume of activation in primary motor areas after
BoNT-A injections during active (16–18) and imagined (19)
movements, demonstrating a localizing and lateralization effect.
Other studies have shown increases in activity in similar motor
areas after passive wrist movement (20) and arm cycling (21)
following BoNT-A therapy. In addition to changes in brain
activity patterns after stroke, there are significant alterations
in functional connectivity following stroke, including decreases
in interhemispheric connections to somatomotor areas and
increases in intrahemispheric connections (22–26); however,
changes in connectivity with BoNT-A treatments have not been
considered, to date.

In this study, we used functional magnetic resonance imaging
(fMRI) to investigate the underlying changes in brain activation
and connectivity following BoNT-A therapy to relieve upper
limb spasticity after stroke. We examined changes in both brain
activity and functional connectivity in participants undergoing
BoNT-A therapy. To include stroke participants with severe limb
spasticity, we developed a wrist-hand device that would allow
active finger flexion while passively assisting the fingers to full
extension. Note that Bergfeldt et al. (16) and Manganotti et al.
(17) also used devices during fMRI measurements to minimize
flexor synergies and large synkinetic movements; our device

was unique in that it allowed full range-of-motion of finger
flexion for stroke participants with mild-to-severe spasticity
during fMRI scanning. Our analyses consisted of voxel-based
activity measurements and region of interest (ROI) functional
connectivity analyses of fMRI data. We hypothesized that BoNT-
A’s peripheral effects on the affected limb would increase brain
activity in higher order motor control centers such as the
premotor area and improve global connectivity between motor
control centers.

METHODS

In this functional MRI study, we obtained blood oxygen level
dependent (BOLD) images from a convenience sample of
stroke participants undergoing botulinum toxin therapy for arm
spasticity. The BoNT-A treatment was part of prescribed clinical
care and was not modified for this study. We measured BOLD
activation at the time of injection (W0) and 6 weeks (W6)
later, at the peak effect of the botulinum toxin on alleviating
arm spasticity. We performed voxel-level whole-brain activation
and independent component analyses to identify changes in
functional activation and connectivity associated with motor
recovery due to botulinum toxin therapy. Nine people with
chronic stroke were enrolled in the study (5 female; aged 58.2 ±
3.8, range 42–77). Stroke inclusion criteria included: undergoing
BoNT-A therapy as part of clinical care; stroke onset more
than 6 months prior to the study; wrist/finger impairment as
determined by physical examination; no contraindication to
MRI. All participants suffered from upper extremity spasticity
following stroke and had previously undergone at least one
session of BoNT-A treatment. Eight age-matched controls (3
female; aged 56.4 ± 2.2, range 47–70) were enrolled. Control
inclusion criteria included: no known neurological or muscular
disease and no MRI contraindication. All procedures were
approved by the Institutional Review Board (IRB) of the Medical
College of Wisconsin (MCW). All participants gave written
informed consent to take part in this study and all procedures
were conducted in accordance with the Declaration of the World
Medical Association.

Study Set-Up
This study consisted of two test sessions scheduled 6 weeks
apart for both control and stroke participants. For participants
receiving BoNT-A therapy, each session included an MRI scan
and a clinical assessment. At least 3 months had passed since
the patients’ last BoNT-A injection before being enrolled in
this study. The first session was conducted 1–4 days before
participants received their BoNT-A injection (W0), and the
protocol was repeated 6 weeks post-injection in the second
session (W6). The control group participated only in the imaging
portion of the procedures, with the exception of participants C1
and C5, who did not attend the second session. These controls
were used as a comparison to stroke participants. All data were
processed with the same analysis, except lesions were identified
in stroke participants to aid in registration.
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TABLE 1 | Participant demographics and clinical characteristics.

Participant Sex Age Stroke Lesion Time post MAS FM Pre/Post Nth Physical

(Years) type location stroke (Years) finger/wrist injection injection therapy

BTX 1 F 48 Isch R MCA-UD 4.6 3/3 23/26 6 Prescribed

BTX 2 M 58 Hem L Ip-BG 4.4 2/2 26/27 13 Prescribed

BTX 3 F 42 Hem L Ip-BG 3.9 3/4 19/22 12 Prescribed

BTX 4 M 77 Isch L MCA-LD, UD, Le 1.4 3/3 20/22 2 Prescribed

BTX 5 F 67 Isch R MCA-LD, UD 1.8 3/2 9/9 N/A N/A

BTX 6 F 60 Isch R MCA-LD, UD, Le 11.9 1/1 23/25 40 Prescribed

BTX 7 M 69 Isch L Pons 1.1 2/1 63/63 2 Not Prescribed

BTX 8 F 48 Isch R MCA-LD, UD 8.9 4/4 44/47 27 Home Exercises

BTX 9 M 55 Isch R MCA-LD, UD, Le 5.1 4/2 35/40 17 Home Exercises

MCA, middle cerebral artery; LD, Lower Division; UD, Upper Division; Le, Lenticulostriate; Ip, Intraparenchymal; BG, Basal Ganglia; R, Right; L, Left; Isch, Ischemic; Hem, Hemorrhagic;

Note: information regarding the number of injections and details of physical therapy for participant number 5 was not available due to transfer between centers.

TABLE 2 | Therapy dosage.

Name BoNT DOSE # MUSCLES

# Units THERAPY

BX1 B6 450 4 PMj, PMn, LD, TR, BRA, BRD, ECR,

FCR, FDP, FPL

BX2 B11 350 0 PMj, BRA, BRD, PT, FCR, FCU, FDS,

FDP, FPL

BX3 B12 300 0 BIC, BRD, PT, FCR, FCU, FDS, FDP

BX4 D2 550 4 PMj, LD, PT, FDS, FDP

BX5 B4 200 0 PMj, BIC, FDS

BX6 B40 200 0 LS, LD, PMn, PT, ECR, FPB, Lu

BX7 X2 125 0 LD, BRA, BRD

BX8 B27 325 0 LD, BRA, BRD, FCR, FCU, FDS, FDP,

FPL, FPB, Lu

BX9 B17 325 0 PMj, BRA, BRD, PT, ECR, ECU, FDS,

FDP, FPB, Lu

Table listing the BoNT dosage and physical therapy sessions for each stroke participant.
#Therapy, therapy sessions between BoNT-A treatments; BoNT B,

Botox (OnabotulinumtoxinA); D, Dysport (AbobotulinumtoxinA); X, Xeomin

(IncobotulinumtoxinA); PMj, Pect Major; PMn, Pect Minor; LD, Latissimus Dorsi;

LS, Levator scap; TR, Tricaps; BRA, Brachialis; BRD, Brachioradialis; PT, Pron Teres;

Lu-Lumbricals; FCU, Flexor Carpi Ulnaris; FPB, Flexor Pollicis Brevis; BIC, Biceps

Brachii; FDS, Flexor Digitorum Superficialis; FPL, Flexor Pollicis Longus; FCR, Flexor

Carpi Radialis; ECR, Extensor Carpi Radialis.

BoNT-A Administration and Clinical Data
Each participant had been treated with BoNT-A 3–4 months
prior to the study period as part of their usual standard of
care (Table 1). Each participant was prescribed physical therapy
following BoNT-A injections; however, only two participants
underwent therapy (4 sessions betweenW0 andW6 in each case:
see Table 2). The dosage and muscles injected (Table 2) were
determined by the severity of spasticity and the individual’s goals
for the treatment. EMG guidance was used for all injections.
The dose of BoNT-A and muscle injected was not adjusted for
study purposes. Summary information of the number of BoNT-
A injections, muscles injected, and physical therapy sessions are
shown in Table 2.

All stroke participants’ paretic arm motor impairment was
assessed using the Fugl-Meyer Assessment (FMA) (27) at time-
pointsW0 andW6. The wrist and finger flexor spastic hypertonia
and increased muscle tone were assessed using the Modified
Ashworth Scale (MAS) (28) at W0. The MAS has moderate test-
retest reliability (29) very good interrater reliability (30), and
convergent validity with the FMA, EMG response to a ramp
stretch, and the pendulum test (31). The FMA has high test-
retest and interrater reliability in people with stroke (32–34).
The W0 and W6 FMA scores were checked for non-normality
using the Anderson-Darling test and compared for significant
changes with a paired t-test. The MAS and FMA measurements
were compared with activation volume, activation intensity,
and functional connectivity measurements. Comparisons with
the FMA scores used a Pearson correlation, while those with
the MAS used a Spearman correlation. A Pearson correlation
was used for the FMA based on the assumption that the
FMA data is measured on an interval scale. In contrast, the
MAS was assumed to be an ordinal variable and thus, the
Spearman correlation was used. The FMA was collected at both
timepoints due to its greater clinical relevance and psychometric
properties compared to the MAS (35). Characteristics of the
participants in the stroke group are described in Table 1,
with further details regarding size and location of the lesions
illustrated in Figure 1.

Imaging Data Acquisition
All images were collected using a 3.0T GE Discovery MR750
scanner equipped with a 32-channel head receive coil (MR
Instruments, Inc.; Distributed by GE Healthcare; frequency:
127.73 MHz; field: 3T). Anatomical 3D images were collected
using the following fast spoiled gradient echo planar imaging
(FSPRG-EPI) protocol: Echo Time (TE) = 3.2ms, Repetition
Time (TR) = 8.16ms, Field of View (FOV) = 240mm, and
156 × 1mm slices. Two 6-min trials were conducted for the
fMRI, using a GE’s gradient echo planar imaging (GRE-EPI)
protocol with the following parameters: TE = 25ms, TR =

2,000ms, FOV= 224mm,Matrix: 64× 64mm, and 41× 3.5mm
sagittal slices.
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FIGURE 1 | Lesion location map. This image illustrates the lesion distribution for our study. The color bar and numbers represent the number of subjects with a lesion

in that area. The highest lesion distribution in shown in bright colors (yellow/white). All right hemisphere lesions have been flipped to the left hemisphere for analysis.

Due to spasticity, some participants with stroke were unable to
fully extend the fingers without assistance. To address this issue,
a device was created to aid in finger extension and was used by
all participants (stroke and control) during the task-based fMRI
assessment. The device is described and depicted in Figure 2A.
All participants actively flexed against the resistive bands while
the device passively extended the fingers. In effect, while this
device allowed for all subjects to complete the task, it also
resulted in predominantly active finger flexion while producing
passive finger extension. In addition, the device allowed testing
within the spastic joint range of motion for the fingers (36). The
substantial loss of cortical modulation of stretch reflex threshold

(37) is likely to impact the extended finger range of motion,
especially for the fingers. Since motor learning can be impaired
in the spastic joint range of motion (38), the range of motion
used for testing in this study was designed to include a pre-
injection spastic range of motion that was relieved by BoNT-
A injections.

Participants were scanned while prompted by a visual cue
to perform full-hand flexion and extension using the affected
(stroke group) or non-dominant (control group) hand. A visual
cue was presented in a block paradigm, which alternated rest and
hand movement at 20-s intervals for a total of 6min (Figure 2B).
Each participant performed two experimental runs.
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FIGURE 2 | (A) Sketch of assistive finger extension device. This device assists finger extension of stroke participants with spasticity via elastic bands (Theraband:

10.7N resistance at 100% elongation, 15.1N at 200%) that are supported by an outrigger on the dorsal part of the hand. Velcro straps attached to the patient’s first

four digits and were connected to an elastic band. A plastic brace served to stabilize the participant’s forearm and wrist as they were instructed to flex and extend the

digits. (B) Visual presentation prompt. The visual prompt was presented on a screen inside the bore and read “Relax” centered in a magenta circle (20 s) and

“Open/Close” centered on a cyan circle (20 s, 1Hz) for 6min.

Data Pre-processing
The first four TRs were removed from each fMRI trial, and
both trials were concatenated (39). Advanced Normalization
Tools (ANTs) software (N4BiasFieldCorrection) corrected for
bias field inhomogeneities in both anatomical and functional
MR images (40). The skull and other non-brain matter were
removed from both anatomical and functional MR images using

the FMRIB Software Library (FSL) Brain Extraction Tool (bet)
(41). Anatomical and functional MR images were flipped in the
right-left direction for stroke participants with left hemiparesis
and control participants self-identified as right-hand dominant,
to standardize brain activation to the left hemisphere. In total,
5 stroke participants and 4 control participants were flipped.
Registration to the Montreal Neurological Institute (MNI)
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FIGURE 3 | Connectivity pipeline. Registration (1A) and task regression (1B) were performed on the data collected for this study. Using the Smith et al. (44) data, an

ICA (2A) and a clustering algorithm were performed to get 149 subcomponents, shown in red circles (2B). From these 149 subcomponents, task ROI (2C) were

defined by correlating the HRF with the mean timeseries of our study’s data. For these task ROI, shown with red circles the global connectivity (3) strength, shown with

brown lines, was calculated.

152-subject average brain was performed using ANTs for all
images, and a non-linear warp was applied to the functional MR
images. Lesion masks obtained from the Lesion Identification
with Neighborhood Data Analysis (LINDA) algorithm (42) aided
in image registration for stroke participants. Lesion masks and
registration were visually inspected for accuracy.

Activity Analysis
FMRI analyses were carried out using the fMRI Expert Analysis
Tool (FEAT) Version 5.0, in FSL. First-level FEAT analysis was
performed on individual data using a Fixed Effect (FE) analysis
(43), which included motion correction, spatial smoothing using
a full-width/half-maximum (FWHM) 5mm Gaussian kernel,
temporal high pass filter (0.01Hz) on the BOLD signal, and
prewhitening. A modeled hemodynamic response (HDR) was
created by convolving the binary block design with a gamma
wave (phase = 0s, std. dev. = 3s, mean lag = 6s), each voxel’s

timeseries was correlated to the time series model, and the
resulting activation images were clustered and thresholded at a
Z-value > 2.3 (p < 0.05).

Group analysis was performed using a general linear model
(GLM) which categorized individual participants by their group
(Stroke/Control) and session (W0/W6). Group mean activation
maps were created using non-parametric permutation testing
(10,000 permutations) for each group at a threshold Z > 2.3 and
cluster significance p < 0.05 with false discovery rate correction.

Regions of Interest for Activation
Within the stroke group, the activation images at time-point
W6 were compared to the activation images at time-point W0,
and the voxels where W6 was >W0 defined our volume of
interest. These regions were further subdivided using the Jülich
Histological Atlas for supratentorial regions and the Taliarch
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Daemon Label Atlas for cerebellar regions, and the number of
active voxels and the intensity of each region was recorded.

Regions of Interest for Connectivity
For the connectivity analysis, ROIs were defined using publicly
available data. First the ICA of these control data in both resting
state and task-based functional connectivity was determined (44)
(Figure 3,2A). These processes resulted in 149 sub-components
(Figure 3,2B), in which only the graymatter volumewas included
within region of interest masks for the connectivity analysis.
Utilizing these ROIs defined by functional connectivity instead
of a priori ROIs allows for detection of the full functional
connectivity network for a given region.

Using this study’s task-based fMRI data, task ROIs were
identified by correlating the hemodynamic response function
(HRF) with the mean timeseries of each ROI as defined above
(Figure 3,2C) [see Vinehout et al. (25) for additional details].
Briefly, subcomponents that were correlated with the HRF (r >

0.2) were considered task regions of interest (task ROIs). This
was done across all stroke and control participants so one set
of task-ROIs was defined for all participants in this study. See
Table 3 for descriptions of the resulting ROIs. These task-ROIs
corresponded to the ROIs involved in the finger flexion/extension
task. This seed-based functional connectivity approach allows
targeted assessment of motor pathways (45–47).

Functional Connectivity Analysis
After identification of task-ROIs, the HRF of the
flexion/extension task was regressed out of the task-based
fMRI data. The HRF was removed for task-based functional
connectivity to reduce the effect that brain activations have
on spurious connectivity measurements (48, 49). For each
participant and task, a mean fMRI time series was computed
for each of the 18 identified task ROIs (see Table 3 for location
of task-ROIs). Pearson correlation coefficients were computed
on all pairwise combinations of this mean time series for
the 18 task ROIs; Fisher-Z transformations were applied to
the Pearson correlation coefficients. These values provided a
measure of global connectivity that represented the strength
of functional connections between task ROIs (Figure 3,3). The
FSL randomize (41) non-parametric permutation test with
Bonferroni correction for multiple comparisons was used for
comparisons between W0 and W6. These measures provided
insight into the strength of the functional connections among
task ROIs.

Correlation With Clinical Impairment
Correlations were performed between activation volume,
activation intensity, functional connectivity, and clinical
measurements, using a Spearman correlation for MAS and
a Pearson correlation for FMA. These correlations were
performed forW0 andW6measurements, corrected for multiple
comparisons with a False Discovery Rate.

TABLE 3 | Eighteen functional connectivity ROIs.

ROI # Main region of interest Size ROI

(Voxels) (X,Y,Z)

1 Right Limbic Lobe and Cingulate Gyrus (BA 24) 1052 47, 57, 50

Right Limbic Lobe and Cingulate Gyrus (BA 6)

2 Right Anterior Lobe of Cerebellum (AlCb) 3332 55, 35, 20

3 Left Parietal Lobe and Inferior Parietal Lobule (BA 40) 7588 25, 50, 63

Left Parietal Lobe and Postcentral Gyrus (BA 3)

4 Right Frontal Lobe and Medial Frontal Gyrus (BA 6) 3039 50, 64, 66

5 Left Frontal Lobe and Superior Frontal Gyrus (BA 6) 1598 41, 64, 67

6 Right Frontal Lobe and Precentral Gyrus (BA 4) 4011 72, 60 50

Right Frontal Lobe and Precentral Gyrus (BA 6)

7 Left Frontal Lobe and Precentral Gyrus (BA 4) 3766 18, 59 49

Left Frontal Lobe and Precentral Gyrus (BA 6)

8 Right Anterior Lobe/Posterior of Cerebellum 1879 54 30 22

9 Left Parietal Lobe and Postcentral Gyrus (BA 3) 4279 38, 52, 69

Left Frontal Lobe and Medial Frontal Gyrus (BA 6)

10 Right Posterior/Anterior Lobe of Cerebellum. (PAlCb) 3879 59, 28, 28

11 Right Anterior/Posterior Lobe of Cerebellum (APlCb) 5197 49, 34, 21

12 Right Sub-lobar and Insula (BA 13) 4633 69, 53, 43

13 Right Anterior/Posterior Lobe of Cerebellum (PlCb) 5253 66, 31, 24

14 Left Parietal Lobe and Inferior Parietal Lobule (BA 40) 4187 27, 44, 57

15 Left Frontal Lobe and Middle Frontal Gyrus (BA 6) 4667 27, 60, 59

Left Frontal Lobe and Precentral Gyrus (BA 6)

16 Left Parietal Lobe and Postcentral Gyrus (BA 5) 1401 30, 43, 69

Left Parietal Lobe and Inferior Parietal Lobule (BA 40)

17 Right Anterior Lobe of Cerebellum (AlCb) 8012 58, 42, 26

18 Right Anterior/Posterior Lobe of Cerebellum (APlCb) 4894 49, 27, 28

Table listing all the task ROI derived from the group ICA of controls. The number of voxels

correspond to the size of each ROI in 2mm standard MNI space. X, Y, Z coordinates

refer to standard MNI space. Percentages listed are for each gray matter region that

encompassed more than 5% of a given ROI. Names provided are based on the labels of

the Talairach Atlas. BA, Brodmann’s Area.

RESULTS

Reduced Motor Impairment Following
BoNT-A Therapy
Stroke participants showed a significant increase in FMA motor
scores following injections of BoNT-A to the affected arm
(p = 0.004; df = 8; t-stat = −3.9194; paired t-test) with a
mean increase of 2.1 ± 1.62 (Table 1). Four of nine participants
showed improvement in wrist function, and three showed
improvements in finger extension. Those that improved in
finger extension had the highest MAS scores prior to injection.
Other areas of improvement (mass finger extension, forearm
pronation/supination, shoulder flexion, and abduction) varied
between participants.

Changes in Brain Activity Patterns
Following BoNT-A Therapy
We found expected activity patterns and no significant difference
between W0 and W6 sessions for controls. Across sessions,
controls consistently and significantly activated bilateral primary
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FIGURE 4 | Group activity maps of control participants. The figure shows slices of the MNI template overlaid with z-statistic (Z > 2.3) maps of W0 and W6 average

control group activity during non-dominant hand movement. Activity maps indicate volumes in which there was significant (p < 0.05) levels of activity across the group.

The right hemisphere of the brain is displayed on the left. Right hemisphere is ipsilateral to the movement arm. No differences were detected between W0 and W6.

motor (M1) and ipsilateral cerebellar areas at W0 and W6
(Figure 4) during right-hand movement. In addition to these
regions, the ipsilateral premotor and supplementary motor
area, bilateral hand portion of the M1, the thalamus and
the putamen showed significant task-related activity. Although
control participant’s activity maps were similar across sessions,
stroke participants showed differences between W0 and W6
(Figure 5). At W6 there was more widespread and bilateral
activation in the stroke group compared with W0; whereas
activation before injection was restricted to the contralesional
hemisphere, activation increased in both hemispheres after
injection (Figure 5). Activation maps yielded p-values for
each voxel; these maps were threshold with p < 0.05 to
assess significance. Significant differences (p < 0.05, df = 8;
z > 2.3; paired z-test) between W6 and W0 in the stroke
group included: (1) contralesional premotor cortex (PMC-R),
(2) contralesional cingulate gyrus (CG-R), (3) contralesional
thalamus (Th-R), (4) somatosensory and visual integration
areas (Sens-IA), and (5) superior cerebellum (S-CB). These

regions of activation are further described in Table 4 and
illustrated in Figure 5.

The five identified regions of activation were subsequently
used as masks to identify the number of active voxels in
the given volume for the stroke group at W0 and W6
(Figure 6). Participants with stroke showed a significantly
increased number of active voxels in all five regions following
BoNT-A injections.

Changes in Brain Connectivity Following
BoNT-A Therapy
Interestingly, the connectivity analysis did not show significant
differences between W0 and W6 in either stroke or control
groups after multiple-comparison corrections. Trends of
increased functional connectivity after BoNT-A were observed
across the 18 task-related ROIs; however, these trends were
not significant once corrected for multiple comparisons. The
largest connectivity changes were observed in three nodes,
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FIGURE 5 | Stroke differences during BoNT-A injections. The first two columns show significant (p < 0.05) levels of activity across the stroke group for W0 (left) and

W6 (right). Columns 3 and 4 show the coronal (left) and axial (right) view of significant increase in activity following the BoNT-A intervention, displayed as five regions of

interests. These areas are: (a) right premotor cortex (b) right cingulate gyrus (c) right thalamus (d) sensory integration area, (e) superior cerebellum. The physical

coordinates of the axial slices are shown to the left or right of axial images, and the coronal views are denoted by the yellow horizontal lines.
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TABLE 4 | Activation ROI characteristics.

Main Region of Interest Abbreviation Size (Voxels) Region description ROI COG

PMC-R 441.00 64% GM Premotor Cortex BA6 R X = 49.5, Y = 56.3, Z = 60.2

Premotor cortex 14% GM Primary Motor Cortex BA4a R

CG 758.00 40% WM Cingulum R X = 46.9, Y = 58.3, Z = 49

Cingulate gyrus 18% WM Callosal Body

Th-R 855.00 78% Right Thalamus X = 50.9, Y = 58.5, Z = 37.7

Right thalamus 19% Right Cerebral, WM

S-CB 298.00 Right Cerebellum

Superior cerebellum Anterior Lobe X = 45.1, Y = 45.5, Z = 29.6

Cerebellar Lingual

Sens-IA 2680.00 55% Inferior Temporal Gyrus, temporo-occipital part; X = 20.7, Y = 36.4, Z = 36.4

Sensory integration area 14% Temporal Occipital Fusiform Cortex

7% Lateral Occipital Cortex, inferior division

3% Occipital Fusiform Gyrus

Probabilities describing each ROI’s anatomical makeup were determined using Jülich Histological Atlas for cortical ROIs and the Taliarch Daemon Label Atlas for at the voxel of greatest

z-score overlaid onto a 2 mm-MNI brain.

WM, White matter; GM, Gray matter.

FIGURE 6 | Changes in activation volume following BoNT-A injection therapy. Control group results showed no difference between sessions and are not included in

this figure.

the bilateral premotor/motor cortices and the insula of the
non-lesioned hemisphere (Figure 7 and Table 3), which showed
small p-values but were not statistically significant when the
correction for multiple comparisons was applied. In contrast,

the control group did not demonstrate trends for increased
functional connectivity between W0 and W6. See Figure 7

for visual depiction of trends in stroke participants for these
3 nodes.
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FIGURE 7 | Increases tend in functional connectivity following BoNT-A injection therapy. Global connectivity strength for all task ROIs connected to ROI 7, 6, and 12.

Visual depiction of these ROI (A). The size of the red ball represents the size of the ROI and the thickness of the line references the Z-transformed correlation

coefficient size. Only significant connections are visualized. Trends of ROI 7 (B), ROI 6 (C), and ROI 12 (D) are shown. These trends are for all task ROI connections to

the given ROI; each line represents group average for one connection. Values are shown for W0 and W6 with a line connecting values of the same connection

strength. Lines on the side of the graph show the mean and standard deviation of the connection strength across stroke participants.

Clinical Correlations With Activity and
Connectivity Values
Correlations were performed between activation volume,
activation intensity, functional connectivity, and clinical
measurements (MAS and FMA). The correlations between the
MAS (W0) and activation volume, activation intensity and
functional connectivity were not significant when corrected
for multiple comparisons. There were trends between these
measurements that had small p-values before multiple
comparison correction. A total of 52 correlations had an
uncorrected p < 0.05. Three correlations had uncorrected
p < 0.01. These trends were W0 functional connectivity
measurements that correlated with W0 FMA scores and
W6 functional connectivity measurements that correlated

with W6 FMA scores, as summarized in Figure 8. At W0,
connections between the contralesional anterior cerebellum
and the contralesional posterior cerebellum were moderate and
positively correlated (R = 0.83 and R = 0.81) with W0 FMA
scores. At W6, contralesional and ipsilesional premotor areas
were moderate and positively (R = 0.83) correlated with the
FMA scores.

DISCUSSION

In this study, we found preliminary evidence of the effects of
BoNT-A on higher-order brain activation using fMRI. Following
BoNT-A, significant increases in the BOLD signal in the stroke
group were observed in the contralesional premotor cortex
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FIGURE 8 | Functional connectivity measurements correlated with FMA scores following BoNT-A injection therapy: trends are shown above. Shown P-values are

without correction for multiple comparisons across all tests run for all connections and clinical measurements. We only show the largest trends with these uncorrected

p < 0.01. R is the correlation coefficient. R, right; L, left; BA, Brodmann’s Area; A, Anterior; P, Posterior; lCb, lobule of the cerebellum. This shows Fugl Meyer scores

correlation to (A) the connection between R AlCb to R APlCb, (B) the connection between R PlCb and R APlCb, and (C) the connection between L BA 6 and R BA 6.

(PMC-R), cingulate gyrus (CG-R), and motor thalamus (Th-R),
ipsilesional sensory integration regions (Sens-IA), and bilateral
superior cerebellum (S-CB). These regions showed increased
activity, characterized by both larger volume of activation and
greater correlation to the HDR. Some connections between
these areas were also correlated with the FMA scores. These
results suggest that in people with spasticity, BoNT-A enables
activation of higher motor centers, possibly associated with
renewed access to networks associated with motor planning and
control of movement.

Increased Volume of Activation in
Higher-Order Brain Regions After BoNT-A
Therapy
Our functional activation results showed that BoNT-A
therapy increased functional activity in the ipsilesional and

contralesional hemispheres during unilateral paretic finger
flexion/extension, suggesting BoNT-A therapy promotes neural
reorganization. The activation patterns for the control group
(Figure 4) were consistent with previous studies, showing
activation in the contralateral motor areas in addition to
the ipsilateral cerebellum (50–52). Interestingly, the control
group also had activation of ipsilateral (right hemisphere)
motor areas and bilateral subcortical regions, which have
been associated with task precision and movement duration
(53–56). In the stroke group, BoNT-A therapy increased
the volume of activation in both hemispheres. Prior to
injection (W0), stroke participants had activity associated
with wrist flexion mainly in the contralesional hemisphere
(Figure 5). After injection (W6), the volume of activation
encompassed bilateral motor areas, subcortical regions
including the thalamus, and the cerebellum, similar to the
control group.
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There are a limited number of studies on the effects of
BoNT-A therapy on brain activation. Contrary to our results,
reduced brain activation is observed after BoNT-A therapy
for imagined movements (57), finger tapping (19), and mass
finger flexion (17). In particular, Manganotti et al. (17) observed
decreased BOLD activation following BoNT-A injection therapy,
localizing in the ipsilesional motor cortex and contralesional
cerebellum. There are two key methodological differences in
our study and these prior studies. First, our protocol used
a device that passively extended the fingers, which facilitated
finger movement through the full range; prior studies involved
paced isotonic contractions, which were constrained by an
orthosis allowing for 30◦ range of motion. The second key
difference is our protocol aimed to observe the effects of BoNT-
A injections on brain activity during the normal course of
stroke rehabilitation.

The increase in brain activation following BoNT-A injection
therapy in stroke participants might be due to an increased
neural drive to flex the fingers through the full range of
motion, or, at least in some participants, because physical therapy
contributes to the increase in activation. In a similar BoNT-A
and fMRI study, Diserens et al. (21) found bilateral increases
in BOLD activation in motor regions following BoNT-A
injections during passive arm movement, and the BOLD activity
increased further following paced repetitive passive movements
of the plegic hand and BoNT-A injections. Additionally,
Veverka et al. (20) found increased volume of activation in
the bilateral cerebellum, contralesional sensorimotor cortex,
and the contralesional occipital cortex during passive wrist
movements. Thus, reducing spastic hypertonia may increase the
afferent feedback from hand movement (20, 21) and allow for
greater improvements during physiotherapy (58–60), resulting in
increased brain activation.

Another possible reason we saw differences in activation
in bilateral brain regions compared to prior studies might be
differences in the stroke participant pre-injection function. The
participants in our study had heterogeneity of their baseline
Fugl-Meyer scores ranging from 9 to 63. The inclusion of
high impairment participants is reflected in these participants
with lower Fugl-Meyer scores. Stroke survivors have increased
activation, particularly in the contralesional hemisphere, during
hand movements (13, 61–64). Additionally, it has been
reported that therapy increases activity in the ipsilesional
hemisphere, lateralizing and localizing activity during paretic
hand movement (65–68). Our results included an increased
ipsilesional activation following BoNT-A injection therapy,
which has been associated with improved motor recovery (69,
70). However, our results also showed increased activation
in the contralesional side. It has been suggested that hyper-
excitability of the contralesional hemisphere is detrimental
to motor recovery following stroke due to interhemispheric
inhibition (71). However, recent findings suggest that well-
recovered patients have increased contralesional motor activity,
which may play a supportive role during rehabilitation (71, 72).
This trend might be more apparent in study participants with
severe motor deficits (13, 14, 66).

Functional Connectivity in Motor-Related
Regions After BoNT-A Therapy
While there were no significant differences in connectivity
between W0 and W6 for the stroke or control participants,
there was a trend of increased connectivity in the stroke
group at W6. A larger sample size might have been able to
parse out these differences. Changes in functional connectivity
after treatment can be significant (73–75). During W0 we saw
correlations between regions of the right cerebellum and FMA
score; duringW6we saw correlations in the connectivity between
the contralesional and ipsilesional premotor areas and FMA
score. Interestingly the areas that overlapped between functional
connectivity and activation were areas in which functional
connectivity correlated with the FMA score. This further
highlights the importance of the cerebellum and contralesional
and ipsilesional premotor areas in recovery. The W6 correlations
between contralesional and ipsilesional premotor areas suggest
that these connections might be more clinically relevant as
people with stroke recover. Others have highlighted the clinical
importance of these interhemispheric connections (76).

Study Limitations
The study enrollment was small, and it is possible that including
more participants would have provided more areas of significant
activity and connectivity differences with BoNT-A therapy.
However, despite the low sample size, there were consistent
patterns within the stroke group. A larger sample size might
have provided significant functional connectivity results after
correction for multiple comparisons, verifying the observed
trends. This sample included a heterogeneous group of stroke
patients. Arm therapy decreases brain activation in stroke
survivors with high baseline function and increases brain activity
in those with low initial function (77), suggesting that the
variability of stroke severity in our test group might have limited
the statistical significance of group comparisons. In the future, a
larger sample size could be collected to assess how stroke severity
affects changes in brain activation following BoNT-A therapy.

Another limitation to the present study is the lack of
measurement of hand movement while in the scanner.
Movement of the target had was observed visually in all
participants in the current study during fMRI measurements;
however, a real-time measurement of hand movement would
provide a measure of the change in movement between W0
and W6, which could have impacted brain activity. The hand
apparatus helped to normalize movement across participants
and sessions, although differences in movement range were still
possible. In addition, measurements of movements would allow
for control of mirror movements that are often seen in stroke
survivors trying to perform tasks with a significantly impaired
limb (78–80). It is possible that activity seen in contralesional
motor areas may have resulted from mirror movements of the
unaffected hand, though it is unlikely because mirror movements
were not observed in the orientation sessions.

Assessments of improvements in spasticity were limited to
the MAS and FMA prior to the injection. In addition, MAS is
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a measurement of spastic muscle tone and does not distinguish
active and passive components of hypertonia. A follow-up
measure to quantify improvements in spastic hypertonia and
impairment would have added to the interpretation of the
BoNT-A effects. Additional tests of hand function would have
added information on functional ability following BoNT-A
therapy. We identified a significant increase of 2.1 FMA points
across the group, which is a small increase in the upper
extremity FMA, compared to the reported 3.2 minimal detectable
change in individual upper extremity score (34). While we saw
significant changes in FMA scores pre and post BoNT-A injection
(Table 1), these changes were belowminimal clinically important
differences for this scale (81). Assessments that directly measure
the functional goals targeted by the BoNT-A therapy might be
more meaningful for future work.

Physical therapy was recommended to patients participating
in this study as part of their standard clinical care, with
exercises tailored to their specific needs. Physical therapy
treatment plans, duration, and frequency were not controlled,
but assumed to remain constant over the 6-week period of
involvement in the study. For a number of practical reasons,
participation in physical therapy sessions was limited (see
Table 1 for therapy recommendations and Table 2 for the
number of therapy sessions completed by each participant).
Thus, the contribution of therapy to the changes in activity
and connectivity following BoNT-A injections remains unclear.
Injection site and BoNT-A dose were determined by the severity
of spasticity and clinical need of each participant. The number
of BoNT-A injections that each participant received prior to
the study period ranged from 2 to 40. None of these variables
correlated with the study outcomes. However, because this
study did not include participants after their initial BoNT-
A injections the results may not have captured the most
significant improvements. Greater improvements in function
have been reported following the initial BoNT-A injection
(82–84) and subsequent injections are needed to maintain
those improvements.

CONCLUSION

This study showed the effects BoNT-A injection therapy on
motor impairment and neuroplasticity. BoNT-A injection
therapy produced a significant increase in contralesional

activation in stroke survivors after therapy. Additionally, there
was a trend of increased interhemispheric and intrahemispheric
functional connectivity, most notably to motor/premotor nodes.
These neuroplastic changes correlated with motor impairment
and limb spasticity; ipsilesional functional connectivity
measurements were correlated with the Fugl-Meyer scores,
and ipsilesional activation measurements were correlated
with the Modified Ashworth Scale. These results suggest that
neuroplastic effects take place in response to improvements in
focal spasticity and highlight the importance of brain activity
and connectivity patterns in rehabilitation.
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