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Although costimulatory molecules have been shown to boost antitumor immune
responses, their significance in stomach adenocarcinoma (STAD) remains unknown.
The purpose of this study was to examine the gene expression patterns of costimulatory
molecule genes in patients with STAD and develop a predictive signature to aid in therapy
selection and outcome prediction. We used 60 costimulatory family genes from prior
research to conduct the first complete costimulatory molecular analysis in patients with
STAD. In the two study groups, consensus clustering analysis based on these 60 genes
indicated unique distribution patterns and prognostic differences. Using the least absolute
shrinkage and selection operator and Cox regression analysis, we identified nine
costimulatory molecular gene pairs (CMGPs) with prognostic value. With these nine
CMGPs, we were able to develop a costimulatory molecule-related prognostic signature
that performed well in an external dataset. For the patients with STAD, the signature was
proven to be a risk factor independent of the clinical characteristics, indicating that this
signature may be employed in conjunction with clinical considerations. A further
connection between the signature and immunotherapy response was discovered. The
patients with high mutation rates, an abundance of infiltrating immune cells, and an
immunosuppressive milieu were classified as high-risk patients. It is possible that these
high-risk patients have a better prognosis for immunotherapy since they have higher
cytolytic activity scores and immunophenoscores of CTLA4 and PD-L1/PD-L2 blockers.
Therefore, our signature may help clinicians in assessing patient prognosis and developing
treatment plans.
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INTRODUCTION

Gastric cancer (GC) is a global public health burden, affecting
more than one million individuals and causing an estimated
769,000 deaths (equating to 1 in every 13 deaths globally) each
year (1). It is the fourth leading cause of cancer mortality globally
(1) despite breakthroughs in surgical methods, radiation,
chemotherapy, and neoadjuvant treatment. GC has high
molecular and phenotypic diversity. Endoscopic resection is
the most common treatment for early GC and surgery for
advanced or intermediate staged GC (2). Owing to the low rate
of early detection, surgery as a first-line treatment frequently
does not yield the desired outcome (3). The combination of
immunotherapy and chemotherapy is considered a powerful
treatment for advanced GC (4). Patients with GC and/or
gastroesophageal junction cancer may respond to targeted
treatment based on four molecular indicators: T-DM1 and PD-
L1 expression is necessary for trastuzumab and trastuzumab
deruxtecan andMSI and HER2 positivity for pembrolizumab (5).
Therefore, finding novel biomarkers that can predict patient
survival and responsiveness to targeted medicines or
immunotherapies is critical.

Multiple clinical studies are combining immune checkpoint
inhibition (ICI) therapy with conventional chemotherapy.
Success has been documented in non-small- and small-cell
lung carcinomas (6, 7), as well as in esophageal (8), urothelial
(9), gastric (10), and head and neck malignancies (11). However,
the objective response rate is poor, and some patients develop
drug resistance and disease progression after ICI therapy. In
addition, immunotherapies, such as vaccine therapy and genome
editing, are widely used in patients with GC. Initial attempts of
other immunotherapies, such as CAR-T therapy, have prompted
the advancement of immunotherapy in GC (12). However, the
high heterogeneity of GC makes screening for typical biomarkers
difficult. Identification of more biomarkers and mobilization of
tumor-reactive lymphocytes from patients in a rapid and
accurate manner should be the focus of future studies (13).
Through genomic profile analysis, The Cancer Genome Atlas
(TCGA) identified four distinct subtypes of stomach
adenocarcinoma (STAD) in 2014: microsatellite unstable
(MSI), genomically stable, Epstein–Barr virus-positive, and
chromosomally unstable cancers (14). Consequently, it may be
possible to develop new concepts for more precise molecular
subtypes and tailored therapies if representative gene sets are
selected for tumor classification and if prediction models are
constructed. A number of studies have confirmed that
costimulatory molecules are closely related to pathological
tumor angiogenesis (15–17). Given the importance of
angiogenesis in GC, using costimulatory molecules to enable
efficient risk classification and identify possible targets for
tailored therapeutic approaches appears to be extremely
promising. Previous studies have shown that costimulatory
molecules have therapeutic potential in various cancers (18).
T-cell activation and proliferation are regulated by costimulatory
molecules, making them potential targets for the development of
novel ICI therapy. Immunological tumor milieu regulation may
also be one of these functions (19, 20). However, it is unclear
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what specific roles these costimulatory chemicals play in the
pathogenesis of GC.

In this study, we examined the expression patterns and
prognostic significance of costimulatory molecular gene pairs
(CMGPs) in patients with STAD. We then created and verified a
predictive signature and nomogram for these patients. In STAD,
a risk model based on CMGPs showed promise in predicting
survival. Furthermore, a nomogram combining a risk model with
clinical parameters effectively predicted the prognosis of patients
with STAD. Finally, we assessed the potential response to
immunotherapy and chemotherapy among several patient
groups classified using the CMGP-based signature. Notably,
similar data mining, processing, and model building have been
achieved in renal cell carcinoma (21, 22), prostate cancer (23),
hepatocellular carcinoma (24), etc.
MATERIALS AND METHODS

Data Collection
The RNA-seq and important clinical features of patients with
STAD were downloaded as the modeling cohort from the TCGA
database (https://portal.gdc.cancer.gov/), and the dataset was
randomly divided into a training cohort and an internal test
cohort at a 7:3 ratio. Furthermore, we used data from the Gene
Expression Omnibus (GEO) (GEO-GSE15459) database (https://
www.ncbi.nlm.nih.gov/geo) as the external validation cohort. In
tumor immunotherapy, the tumor immune checkpoint pathways
PD-L1/PD-1 and CD86/CTLA4 belong to the B7-CD28 family,
and other costimulatory pathways mainly originate from the
tumor necrosis factor (TNF) family. At present, 13 molecules are
classified as members of the B7-CD28 family, including 8
molecules belonging to the B7 family (CD80, CD86, PD-L1,
PD-L2, ICOSLG, B7-H3, B7x, and HHLA2) and 5 molecules
belonging to the CD28 family (CD28, CTLA4, ICOS, PD-1, and
TMIGD2). The TNF family consists of the TNF ligand
superfamily (TNFSF) and the TNF receptor superfamily
(TNFRSF) with 47 molecules. Among them, 18 ligands are
members of the TNFSF, and the other 29 receptors are
members of the TNFRSF. Herein, we identified 60
costimulatory molecule genes (CMGs) from the study by
Zhang et al. (25) and downloaded them for further analyses.
All the data used in our study are publicly available.
Consensus Clustering Analysis
Consensus clustering was used to further investigate the roles
and prognostic importance of the costimulatory molecules in
STAD using the “ConsensusClusterPlus” R program (26). The
clustering score for the cumulative distribution function curve
determined the optimal cluster number. The algorithm first
subsampled a proportion of items and features from the data
matrix. Thereafter, each subsample was divided into, at most, k
groups using an agglomerative hierarchical clustering algorithm.
This process was repeated for a specified number of times. The
pairwise consensus value, defined as “the running proportion of
clusters where two items are together (group),” was computed
July 2022 | Volume 13 | Article 928742
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for each k and stored in the consistency matrix. Agglomerative
hierarchical clustering was performed using a consensus value of
1 for each k, which was then pruned into k groups, called
consensus clusters.

Comparison of Immune Cell Infiltration
and Tumor Microenvironment Between the
STAD Subtypes
We calculated the abundance of eight immune cells and two
stromal cells using the “MCPcounter” R package (27). The score
indicated the degree of infi l trat ion to the immune
microenvironment. The tumor microenvironment (TME)
scores (stromal, immune, and estimate scores) for the total
STAD cohort were calculated using the “ESTIMATE”
package (28).

Functional Analyses
The “Limma” (29) R software was used to identify genes whose
expression was different between the two groups. The “GSVA”
(30) R package was used to reveal how the signaling pathways
differed between the two clusters via a gene set variation analysis.

CMGP-Based Prognostic Model
Construction and Validation Using the
Least Absolute Shrinkage and Selection
Operator and Cox Regression Analysis
Sixty costimulatory molecules were pairwise aligned, and 3,540
permutations could be formed according to random
permutations; the expression quantity of the gene pairs in each
sample in the TCGA database was examined. When the former
gene was more highly expressed than the latter, it was labeled as
1; the reverse was marked as 0. When a gene pair was >20%
scaled to 1 or 0, it was eliminated. The CMGPs were obtained
using pairwise comparisons and gene expression analyses in the
same patient, which avoided batch effects associated with
multiple platforms and eliminated the need to scale and
normalize the data. The CMGPs linked with prognosis were
identified using univariate Cox regression analysis (p < 0.001).
The least absolute shrinkage and selection operator (LASSO)–
Cox regression model was built using the prognostic-associated
CMGPs derived from the univariate Cox regression analysis. We
then used the LASSO method with penalty parameter tweaking,
conducted via 10-fold cross-validation, to exclude the CMGPs
that may be substantially associated with other CMGPs. A subset
of CMGPs was identified by decreasing the regression coefficient
with a penalty proportional to their size. For future multivariate
Cox regression analysis, the CMGPs with nonzero regression
coefficients were maintained. We compared the predictive
CMGP values with the regression coefficients from the
multivariate Cox proportional hazard regression analysis (b) to
create a risk score model. For the LASSO regression analysis of
the prognostic CMGPs, the “glmnet” (31) R package was
employed. The median risk score was used to divide the
patients into high- and low-risk categories. The “survminer”
(32) and “timeROC” (33) R packages were used to create the
Kaplan–Meier survival and receiver operating characteristic
Frontiers in Immunology | www.frontiersin.org 3
(ROC) curves of the risk score, which were used to estimate
the model’s predictive power. Clinical usefulness was assessed
using decision curve analysis (DCA). To compare the two groups
in terms of the survival curve, we used the log-rank test and set
the statistical significance level at p < 0.05. The GSE15459 cohort
was used for external validation, whereas the TCGA cohort was
split at a 7:3 ratio into a training cohort and an internal
validation cohort.

Correlation Analysis Between the
Prognostic Model and TME
The TME scores (stromal score, immune score, estimate score,
and tumor purity) were calculated using the “ESTIMATE”
package (28), and gene expression data were utilized to
determine the infiltrating stromal or immune cells in the
tumor tissues. Additionally, we used the Wilcoxon test to
compare the four types of scores between the two groups, as
well as the Pearson correlation test to examine the link between
the risk score and the four TME scores. According to the TCGA
database, tumor mutation burden (TMB) was defined as the total
number of somatic gene coding mistakes, base substitutions,
insertions, and deletions detected per million bases (34). We
examined the association between the TMB and odds of survival.

Gene Set Enrichment Analysis Based on
the GO and KEGG Datasets
We used cp.kegg.v7.1.symbols.gmt and go.v7.4.symbols.gmt in
the “cluster profiler” package (35) to analyze the highly expressed
genes both in the low- and high-risk groups as a reference gene
set and the function gesaplots to plot the results, filtering
significantly enriched pathways with p < 0.05 as a threshold
(FDR < 0.25).

Nomogram Construction and Evaluation
We used the “RMS” (36) R package to integrate variables, such as
age, tumor stage, and risk score, and the Cox method to establish
a nomogram to evaluate STAD prognosis. The “timeROC” (33)
R program was used to assess the prognostic performance of the
nomogram model based on the time-dependent ROC curves.
The concordance index (C-index) was used to measure the
likelihood of the projected result matching the actual result.
The 45 dotted line indicated the best prediction. Calibration
curves were generated to test the discriminative ability of
the nomogram.

Chemical Reaction Prediction
We predicted the treatment response for each sample using the
world’s largest publicly available pharmacogenomics database,
Genomics of Drug Sensitivity in Cancer (https://www.
cancerrxgene.org/), and the “pRRophetic” package (37).

Statistical Analyses
To compare two variables, we used the t-test or Wilcoxon test.
To assess survival differences, we performed the Kaplan–Meier
method and log-rank tests(two-stage test was used when curves
crossed (38)). The predictive impact of the CMGs was assessed
using univariate and multivariate Cox regression models. To
July 2022 | Volume 13 | Article 928742

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Costimulatory-Molecule-Based Signature in STAD
assess variations in the distribution of the clinical variables
among the patients with STAD, we performed Pearson’s chi-
squared test. The R software was used to perform all statistical
analyses in this investigation. The statistical significance level was
set at p < 0.05.
RESULTS

Cluster Analysis Based on the CMG
Expression Profiles
The workflow of this study is illustrated in Figure 1. We used a
consensus clustering technique to stratify the patients with
STAD to determine the overall prognostic value of the genes.
We discovered that a k value of 2 appeared to be a more stable
number between values of 2 and 9 (Figures 2A, B). The Kaplan–
Meier curves revealed that the patients in cluster 1 showed worse
overall survival (OS) (Figure 2C) and disease-specific survival
(DSS) (Figure 2D) than did the patients in cluster 2 in the two
molecular subtypes. There is a partial crossover at the end of the
survival curve, suggesting that other factors may have an impact
on the survival outcome. However, the crossover is located at the
end of the curve, and the number of patients is small; thus, it is
difficult to analyze hierarchically. Referring to relevant statistical
literature, when the survival curves are crossed, the log-rank test
is no longer used, but the two-stage test should be used (38). The
p-value of the two-stage test is still less than 0.05, indicating that
costimulatory molecular genes are indeed an important factor
affecting survival, and the overall survival of C2 patients is longer
than C1.

Immune Status in the Two Clusters
Immunological differences between the two molecular
subtypes have been investigated in previous immune studies.
According to the estimation algorithm, the patients in cluster
Frontiers in Immunology | www.frontiersin.org 4
2 had substantially higher immune scores (p < 0.001),
estimated scores (p < 0.001), and stromal scores (p < 0.001)
than those in cluster 1 (Figure 3A). In addition, the
abundance of B lineage (p = 1.9e−13) (Figure 3B), CD8+ T
cells (p < 2.22e−16) (Figure 3C), cytotoxic lymphocytes (p <
2.22e−16) (Figure 3D), monocyte lineage (p < 2.22e−16)
(Figure 3E) , myeloid dendrit ic cel ls (p = 3.8e−05)
(Figure 3F), NK cells (p < 2.22e−16) (Figure 3G), and T
cells (p < 2.22e−16) (Figure 3H) was significantly higher in
the patients in cluster 2 than in those in cluster 1; meanwhile,
no significant difference was detected with respect to the
abundance of endothelial cells (p = 0.1) (Figure 3I),
fibroblasts (p = 0.78) (Figure 3J), and neutrophils (p =
0.087) (Figure 3K).

Differentially Expressed Genes and
Functional Analyses
Differentially expressed genes (DEGs) were identified between
the two clusters, and functional investigations were performed to
investigate the underlying signaling processes. Cluster 2 had 893
DEGs, 126 of which were downregulated and 767 were
upregulated, compared with cluster 1. To evaluate the
relationship between the enriched pathways and the prognosis
of the patients with STAD, we utilized GSVA analysis to analyze
the relative expression differences in the pathways in the two
clusters. The heatmap in Figure 3L shows a number of
differentia l ly expressed pathways enhanced by the
GSVA analysis.

Distribution of the Clinical Features in the
Two Clusters
We examined the distribution of the clinical characteristics in the
two clusters. The analysis showed that there was a significant
difference in grade and stage, but none in age, sex, or other
clinical features (Figure 3M).
FIGURE 1 | Flowchart of the data analysis.
July 2022 | Volume 13 | Article 928742
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Development of a Risk Model Based on
the CMGs in the TCGA Training Cohort
The univariate Cox proportional hazard regression analysis
identified 35 CMGPs that were related to survival. After
LASSO regression (Figures 4A, B) and multivariate Cox
regression (Figure 4C) analyses, nine CMGPs were selected
and utilized to build a prognostic signature as follows:
Risk score = (0.54369 *`CD276|LTBR`) + (0.69502 *`CD28|
CTLA4`) + (0.58032 *`EDA|VTCN1`) + (−0.53341 *`EDAR|
TNFRSF19` ) + (−0 . 6 6137 * `FASLG|TNFSF8` ) +
(−0.51890 *`PDCD1|TNFRSF9`) + (−0.43837 *`TNF|
TNFSF14`) + (0.47905 *`TNFRSF11B|TNFSF15`) +
(−0.49658 *`TNFRSF18|TNFSF9`). We used this method to
determine each patient’s risk score and divided 223 individuals
into high- and low-risk groups based on the median value of the
risk score (0.6378) (Figure 4D). The OS of the high-risk group
was lower than that of the low-risk group (p < 0.001), as
evidenced by the survival curve (Figure 4E). The risk scores
that predicted OS at 1, 3, and 5 years had area under the curve of
ROC (AUC) values of 0.756, 0.813, and 0.808, respectively
(Figure 4F). The frequency of fatalities increased as the risk
score increased, and this trend was more obvious with the
increase in the risk score, especially in the very high-risk
population (Figure 4G); meanwhile, the DSS rate decreased
Frontiers in Immunology | www.frontiersin.org 5
(Figure 4H). These preliminary findings suggest that
stratifying prognosis based on the risk score is useful.

Internal Validation of the Prognostic Model
in the TCGA Test Cohort
The prognosis of the high-risk group was considerably poorer
than that of the low-risk group in the TCGA test cohort (n = 95)
(Figure 5A). The risk scores that predicted OS at 1, 3, and 5 years
had AUC values of 0.697, 0.726, and 0.764, respectively
(Figure 5B). The risk score had good accuracy in predicting
STAD prognosis, based on the findings of the internal validation.

External Validation of the Prognostic
Model in the GEO Cohort
The GSE15459 cohort from the GEO database was used as an
external dataset to validate the prognostic model because of its
large sample size (n = 192) and complete clinical data. The risk
score for each patient in the cohort was determined using a prior
method, and the patients were classified into high- or low-risk
groups based on the unified cutoff value (0.6378). The high-risk
group had significantly lower OS rates than the low-risk group,
consistent with earlier research findings (Figure 5C). AUC
values of 0.595, 0.638, and 0.651 were found in the risk score
that predicted OS at 1, 3, and 5 years, respectively (Figure 5D).
B

C D

A

FIGURE 2 | Cluster analysis based on the costimulatory molecule gene (CMG) expression profiles. The optimal value for consensus clustering (A, B) was found to
be k = 2. Kaplan–Meier curve for the disease-free survival in the stomach adenocarcinoma (STAD) group (C). Kaplan–Meier curve for the total survival in the STAD
group (D).
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The heatmap in Figure 5E shows the expression patterns of 11
CMGs in the patients with varied risk levels. The external
validation revealed that the prognostic model created had a
wide range of applications and was very stable in predicting
STAD prognosis.

Prognostic Assessment of the Prognostic
Model in the Entire TCGA Cohort
For analysis, we included all the study items in a single TCGA cohort
(n = 318). In the high- and low-risk groups, principal component
analysis revealed different distribution patterns (Figure 5F). In the
TCGA cohort, DCA of the nomogram revealed that the nomogram
model had a good net benefit for 1-year (Figure 5G), 3-year
(Figure 5H), and 5-year (Figure 5I) OS. Accordingly, the
nomogram based on the risk score may be utilized as an effective
tool for predicting patient prognosis in clinical practice. The heatmap
in Figure 5J depicts the expression patterns of 13 CMGs in the
patients with varying risk ratings. The risk score may also be used to
predict prognosis independently, as revealed in the univariate
(Supplementary Figure 1H) and multivariate regression analyses
(Supplementary Figure 1I). These findings demonstrated the
dependability and consistency of the predictive signature.
Frontiers in Immunology | www.frontiersin.org 6
Clinical Correlation Analysis of the
Prognostic Model
In the TCGA cohort, we examined sex, age, grade, pathological
stage,T stage,Mstage, andNstage todeterminewhether therewas a
link between immunotyping and common clinical characteristics.
The results suggested that our prognostic signature was not
significantly associated with the clinical factors in STAD
(Supplementary Figures 1A–G).

Relationship Between the Prognostic
Model and Immune Infiltration
The degree of infiltration of the immune cells varied between the
high- and low-risk groups. For example, the high-risk group had
significantly more CD4 memory resting T cells (p = 0.003) and
eosinophil infiltrates (p = 0.008) than the low-risk group;
meanwhile, the low-risk group had significantly more CD8+ T
cells (p < 0.001), CD4 memory-activated T cells (p < 0.001),
follicular helper T cells (p = 0.002), and M1 macrophages (p <
0.001) than the high-risk group (Figure 6A). These findings
suggested that the tumor immune microenvironment (TIME)
was related to the risk score. The four genes [CD28 (Figure 6B),
CTLA4(Figure6C),PDCD1(Figure6D), andTNF(Figure6E)] in
B

C D E

F G H

I J K

L

M

A

FIGURE 3 | Immune difference between the two clusters. The patients in cluster 2 had substantially higher immunological, estimation, and stromal scores than those
in cluster 1 (A). Furthermore, the abundance of B lineage (B), CD8+ T cells (C), cytotoxic lymphocytes (D), monocytic lineage (E), myeloid dendritic cells (F), NK cells
(G), and T cells (H) was significantly higher in cluster 2 than in cluster 1, while no significant difference was found for the abundance of endothelial cells (I), fibroblasts
(J), and neutrophils (K). Gene set variation analysis of the two clusters (L). Differences in the clinicopathological characteristics between the two clusters (M) (*p <
0.05, **p < 0.01, ***p < 0.001).
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the model showed a strong correlation with some immune cells.
These findings provide useful information for future research.

Relationship Between the Prognostic
Model and TME
The patients with a lower estimate score (p = 0.047) (Figure 7A)
and stromal score (p = 5.9e05) (Figure 7B) and greater tumor
purity (p = 0.047) had a better prognosis (Figure 7C) than their
counterparts. Patients with a lower immune score (p = 0.79) had
no statistical significance. Pearson correlation analysis showed
that the estimated score (R = 0.13, p = 0.024) (Figure 7D) and
stromal score (R = 0.28, p = 6e−07) (Figure 7F) were positively
correlated with the risk score, while tumor purity (R = -0.13, p =
0.024) was negatively correlated with the risk score (Figure 7E).
In addition, no correlation was found between the immune score
(R = −0.038, p = 0.49) and the risk score. Accordingly, the risk
score can be used to analyze the TME.

Differences in the Genomic Alterations
Between the High- and Low-Risk Groups
Genomic mutations are closely associated with tumorigenesis.
Therefore, the frequency of alterations in patients with STAD
Frontiers in Immunology | www.frontiersin.org 7
was studied. Among the CMGs, TNFRSF11B had the highest
genetic alteration rate (Figure 7G). Furthermore, there was a
significant difference in the TMB (p = 0.00022) between high-
and low-risk groups (Figure 7I). Using Pearson correlation
analysis, we also validated the clearly negative relationship
between the risk score and TMB (Figure 7H). The high TMB
group had a somewhat higher OS rate than the low TMB group
(Figure 7J). The patients were divided into four groups based on
their risk score and TMB. We found that the group with the
highest TMB and lowest risk score had the best survival
rate (Figure 7K).

Gene Set Enrichment Analysis Between
the Different Risk Groups
We performed gene set enrichment analysis of the various risk
groups to identify probable molecular mechanisms for the
prognostic model. The analysis revealed that the gene sets in
the high-risk group were mostly abundant in receptor- or
metastasis-related pathways, such as the KEGG (ECM–
receptor interaction, complement and focal adhesion,
coagulation cascades, neuroactive ligand–receptor interaction,
and PPAR signaling pathway) (Supplementary Figure 2A) and
B C

D E F

G H

A

FIGURE 4 | Multivariate least absolute shrinkage and selection operator (LASSO) regression analysis. Nine costimulatory molecular gene pairs (CMGPs) were
identified using Cox regression analysis to create the prognostic signature (A, B). Coefficient of the nine CMGPs (C). The risk score of each patient was generated,
and the 223 patients were divided into high- and low-risk groups according to the median risk score (0.6378) (D). Survival curves in the high- and low-risk groups
(E). Time-dependent receiver operating characteristic (ROC) curve of the risk model (F). The number of deaths increased as the risk score increased; this trend was
more obvious with the increase in the risk score, especially in the very high-risk population. There were significant differences in the clinical outcomes at the
symmetrical positions of the left and right sides of the median value, especially when the risk score was <100 and >200 (G). Disease-specific survival (DSS) and risk
score correlation (H).
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GO pathways (behavior, cell matrix adhesion, cell substrate
adhesion, circulatory system process , and external
encapsulating structure organization) (Supplementary
Figure 2B). Most of the pathways that presented a significant
enrichment in the low-risk group were related to immunology,
including the KEGG (autoimmune thyroid disease, graft versus
host disease, antigen processing and presentation, allograft
rejection, and proteasome) (Supplementary Figure 2C) and
GO pathways (activation of immune response, adaptive
immunological response based on immunoglobulin
superfamily domain-based somatic recombination of immune
receptors, B cell-mediated immunity and complement activation,
and antigen receptor-mediated signal ing pathway)
(Supplementary Figure 2D). These findings provide important
information for future research on the molecular mechanisms
underlying STAD.

Nomogram Construction and Validation
A visual nomogram was created to produce a therapeutically
useful tool to determine the prognosis of patients with STAD.
The nomogram was built using a training set that predicted the
OS. It incorporated age, pathological stage, and risk score as
integrated clinicopathological variables (Figure 8A). The
predictive value of the nomogram was assessed using ROC
analysis and the C-index. In the TCGA dataset, the AUC
values of the predictive value of the nomogram for 1-, 3-, and
5-year OS were 0.712, 0.767, and 0.725, respectively (Figure 8B).
Frontiers in Immunology | www.frontiersin.org 8
In terms of the 1-year (Figure 8C), 3-year (Figure 8D), and 5-
year OS (Figure 8E) in the TCGA cohort, the calibration plots
revealed a sustained concordance between the nomogram-
projected probability and actual observation.

Relationship Between the Risk Scores for
Immunotherapy and Chemotherapy
The immunophenotype score was used to assess the ICI therapy
response. In the comparison between the low- and high-risk
groups, we discovered that the proportion of CTLA4 and PD1
was somewhat greater in the low-risk group than in the high-risk
group (Figure 8F). The low-risk group was more sensitive to the
chemotherapy drugs, such as cisplatin, gemcitabine, imatinib,
vinblastine, and VX.680, than the high-risk group. In contrast,
the high-risk group was more sensitive to bexarotene than the
low-risk group (Figure 8G).
DISCUSSION

Currently, GC ranks fifth in incidence and fourth in mortality
among cancer cases worldwide (1). Owing to the lack of early
diagnosis, patients who are detected to have GC are mostly
terminal patients who can only benefit slightly from surgical
treatment (39). Complete tumor excision and lymph node
dissection in combination with preoperative chemotherapy and
postoperative adjuvant radiation and chemotherapy have been
B C

D E F

G H I J

A

FIGURE 5 | Kaplan–Meier curves in the TCGA test cohort (A) and the GEO validation cohort (C). TCGA test cohort (B) and GEO validation cohort (C) time-
dependent receiver operating characteristic curves for the sensitivity and specificity of the prognosis assessment (D). Gene set variation analysis of the GEO
validation cohort (the unit of color bars is log2 (actual expression) +1) (E). In the TCGA dataset, principal component analysis was used to evaluate the distribution
patterns of the high- and low-risk patients (F). Prognostic signature decision curve analysis at 1 (G), 3 (H), and 5 years (I). Gene set variation analysis of the entire
TCGA cohort (the unit of color bars is log2 (actual expression) +1) (J) (*p < 0.05, **p < 0.01, ***p < 0.001).
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found to considerably enhance the postoperative survival time of
patients with GC when the effects of surgery are restricted (40).
With a few exceptions for patients with tumors of certain
molecular subtypes, chemotherapy remains the mainstay of
care (41). For patients with HER2+ tumors, trastuzumab, a
HER2 target ing monoclonal ant ibody, is used for
chemotherapy (42). PDL1 immunotherapy has recently
emerged as a new treatment option for advanced GC because
of advances in the research on the immune microenvironment of
gastric tissues. Patients with a high MSI-H phenotype or high
TMB (>10 mutations per megabase) may benefit from second-
Frontiers in Immunology | www.frontiersin.org 9
line treatment with pembrolizumab, a monoclonal anti-PD-1
antibody. Furthermore, patients with malignancies that express
PD-L1 (combined positive score of 1) may also benefit from
third-line treatment with this drug (43). Another anti-PD-1
antibody, nivolumab, improves OS as an advanced treatment
for unselected patients with STAD and is combined with
chemotherapy as a first-line treatment (44).

Clinical investigations have shown that ICI therapy is effective
for STAD. Since the clinical use of this method, the identification
of biomarkers for cancer diagnosis, efficacy, and prognosis has
become a top priority in oncology immunotherapy research. The
B C

D E

A

FIGURE 6 | Vioplot of the absolute abundance of 22 immune infiltration cells between the high- and low-risk groups (A). Correlation coefficients between the
immune cells and CD28 (B), CTLA4 (C), PDCD1 (D), and TNF (E).
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regulation of tumor immunity relies heavily on costimulatory
molecules (45, 46). Monoclonal antibodies that target the PD-1/
PD-L1 (B7-H1) or B7-2/CTLA-4 pathways have been shown to
be promising in promoting long-term tumor regression in a
range of cancers (47, 48). Costimulatory chemicals are
responsible for all the therapeutic targets. However, there are
few studies on the role of CMGs in the prognosis of STAD.

We obtained 60 members of the B7-CD28 and TNF families
frompatientswithSTADinour study.To investigate the expression
level and prognostic significance of the costimulatory molecules in
STAD, we selected nine CMGPs (CD276|LTBR, CD28|CTLA4,
EDA|VTCN1, EDAR|TNFRSF19, FASLG|TNFSF8, PDCD1|
TNFRSF9, TNF|TNFSF14, TNFRSF11B|TNFSF15, and
TNFRSF18|TNFSF9). The B7-CD28 family includes B7-H3
(CD276), an essential immunological checkpoint. B7-H3 is a
protein produced by antigen-presenting cells and is involved in
the suppression of T-cell activity. More importantly, it is
overexpressed in a variety of human solid tumors and is often
associated with poor prognosis among patients (49). The
importance of the members of the B7-CD28 family and their
ligands in immune activity has been demonstrated. However,
many parts of CD28 biological activity remain unknown, and its
translation into immunomodulatory treatments is uneven (50).
TNF superfamily ligands have a wide range of biological activities,
including cell death, survival, and proliferation, making them ideal
therapeutic targets for cancer immunotherapy (51). Several
members of the TNF family investigated in our study play pivotal
Frontiers in Immunology | www.frontiersin.org 10
roles in the immunotherapy of multiple cancers. However, these
costimulatorymolecules are novel and require further investigation
in patients with STAD.

With the advancement of immunotherapy, it is critical to find
biomarkers and select the most sensitive individuals to increase
immunotherapy response rates. To investigate the overall
prognostic value, we used a consensus clustering approach
based on the 60 CMGs. According to the Kaplan–Meier
curves, the patients in cluster 2 had a worse prognosis. These
patients also had a high concentration of immune-related
pathways, indicating that CMGPs are closely associated with
the TIME. Patients classified under cluster 2 may have a poorer
prognosis owing to immune system weakness or a limited
immunological response.

Risk profiles based on CMGs might provide fresh insights
into the clinical care of patients with STAD. In colorectal cancer
(52) and lung adenocarcinoma, risk signatures based on CMGs
have been developed (25). All these prognostic markers have
been shown to be accurate and perform well. However, we were
the first to develop a risk profile for patients with STAD based on
CMGs. The performance of our prognostic signature was tested
using the TCGA and E-MTAB-3267 datasets, both of which
yielded positive results. We also discovered that the predictive
signature was strongly linked to the clinical parameters,
suggesting that it may be used as a complement to help guide
treatment. We also selected genes that were substantially
associated with the risk score of our prognostic signature, and
B
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FIGURE 7 | The estimate scores (A), tumor purity (B), and stromal scores (C) differed between the high- and low-risk patients. Spearman correlation analysis of the risk
scores, estimate scores (D), tumor purity (E), and stromal scores (F). Genetic mutations: types and frequencies (G). Spearman correlation analysis of tumor mutation
burden (TMB) and risk score (H). Difference in TMB between the high- and low-risk patients (I). Kaplan–Meier curve for the overall survival of the high- and low-TMB
patients (J). Kaplan–Meier curve for the overall survival of the high-TMB/high-risk, high-TMB/low-risk, low-TMB/high-risk, and low-TMB/low-risk patients (K).
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the functional enrichment analysis revealed that T-cell
homeostasis and NF-B signaling were enriched.

To further determine the links between our signature and the
TIME, we analyzed immune cell infiltration and tumor mutation
patterns in the high- and low-risk groups. In our analysis, the high-
risk patients exhibited a much greater immune cell infiltration than
did the low-risk patients. In addition, we found that the number of
immunosuppressive cells, such as gamma delta T cells, MDSCs,
monocytes, immature dendritic cells, macrophages, plasmacytoid
dendritic cells, T follicular helper cells, and regulatory T cells, was
larger in the high-risk patients than in the low-risk patients,
indicat ing the presence of an immunosuppress ive
microenvironment. Tumor cells use an immunosuppressive
microenvironment to evade immune responses and accelerate
disease development. Understanding the immunological
microenvironment of each patient will help identify patients who
aremore likely to respond to immunotherapyandenhance treatment
response rates when combined with innovative treatment options.

TMB generally refers to the number of somatic non-
synonymous mutations per megabase pair in a specific genomic
region. It can indirectly reflect the ability and degree of tumor
production of neoantigens and has been proven to predict the
efficacy of immunotherapy for a variety of tumors (34, 53). Tumor-
specific mutated genes can produce new proteins that are delivered
by the major histocompatibility complex as well as their
degradation products. They are present on the surface of tumor
cells to form tumor neoantigens, which are then recognized by
Frontiers in Immunology | www.frontiersin.org 11
activated CD8+ T cells, thereby triggering tumor-targeted immune
responses. Therefore, tumor gene mutations are considered the
premise of antitumor immunotherapy (54). In recent years, an
increasing number of studies have confirmed that tumors with
higher TMB have higher neoantigen loads and are more likely to
benefit from ICI therapy (55). To a certain extent, TMB reflects
DNA repair damage in tumor cells and is closely related to the
ability to generate tumor neoantigens (56). In 2014, TMB was first
confirmed to correlate with the efficacy of the CTLA-4 antibody in
the treatment of malignant melanoma (57). In 2015, tissue TMB
(tTMB) was shown to be associated with the efficacy of PD-1
antibody treatment in patients with non-small-cell lung cancer
(58, 59). Ameta-analysis conducted in 2017 found that tTMBhad a
significant predictive effect on the efficacy of immunotherapy for 27
tumor types. Therewas a significant correlation between tTMB and
ORR (p < 0.001), suggesting that tTMB is strongly correlated with
the efficacy of PD-1/PDL1 antibodies (60). In this study, we found
that the high-risk patients had a higher TMB than the low-risk
patients, which may boost immunogenicity and result in a higher
immunotherapy response rate. However, clinical trials in actual
clinical settings are required to corroborate the above-
mentioned outcomes.

This study had certain limitations. The data for this study
were gathered retrospectively from public sources. The clinical
indicators evaluated in this researchwere incomplete because of the
limited number of datasets, including prognostic data for patients
with STAD.Calculating the value of a prognostic signature requires
B
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FIGURE 8 | A nomogram was constructed on the basis of age, pathological stage, and risk score (A). ROC curve of the nomogram at 1, 3, and 5 years (B).
Calibration plots of overall survival (OS) at 1 (C), 3 (D), and 5 years (E). Differences in PD-1 and CTLA-4 therapy sensitivity between the low- and high-risk
populations (F). Differences in chemotherapy sensitivity between the low- and high-risk populations (G).
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actual prognostic information frompatients with STAD. The genes
were also limited to costimulatorymolecules in this study, although
the immunological TME was highly spatially heterogeneous.
Consequently, the potency of the predictive signature is restricted.
Furthermore, no evidence of CMG expression in the patients with
STAD following immunotherapy was observed. Consequently, the
risk signature utilized to evaluate immunotherapy response was
indirect. Further prospective trials of immunotherapy in patients
with STAD are needed to determine the therapeutic applicability of
our signature.

In conclusion, we performed the first comprehensive study of
costimulatorymolecules in patients with STAD and identified nine
pairs of genes with prognostic and diagnostic values. We created a
costimulatory molecular-based prediction signature for patients
with STAD and investigated itsmolecular underpinnings.With the
use of our prognostic signature, the patients with a high mutation
frequency, a large quantity of immune cell infiltration, and an
immunosuppressive milieu were classified as high-risk patients.
Taken together, our signature may help doctors in predicting the
prognosis and selecting appropriate therapy for patients
with STAD.
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Supplementary Figure 1 | Spearman correlation analysis between the risk score
and clinical features, including sex (A), age (B), grade (C), pathological stage (D), T
stage (E), N stage (F), and M stage (G). Sex, age, stage, and risk score were all
found to be independent predictive variables in the univariate regression analysis
(H). Age, stage, and risk score were all found to be independent predictive variables
in the multivariate regression analysis (D).

Supplementary Figure 2 | Enriched gene sets in the KEGG pathway in the high-
(A) and low-risk patients (B). Enriched gene sets in the GO pathway in the high- (C)
and low-risk patients (D).
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