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Background: Uterine fibroid (UF) growth rate and future morbidity cannot be predicted. This can lead 
to sub-optimal clinical management, with women being lost to follow-up and later presenting with severe 
disease that may require hospitalization, transfusions, and urgent surgical interventions. Multi-parametric 
quantitative magnetic resonance imaging (MRI) could provide a biomarker to predict growth rate facilitating 
better-informed disease management and better clinical outcomes. We assessed the ability of putative 
quantitative and qualitative MRI predictive factors to predict UF growth rate.
Methods: Twenty women with UFs were recruited and completed baseline and follow-up MRI exams,  
1–2.5 years apart. The subjects filled out symptom severity and health-related quality of life questionnaires 
at each visit. A standard clinical pelvic MRI non-contrast exam was performed at each visit, followed by 
a contrast-enhanced multi-parametric quantitative MRI (mp-qMRI) exam with T2, T2*, and apparent 
diffusion coefficient (ADC) mapping and dynamic contrast-enhanced MRI. Up to 3 largest fibroids were 
identified and outlined on the T2-weighted sequence. Fibroid morphology and enhancement patterns were 
qualitatively assessed on dynamic contrast-enhanced MRI. The UFs’ volumes and average T2, T2*, and 
ADC values were calculated. Pearson correlation coefficients were calculated between UF growth rate and 
T2, T2*, ADC, and baseline volume. Multiple logistic regression and receiver operating characteristic (ROC) 
analysis were performed to predict fast-growing UFs using combinations of up to 2 significant predictors. A 
significance level of alpha =0.05 was used.
Results: Forty-four fibroids in 20 women had growth rate measurement available, and 36 fibroids in  
16 women had follow-up quantitative MRI available. The distribution of fibroid growth rate was skewed, 
with approximately 20% of the fibroids exhibiting fast growth (>10 cc/year). However, there were no 
significant changes in median baseline and follow-up values of symptom severity and health-related quality of 
life scores. There was no change in average T2, T2*, and ADC at follow-up exams and there was a moderate 
to strong correlation to the fibroid growth rate in baseline volume and average T2 and ADC in slow-growing 
fibroids (<10 cc/year). A multiple logistic regression to identify fast growing UFs (>10 cc/year) achieved an 
area under the curve (AUC) of 0.80 with specificity of 69% at 100% sensitivity.
Conclusions: The mp-qMRI parameters T2, ADC, and UF volume obtained at the time of initial fibroid 
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Introduction 

Uterine fibroids (UFs) are benign soft tissue tumors of the 
uterus that affect up to 80% of women in the US and cost 
the US economy up to $34.4 billion annually (1,2). UFs 
may lead to severe symptoms (3) requiring hospitalization, 
transfusions, and urgent invasive surgical interventions 
(hysterectomy or myomectomy through large abdominal 
incisions) (4), or they may be completely asymptomatic.  
A key contributing factor to the difficulty in establishing a 
“best practice” approach to UF treatment is the variability 
and unpredictability of UF behavior (5). An inherent fault 
in the recommendation for routine surveillance after the 
initial diagnosis of asymptomatic UF is that patients do 
not present to the gynecologists until the disease is too 
severe for less invasive therapies (4,6). This failure to 
pursue timely intervention is due to limited knowledge 
about UF and normal menstrual patterns and a tendency 
for women to adopt avoidance-based coping strategies or 
dissociate themselves from their fibroids (7). This problem 
of untimely intervention may be worsened by the updated 
American College of Obstetricians and Gynecologists 
(ACOG) recommendations to limit pelvic exams to when 
indicated by medical history or symptoms (8). Thus, after 
further validation, an imaging-based method could be a 
valuable adjunct to developing more targeted, proactive 
strategies to triage early stage UF disease.

The ability to predict uterine fibroid growth rate (UFGR) 
at the time of diagnosis would inform the implementation 
of strategic management plans tailored to this growth 
potential. Such plans could lead to long-term cost savings by 
reducing the rate of invasive interventions for slow growing 
UFs and allowing for timely or preventative interventions, 
i.e., medications (hormonal), procedural (radiofrequency 
ablation, UF embolization), or minimally invasive surgical 
approaches (myomectomy and hysterectomy) for fast 
growing UFs. The latter would decrease hospitalizations 
for severe UF symptoms, transfusions for acute anemia, 
and obstetric complication rates and increase the shift to 

minimally invasive surgical interventions (Figure 1). 
Pelvic ultrasound is the first line imaging modality for 

the clinical diagnosis of UFs. Resultantly, although magnetic 
resonance imaging (MRI) is used extensively in the clinical 
evaluation of soft tissue tumors in multiple organs, it is 
less frequently used for UFs. Despite this, the preferential 
use of MRI for UF assessment or evaluation in clinical 
investigations, including this pilot study, is supported by the 
superior sensitivity and excellent reproducibility (k=0.97 vs. 
k=0.74) offered by MRI compared to ultrasound (9-13).

Multi-parametric quantitative MRI (mp-qMRI) has 
been investigated for use in distinguishing UFs from 
sarcomas (14,15), monitoring and predicting UF response 
to UF embolization and high-intensity focused ultrasound 
(HIFU) ablation (16,17), and for evaluating spontaneous 
uterine cramps in women with menstrual pain (18). Because 
the ability of mp-qMRI to predict UFGR was unknown, 
we investigated the potential of mp-qMRI methods to 
predict UFGR. We hypothesized that we could identify 
quantitative imaging biomarkers to predict UFGR by 
using a combination of quantitative MRI methods and 
analyzing the relationship between imaging parameters 
and UF growth. We present this article in accordance with 
the STROBE reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-23-1663/rc).

Methods

Study population 

This prospective pilot study conducted between September 
2019 and October 2022 was approved by the Institutional 
Review Board of The Biological Sciences Division of The 
University of Chicago (IRB No. IRB18-1361). The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). Informed consent was taken 
from all individual participants. We recruited sequentially 
female patients who received care at The University of 
Chicago women’s clinic and met eligibility requirements 

diagnosis may be able to predict UF growth rate. Mp-qMRI could be integrated into the management of 
UFs, for individualized care and improved clinical outcomes.

Keywords: Uterine fibroid (UF); quantitative biomarker; magnetic resonance imaging (MRI); growth rate

Submitted Jan 09, 2024. Accepted for publication Apr 11, 2024. Published online Jun 20, 2024.

doi: 10.21037/qims-23-1663

View this article at: https://dx.doi.org/10.21037/qims-23-1663

https://qims.amegroups.com/article/view/10.21037/qims-23-1663/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1663/rc


Medved et al. MRI prediction of fibroid growth rate4364

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4362-4375 | https://dx.doi.org/10.21037/qims-23-1663

as confirmed by chart review. The inclusion criteria were: 
female patients with an ultrasound-confirmed diagnosis 
of at least one UF >2 cm; English speakers; age ≥18 years; 
premenopausal; not requiring immediate intervention; 
not pregnant, breastfeeding or receiving gonadotropin-
releasing hormone (GnRH); and willing and able to 
undergo contrast-enhanced MRI [weight <350 pounds, 
waist <52 inches, no copper intra-uterine device (IUD)]. 
The exclusion criteria were: non-English speaking, age  
<18 years, unable to have MRI, contrast allergy, renal 
failure, pregnancy, current GnHR therapy, absence of at 
least one UF larger than 2 cm, or requiring immediate 
intervention for severe symptoms.

Study visits

Two visits were conducted at least 1 year apart (mean: 
16 months; range, 11.5–29.5 months). At each visit, 
subjects completed a validated UF symptoms quality of 

life questionnaire (UFS-QOL) (19) and medical, surgical, 
and gynecological history questionnaires. Demographics 
(age, ethnicity, marital status) and health and lifestyle 
characteristics [income, onset of menses, body mass index 
(BMI), current or past use of hormonal contraceptives, 
family history of fibroids, presence/absence of vitamin D 
deficiency and high blood pressure, and consumption of red 
meat or soy milk] of subjects are summarized in Table 1. A 
pelvic MRI was obtained at each study visit.

MRI 

MRI was performed using a 3T dStream Philips Ingenia 
scanner, with anterior and posterior phased array coils. 
The 3-part imaging protocol lasted approximately 90 min. 
Part 1 involved standard clinical pelvic MRI non-contrast 
sequences including two-dimensional (2D) axial (AX) T1 
turbo spin echo (TSE) (whole pelvis), 2D AX T2 TSE 
(whole pelvis), 2D sagittal (SAG) T2 TSE (whole pelvis), 

Figure 1 Proposed changes to the clinical workflow are illustrated. The current clinical workflow (A) is compared to the proposed workflow 
utilizing mp-qMRI for triaging patients (B), which is expected to result in decreased loss to follow-up, higher rate of timely interventions, 
and better clinical outcomes. UF, uterine fibroid; mp-qMRI, multiparametric quantitative magnetic resonance imaging.
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Table 1 Subject demographics, health, and lifestyle characteristics

Characteristic Value

Age, median (IQR) 42 (34.5, 45.5)

Race, n (%) 

African American 16 (84.2)

Other 3 (15.8)

Income, n (%) 

$1–37,999 4 (21.1)

$38,000–47,999 2 (10.5)

$48,000–63,999 4 (21.1)

≥$64,000 9 (47.4)

Ethnicity, n (%) 

Non-Hispanic 18 (94.7)

Hispanic 1 (5.3)

BMI (kg/m2), n (%) 

<25 2 (10.5)

25–29.9 9 (47.4)

30–34.9 4 (21.1)

≥35 4 (21.1)

Insurance, n (%) 

Private 14 (77.8)

Medicaid 2 (11.1)

Medicare 2 (11.1)

Past hormonal contraception, n (%) 16 (84.2)

Current hormonal control, n (%) 6 (31.6)

Family history of fibroids, n (%) 11 (57.9)

Hypertension, n (%) 5 (26.3)

Vitamin deficiency, n (%) 11 (57.9)

High red meat intake, n (%) 4 (21.1)

Soy milk intake, n (%) 4 (21.1)

Alcohol frequency, n (%) 

Never 5 (26.3)

Monthly or less 4 (21.1)

2–4 times/month 7 (36.8)

2–4 times/week 3 (15.8)

IQR, interquartile range; BMI, body mass index.

three-dimensional (3D) T2 isotropic (uterus), and AX 
diffusion weighted imaging (DWI) (b=0, 800 s/mm2, whole 
pelvis), with imaging parameters prescribed according 
to the clinical standard-of-care. Part 2 consisted of non-
contrast-enhanced quantitative sequences focused on the 
uterus, including a 2D SAG T2 map, 2D SAG T2* map, 
and SAG DWI, providing the apparent diffusion coefficient 
(ADC) map. Part 3 included a 2D AX T1 modified Dixon 
(mDIXON) sequence acquired pre- and 5-min post-
contrast (17.5 s acquisition time, whole pelvis), interleaved 
with a SAG 3D T1 mDIXON uterus-only dynamic 
contrast-enhanced MRI (DCE-MRI) sequence starting at  
1 min before contrast injection, for a total of 16.5 min, 
with a 5.6 s temporal resolution. Gadoterate meglumine 
(Dotarem, Guerbet, Princeton, New Jersey, USA) was 
used as a contrast agent at the standard dose of 0.2 mL/kg 
(0.1 mmol/kg), followed by a 20-cc saline flush. Sequence 
parameters are provided in Table 2.

UF volume calculation

A maximum of 3 UFs were selected and outlined in each 
subject by an experienced radiologist and matched between 
the baseline and follow-up MRI exams. The lesions were 
selected on T2-weighted images, based on expected typical 
MR appearance and signal characteristics, as well as size and 
lesion reproducibility on subsequent exam.

We approximated the UF cross-sections as ellipses and 
UFs as ellipsoids, and the geometric means of the diameters 
as equal in 2D ( )1 2d d  and 3D ( )3

1 2 3d d d , on average. 
Therefore, UF volumes V were estimated from the area A 
of the UF at the largest cross-section, as traced on the SAG 
T2 images (Figure 2), using Eq. [1]:

3
24

3
AV π
π

 = ⋅ 
 

 [1]

For two patients who did not complete the second visit, 
UF volumes were obtained from clinical pre-surgery MRI. 
For another two patients, pre-surgical ultrasound exams 
were used, with V estimated as:

3
24 1 2

3 4
d dV π  = ⋅ 

 

 
[2]

where d1 and d2 were the largest diameters of the UF in the 
SAG plane, as reported on the ultrasound exam. The third 
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Table 2 MRI sequence parameters

Parameters AX T1 AX T2 SAG T2
Isotropic 

T2
AX DWI

†SAG T2 
map

†SAG T2* 
map

†SAG DWI/ADC 
map

AX T1 pre/
post contrast

SAG T1 
dynamic

Coverage Pelvis Pelvis Uterus Uterus Pelvis Uterus Uterus Uterus Pelvis Uterus

FOV (mm2) 300×380 300×380 250×250 350×350 375×315 250×250 250×250 250×250 440×283 250×250

In-plane resolution, 
acquired (mm2)

1.0×1.2 1.0×1.2 1.0×1.1 1.0×1.0 3.0×3.0 1.4×1.4 2.0×2.0 2.5×2.5 1.75×1.75 1.75×1.75

In-plane resolution, 
reconstructed (mm2)

0.66×0.66 0.68×0.68 0.74×0.74 0.50×0.50 1.67×1.67 0.87×0.87 0.87×0.87 0.87×0.87 0.98×0.98 0.87×0.87

Slice thickness 
(reconstructed) (mm)

5 5 5 2 (1) 5 5 5 5 3.5 (1.75) 5 (2.5)

Number of slices 35 35 25 125 35 25 25 25 134 70

Sequence 2D FSE 2D FSE 2D FSE 3D FSE 2D SE-EPI 2D FSE 2D FFE 2D SE-EPI 3D mDixon 3D mDixon

TR (ms) 800 4,512 4,435 1,250 3,925 4,825 1,000 4,600 6.0 4.5

TE (ms) 8 100 100 170 80 20, 50, 80, 
110, 140

2.3, 6.9, 11.5, 
16.1, 20.7

78 1.54, 2.9 1.42, 2.6

Flip angle (°) 90 90 90 90 90 90 20 90 10 10

b-values (number of 
averages) (s/mm2)

0 (1), 100 
(2), 800 (6)

– – 0 (1), 100 (6), 
800 (16)

Temporal resolution (s) 5.6

SENSE factor 2.2 2.2 1.75 2.0×2.2 2.0 1.9 1.1 1.9 1.9 1.75×2.2

Number of signal 
averages

1 1 1 2 2 1 4 1 1 1

†, multiparametric quantitative MRI sequence. MRI, magnetic resonance imaging; AX, axial; SAG, sagittal; DWI, diffusion-weighted imaging; ADC, 
apparent diffusion coefficient; FOV, field-of-view; FSE, fast spin echo; FFE, fast field echo; SE-EPI, spin echo echo-planar imaging; mDixon, 
modified Dixon; TR, repetition time; TE, echo time; SENSE, sensitivity encoding.

diameter was not reported.
Total volume TV was defined as the sum of volumes for 

all (up to 3) UFs followed in a subject.

Identification of fast-growing UFs

UFGR was calculated as the difference in UF volumes 
between the baseline and follow-up exams divided by the 
time elapsed between the two exams. Figure 3 shows the 
histogram of the UFGR measured for individual UFs. The 
asymmetric tail of the distribution shown in red indicates 
fast-growing UFs with UFGR >10 cc/year. This group 
comprised 20% (9/44) of the total number of followed 
UFs. The remaining UFs (80%, 35/44) were designated as 
slow-growing.

Image analysis—morphology

A radiologist with 20 years of experience interpreting female 
pelvic MRI and UFs performed a qualitative morphological 
analysis of the lesions. 10 morphological parameters on 
3 magnetic resonance (MR) sequences were defined and 
subjectively evaluated, as described in Table 3. These 
parameters reflected MR features that were identifiable and 
reproducible on T2-weighted MRI, DWI, and DCE-MRI. 

Image analysis—quantitative MRI

Figure 4 shows an example of mp-qMRI parameter maps. 
Quantitative analysis of the mp-qMRI parameters was 
conducted using in-house software written in Matlab 
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(R2022b, Mathworks, Natick, Massachusetts, USA). 
Radiologist-generated UF regions of interest (ROIs) were 
referenced from SAG T2 images and manually traced on 
the quantitative parameter maps (T2, T2*, ADC) produced 
by the scanner console at the time of the scan. Due to 
physiological motion and variable geometric distortion, 
UF ROIs were manually adjusted for each quantitative 
parameter map. UF volumes were calculated from the areas 
of these ROIs traced on the T2-weighted images (Eq. [1]), 
as described above. Each ROI was then eroded by 2 voxels 
to select only the UF core. Within these smaller core ROIs, 
the top and bottom 5% (by value) of voxels were excluded 
as outliers, and the ROI-averaged values of quantitative 
parameters were calculated over the remaining voxels.

Statistical analysis

Clinical data: demographics, health, and lifestyle
Statistical analysis for the clinical data was conducted using 
the statistical software R (20). We summarized subject 
demographics, health, and lifestyle characteristics with 
frequencies and percentages for categorical variables and 
medians and interquartile ranges for continuous variables 
(Table 1). The values for the baseline and follow-up visits 

of symptom severity and health-related quality of life 
(HRQL) were compared using the Wilcoxon signed rank 
test. The medians of change in TV were compared between 
demographic, health, and lifestyle groups, as displayed 
in Table S1, using the Wilcoxon rank sum test. Pearson 
correlation coefficients between the changes in TV, HRQL, 
and symptom severity were also calculated. 

MRI data
The quantitative MRI data were analyzed in Matlab 
(R2022b, Mathworks, Natick, Massachusetts, USA). For 
binary morphological parameters (Table 3), the UFGR 
values were compared using the two-sample Wilcoxon 
rank sum test. For multi-valued morphological parameters, 
the correlation with UFGR was assessed via the Spearman 
correlation coefficient. Baseline and follow-up values of 
V, T2, T2*, and ADC were compared using the Wilcoxon 
signed-rank test. Pearson correlation coefficients were 
calculated between baseline values of V, T2, T2*, ADC and 
UFGR, for all UFs and for the slow-growing subgroup with 
UFGR <10 cc/year. A significance level of alpha = 0.05 was 
used. 

Receiver operating characteristic (ROC) analysis was 
performed on all baseline qualitative (10 morphological 

Figure 2 The process of fibroid volume determination is illustrated. (A) A sagittal slice through the uterus of the 42-year-old patient 
demonstrating multiple fibroids, with three largest fibroids indicated by asterisks, is shown. (B) For estimation of UF volume, the sagittal 
slice showing the largest cross-section of the uterine fibroid is used (the same image is shown in both panels). The region of interest 
outlining the UF is traced, and its area is recorded, as illustrated. UF, uterine fibroid.

A B

Area: 534 mm2

https://cdn.amegroups.cn/static/public/QIMS-23-1663-Supplementary.pdf
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Table 3 Qualitative morphological parameters—description and relationship with UFGR

Parameter Description Values N (%)

T2

Presence of bright rim Hyperintense rim surrounding the fibroid, over greater than 180° 
in any one image on T2-weighted MRI in the sagittal or axial plane

0 (no), 1 (yes) 29 (66%), 15 (34%)

Signal intensity T2-weighted signal relative to the uterine parenchyma −1 (hypo-), 0 (iso-),  
1 (hyper-intense)

39 (89%), 1 (2%),  
4 (9%)

ADC

Presence of bright rim Hyperintense rim surrounding the fibroid, over greater than 180° 
in any one image on the ADC map in the sagittal or axial plane

0 (no), 1 (yes) 25 (57%), 19 (43%)

Signal intensity ADC map values relative to the uterine parenchyma −1 (hypo-), 0 (iso-),  
1 (hyper-intense)

40 (91%), 4 (9%),  
0 (0%)

DCE-MRI

Well defined 
enhancement

Fibroid was well visualized in relationship to the adjacent uterine 
parenchyma

0 (no), 1 (yes) 5 (11%), 39 (89%)

Heterogeneous 
enhancement

Greater than 50% of the fibroid with inhomogeneous 
enhancement following contrast on early and equilibrium phases

0 (no), 1 (yes) 15 (34%), 29 (66%)

Enhancing rim Rim of hyperenhancement in relationship to the fibroid and 
adjacent myometrium, greater than 180° in any single image on 
the sagittal plane on the DCE-MRI sequences

0 (no), 1 (yes) 23 (52%), 21 (58%)

Dark rim Rim of hypoenhancement in relationship to the fibroid and 
adjacent myometrium, greater than 180° in any single image on 
the sagittal plane on the DCE-MRI sequences

0 (no), 1 (yes) 27 (61%), 17 (39%)

Core enhancement signal Signal intensity in the UF core relative to the myometrium on early 
and equilibrium phases

−1 (hypo-), 0 (iso-),  
1 (hyper-intense)

14 (32%), 20 (45%), 
10 (23%)

Core enhancement timing Timing of UF core enhancement relative to the adjacent 
myometrium

−1 (late), 0 (same),  
1 (early)

14 (32%), 18 (41%), 
12 (27%)

UFGR, uterine fibroid growth rate; ADC, apparent diffusion coefficient; DCE-MRI, dynamic contrast-enhanced MRI; MRI, magnetic 
resonance imaging.

parameters) and quantitative (V, T2, T2*, ADC) MRI 
parameters. A full search among the multiple logistic 
regression models was used, with a maximum of 2 parameters 
per model (in addition to the intercept), to prevent 
overfitting.

Results

The recruitment flowchart is shown in Figure 5. A total of 
33 subjects were recruited for the study, with 20 subjects 
having data available for quantitative analysis and 19 
subjects having demographic, health (medical history and 
UFS-QOL questionnaires), and lifestyle data available for 
clinical data analysis upon completion. 

Clinical data analysis

The difference between baseline and follow-up total UF 
volumes [20.7 (8.9, 53.9) vs. 33.1 (16.22, 53.9), P=0.024] 
was significant by Wilcoxon signed rank test, indicating 
statistical evidence for continuous fibroid growth [median, 
(interquartile range)]. However, there were no significant 
differences between baseline and follow-up values for 
symptom severity [20 (18.5, 30.5) vs. 22 (19.5, 27.0), 
P=0.67] and HRQL [59 (44.5, 87.5) vs. 60 (42, 82), P=0.54]. 
The Pearson correlation coefficients between the change 
in TV and the change in symptom severity [−0.23, 95% 
confidence interval (CI): −0.65 to 0.30, P=0.39] and HQRL 
(−0.08, 95% CI: −0.55 to 0.43, P=0.77) were not statistically 
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significant. We did not observe significant differences in 
total UF volume changes by subject demographics, health, 
and lifestyle characteristics (Table S1). 

MR imaging analysis

A total of 66 UFs in 30 women were identified on baseline 
MRI. 36 UFs in 16 women had follow-up quantitative MRI 
values available, and an additional 8 UFs in 4 women who 
had no follow up MRIs but did have pelvic ultrasounds had 

follow-up UF volumes available.
Table 3 describes the morphological parameters evaluated 

by an experienced radiologist and identifies the number of 
UFs in each parameter category. Figure 6 shows an example 
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Figure 3 The histogram of UFGR values distinguishing high 
growth rate uterine fibroids (UFGR >10 cc/year, red) and low 
growth rate uterine fibroids (UFGR <10 cc/year, blue) is shown. 
20% (9/44) of fibroids were identified as fast-growing. UFGR, 
uterine fibroid growth rate.
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Figure 4 Sample parameter maps obtained from mp-qMRI are shown. (A) A sagittal T2-weighted image and corresponding quantitative 
parameter maps: (B) T2, (C) T2*, and (D) ADC are shown for the same slice through the uterus of the 42-year-old patient whose image is 
shown in Figure 2. mp-qMRI, multiparametric quantitative magnetic resonance imaging; ADC, apparent diffusion coefficient.

Figure 5 The subject recruitment flowchart is shown. The number 
of subjects with baseline and follow-up clinical data is N=19. The 
number of subjects with baseline and follow-up imaging for uterine 
fibroid volume calculations is N=20. UF, uterine fibroid; UFS-
QOL, UF symptoms quality of life questionnaire; MRI, magnetic 
resonance imaging.

3 withdrew after consent

33 subjects recruited

30 subjects enrolled: 66 UFs total

• Baseline UFS-QOL questionnaire
• Baseline MRI

8 lost to follow up 
1 withdrew after baseline scan 
1 underwent surgery without pre-surgical imaging

20 subjects completed the study 44 UFs total

• Follow-up UFS-QOL questionnaire (N=19)
• N=16 Follow-up MRI per study protocol
• N=4 Pre-surgical clinical imaging [MRI (N=1) or US (N=3)]

https://cdn.amegroups.cn/static/public/QIMS-23-1663-Supplementary.pdf
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A B C D

Figure 6 The variations in contrast enhancement patterns observed during DCE-MRI are illustrated on sagittal T1-weighted mDixon 
water-only images of a medial slice through the uterus of a 49-year-old woman showing two UFs dorsally with differing contrast kinetics 
characteristics. The timing of the images is pre-bolus arrival (A), at bolus arrival (B), 1 min post-bolus arrival (C), and 3 min post-bolus 
arrival (D). The superior UF shows early homogeneous hyper-intense enhancement, while the inferior UF shows late heterogeneous hypo-
intense enhancement. Both UFs are well defined and show the presence of a dark rim. DCE-MRI, dynamic contrast-enhanced magnetic 
resonance imaging; mDixon, modified Dixon; UF, uterine fibroid.

of DCE-MRI images of two UFs in the time range of up to 
3 min post-contrast bolus arrival. The values of UFGR were 
significantly different between the UFs with heterogeneous 
vs homogeneous enhancement (7.5±14.5 vs. 4.2±13.5 cc/year, 
P=0.028), with heterogeneously enhancing UFs having 
a higher mean UFGR. Other bivalent (0/1) parameters 
did not separate the UFs into statistically different groups 
by UFGR values. None of the multivalent (−1/0/+1) 
parameters correlated with UFGR significantly.

Table 4 compares the baseline and follow-up values of 
V, T2, T2*, and ADC, and shows the Pearson correlation 
coefficients between the baseline values and UFGR for all 
UFs and slow-growing UFs. In the group including all UFs V, 
T2, and ADC were not significantly correlated with UFGR. 
However, in the slow-growing group, V, T2, and ADC 
were all significantly correlated with UFGR. The Pearson 
correlation coefficient between the baseline and follow-up 

values for V was 0.71 (95% CI: 0.53–0.83, P<0.01).
In ROC analysis to evaluate the performance of the 

logistic regression-based classifier for identifying fast-
growing UFs, baseline volume [area under the curve (AUC) 
=0.78; 95% CI: 0.60–0.90] and mean T2 (AUC =0.70; 
95% CI: 0.44–0.89) were the most predictive among the 
quantitative and morphological parameters. Using a full 
search among the multiple logistic regression models with 
up to 2 MRI parameters, the combination of baseline 
volume and T2_signal_intensity (Table 3) achieved the 
largest AUC of 0.82 (95% CI: 0.66–0.92), and a specificity 
of 60% at 100% sensitivity. The combination of volume 
and ADC_presence_of_bright_rim (Table 3) achieved the 
highest specificity of 69% at 100% sensitivity, with an AUC 
of 0.80 (95% CI: 0.64–0.91), as illustrated in Figure 7. The 
model combining the baseline values of volume, T2, and 
ADC achieved an AUC of 0.77 (95% CI: 0.56–0.91).

Table 4 Baseline and follow up values (mean ± SD, n=44) for V, T2, T2*, and ADC and Pearson correlation coefficients with UFGR for all and 
for slow-growing UFs 

Parameter Baseline Follow-up P value (change) r (to UFGR, all UFs) (95% CI) r (to UFGR, <10 cc/year) (95% CI)

V (cc) 14.9±18.6 23.6±31.4 0.004** 0.20 (−0.10 to 0.47) −0.55** (−0.75 to −0.27)

T2 (ms) 59.6±13.9 61.4±14.6 0.42 0.15 (−0.15 to 0.43) −0.42* (−0.66 to −0.10)

T2* (ms) 31.7±9.9 31.7±12.8 0.85 −0.11 (−0.39 to 0.20) −0.20 (−0.50 to 0.14)

ADC (mm2/s) 1.00±0.23 0.93±0.28 0.27 −0.16 (−0.44 to 0.14) −0.47** (−0.69 to 0.16)

*, P value <0.05; **, P value <0.01. SD, standard deviation; ADC, apparent diffusion coefficient; UFGR, uterine fibroid growth rate; UF, 
uterine fibroid; CI, confidence interval.
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Discussion

In this work, we established a paradigm for utilizing mp-
qMRI to identify fast growing UFs (with an UFGR  
>10 cc/year). Baseline T2, T2*, and ADC values showed 
significant stability despite UF growth. We observed 
a skewed distribution for UFGR, with ~20% of UFs 
exhibiting a high growth rate (UFGR >10 cc/year). Based 
on a logistic regression model, this clinically relevant group 
was predicted with high specificity at 100% sensitivity. 
Distinctly, the slower growing group (UFGR <10 cc/year), 
exhibited a moderate correlation between growth rate and 
baseline volume, T2, and ADC. 

The best predictor of UFGR was baseline UF volume. 
T2* did not perform well as a predictor of UFGR, likely 
due to the frequent presence of dephasing artifacts caused 
by bowel gas. Thus, future studies evaluating T2* or 
R2* values should include pre-MRI scan subject dietary 
guidance (21,22). The statistically significant correlation 
between volume, T2, and ADC and UFGR disappeared 
with the inclusion of fast-growing UFs, and this observation 
may explain mixed findings on the relationship between UF 
volume and growth in prior studies (23-26). Consistent with 
Baird et al.’s hypothesis, our data indicate that slow and fast 
UFGR likely have different mechanisms that can be used to 

predict their growth. In essence, methods to predict growth 
rate for fast-growing UFs could differ from those used 
to predict slow-growing UFs (1). The moderate negative 
correlation of UFGR with T2 and ADC for the slower 
growing UFs is consistent with the increasing evidence 
that UFs with increased extracellular matrix (ECM) have a 
stiffer texture and a higher growth rate (27). On a molecular 
level, it is understood that ECM plays a critical role in 
fibroid tumor proliferation (28). ECM also presents as T2 
hypointense on T2 weighted MR images (29). Accordingly, 
we hypothesize that the slow-growing UFs represent 
“classic” or “typical” UFs while the fast-growing group may 
represent atypical fibroids. Importantly, we have developed 
a logistic regression model that can be used to identify these 
atypical fibroids with high specificity at 100% sensitivity. 
Although we did not analyze UF growth rate based on 
International Federation of Gynecology and Obstetrics 
(FIGO) classification (30), the impact of UF location on 
growth has previously been analyzed by Mavrelos et al. who 
determined that UF location did not have an independent 
effect on UF growth (24). 

We found no statistically significant effects of individual 
subject demographics, health, and lifestyle characteristics 
on change in total UF volume, which can be attributed 
to the small size of this pilot study. Also, the change in 
HRQL and symptom severity did not correlate with change 
in total fibroid volume. This indicates that, in the short 
term, the quality-of-life measures may not be a sensitive 
proxy of UF growth and that an imaging approach may add 
value in the triage of the UFs and selection of the disease  
management plan. 

Clinical implications

The variability of UF growth limits the clinician’s ability 
to adequately counsel patients on disease progression, 
symptom expectations and response to therapy (31). 
Predicting UF growth is a positive step towards addressing 
this limitation. The identification of fast-growing UFs 
would allow for closer monitoring, strategic counseling, 
subspecialist referrals and timely interventions that may 
prevent severe sequalae of inappropriately delayed therapy. 
Conversely, slow-growing UFs would be managed with 
less anxiety using routine surveillance methods including 
annual pelvic exams and/or annual pelvic ultrasounds as 
indicated (32). The prediction of UF growth potential 
may also inform the strategic targeting of small intra-
myometrial fibroids that may have otherwise been retained 
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Figure 7 ROC curve for the logistic regression-based classifier of 
fast-growing UFs (UFGR >10 cc/year) including UF volume and 
ADC rim parameters in the model (AUC =0.80) is shown. This 
logistic regression model provided the highest specificity (69%) 
at 100% sensitivity. AUC, area under the curve; ADC, apparent 
diffusion coefficient; ROC, receiver operating characteristic; UF, 
uterine fibroid; UFGR, uterine fibroid growth rate.
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in the uterus during myomectomy, thus decreasing the 
rate of UF recurrence, which is partially attributed to the 
growth of retained fibroids and is estimated at 36–41% in  
3 years (33,34).

An emerging class of UFs that would benefit uniquely 
from UF growth prediction is the FIGO 3 UF which 
is embedded in the myometrium while abutting the 
endometrium. This UF type is significantly associated with a 
lower implantation rate, cumulative pregnancy, and live birth 
rates. The optimal surgical approach for treating this fibroid 
is uncertain but limited evidence suggests that hysteroscopic 
myomectomy may be safe and feasible for FIGO 3 UFs 
measuring 30 mm or less (35,36). The ability to predict 
the growth rate of a FIGO 3 UF may allow for improved 
anticipation of symptoms, strategically timed interventions, 
and more accurate assessments of potential impact of these 
UFs on in vitro fertilization (IVF) outcomes (35,37).

Mp-qMRI has not been investigated for its utility in 
predicting UF growth. However, since the 2014 Food and 
Drug Administration (FDA) ban on power morcellators (38), 
it has been explored extensively for use in distinguishing UF 
from leiomyosarcoma (LMS) and uterine smooth muscle 
tumors of unknown malignant potential (STUMP). Although 
some MRI features have been identified as possible indicators 
of malignancy, we remain unable to distinguish these 
tumors with certainty before histopathologic examination of  
tissue (39).

Lastly, an important application of UF growth prediction 
is the identification of UFs with high growth potential in 
pregnancy. Although UFs have been associated with poor 
pregnancy outcomes, many women with fibroids have 
uneventful pregnancies (40). These varied outcomes affect 
the clinician’s ability to counsel patients on expectations 
in pregnancy (41). Identifying predictive MRI features of 
UF growth rate may provide relevant information about 
the potential impact of UFs on pregnancy and guide 
management plans.

Further research

The value of imaging biomarkers is well documented (42). 
The findings of our study suggest that mp-qMRI may have 
clinical utility as an imaging biomarker for the triage of 
UFs. UF volume, T2, and ADC values show promise as 
predictive imaging biomarkers for UF growth potential. To 
further this research, the qualitative analysis of the DCE-
MRI could be augmented with quantitative measurement 
of perfusion, contrast kinetics and radiomics analysis of the 

UF morphology pre- and post-contrast administration. For 
example, the T1-weighted-based DCE-MRI images showed 
the internal UF structure in greatest detail. As a result, 
quantifying T1-weighted DCE-MRI images in future 
studies may improve the predictive performance of an MRI 
logistic regression-based classification model. However, an 
effective non-rigid motion correction algorithm would have 
to be applied first.

Strengths & limitations

The strengths of this study include utilizing a well-known, 
but rarely clinically implemented imaging technique—mp-
qMRI—for a unique application of developing a potential 
imaging biomarker to predict UF growth. Our prospective 
design allowed standardized acquisition in a diverse cohort 
with validated questionnaires. This technique demonstrated 
the feasibility of triaging UFs into slow and fast growth 
potential lesions, so that clinical management can be 
individualized. 

There are limitations to this study. First, we used UF 
growth as the primary outcome. Although it frequently 
correlates with and could be a surrogate marker for clinical 
progression, this is not universally the case with UFs. 
Therefore, prediction of changes in clinical status, such as 
surgery referral or increasing need for intervention may be 
of more clinical utility. Second, the mean follow-up period 
of 16 months might be too short to assess the potential of 
mp-qMRI in predicting long-term UF growth. UFs can 
have variable growth rates, and a longer follow-up period 
would provide more robust data to evaluate the technique’s 
predictive accuracy. Further, the number of participants 
was limited partly due to loss to follow-up during the 
coronavirus disease 2019 (COVID-19) shutdown period. 
This necessitated inclusion of subjects whose follow-up UF 
volume measurements were made during an ultrasound 
exam which might have introduced some heterogeneity into 
the sample. A larger and more heterogeneous participant 
pool with a consistent volume measurement method 
would allow for in-depth analysis of additional clinical and 
demographic variables that could influence UF growth and 
their relationship with mp-qMRI parameters. Additionally, 
the small number of study participants precluded inclusion 
of a larger number of variables into the logistic regression 
model. Larger studies would allow inclusion of a larger 
number of variables in the logistic regression model, as well 
as of non-linear/non-parametric effects and interactions 
between MRI parameters. Deep learning models (which 
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are inherently developed to limit overfitting) could also be 
developed to predict fast growing UFs based on the MRI 
parameters. Ultimately, larger studies are needed to assess 
the generalizability and reproducibility of the findings 
observed in this study. 

Conclusions

We demonstrated the feasibility of using mp-qMRI to 
measure multiple quantitative biomarkers. We further 
demonstrated effective triaging of UFs into a slow-growth 
rate group that can be sufficiently managed expectantly, 
and a fast-growth rate group that might necessitate closer 
surveillance and earlier clinical intervention, with indication 
that they may represent distinct fibroid sub-types. With 
refinement of our technique and validation in larger studies, 
mp-qMRI, independently or as an adjunct to other imaging 
modalities, could be integrated into the management 
of UFs, for individualized care and improved clinical 
outcomes.
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