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ABSTRACT
The brain network is notably cost-efficient, while the fundamental physical and dynamic mechanisms
underlying its economical optimization in network structure and activity have not been determined. In this
study, we investigate the intricate cost-efficient interplay between structure and dynamics in biologically
plausible spatial modular neuronal network models. We observe that critical avalanche states from
excitation-inhibition balance under modular network topology with less wiring cost can also achieve lower
costs in firing but with strongly enhanced response sensitivity to stimuli. We derive mean-field equations
that govern the macroscopic network dynamics through a novel approximate theory.Themechanism of low
firing cost and stronger response in the form of critical avalanches is explained as a proximity to a Hopf
bifurcation of the modules when increasing their connection density. Our work reveals the generic
mechanism underlying the cost-efficient modular organization and critical dynamics widely observed in
neural systems, providing insights into brain-inspired efficient computational designs.
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INTRODUCTION
The interplay between the structure and dynamics of
complex networked systems is a long-standing area
of investigation, covering applications in complex
systems from diverse scientific fields. Currently, re-
search on this topic and applications in the brain and
neuroscience are experiencing rapid growth.

Neurons in thehumanbrain formaveryhuge and
complex dynamic network for efficient functional
processingwith remarkable cost efficiency.Theprin-
ciples underlying its efficiency have been actively
studied in recent years, either froma structural or dy-
namic aspect.

The brain network is very sparse globally:
∼100 billion neurons with ∼1014 synaptic con-
nections each so that the overall density is ∼10–8

in the human brain [1]. However, the overall low-
density connectivity is organized in a hierarchical
manner from local circuits and cortical sheets to the
whole-brain connectome [2,3]. Thus, a prominent
feature of brain organization is that it is globally

sparse with hierarchical, relatively dense, modular
architectures [4–6], which is economical in network
wiring since most of the connections are in the
short range. There is ample evidence that brain
networks can achieve local wiring cost minimization
from the brain structure [7,8] and a trade-off
between global wiring cost and processing efficiency
[9,10].

Brain activities consume a low energy power
of only ∼20 W, which is remarkably energy effi-
cient when compared to digital computers [11]. Dy-
namically, the irregular and sparse firing of neurons
[12] can be collectively organized as oscillations and
critical avalanches across different scales [13–16].
Such ‘scale-free’ dynamic activities were originally
explained by critical branching theory [13], inwhich
critical avalanches emerge near the transition point
between a silent and an overactive phase. Later
experimental evidence [14,17] supports that the
transition point between an asynchronous and a
synchronous phase better explains the observed
critical avalanches, especially in terms of the exis-
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Figure 1. Diagram of the model neural network architecture. Neurons are placed in
separated squaremodules in 2D space (top), mimicking the cortical sheet. Two network
wiring patterns are distinguished: globally random topology (left) with equally dense
intra- and inter-module coupling and modular topology (right) with dense intra-module
coupling but sparse inter-module coupling. In this illustration of the model, the strength
of coupling denotes the number of connections.

tence of different critical exponents [14,18,19] sat-
isfying scaling relations [20]. Functionally meaning-
ful avalanche dynamics in critical synchronous tran-
sition states enable neurons to fire at a low rate
[21]. Since cortical metabolic energy usage is dom-
inated by action potentials and synaptic transmis-
sion [22–26], the avalanche dynamic is also en-
ergy economical to maintain the sustained spon-
taneous (resting) state, which consumes the ma-
jority of brain metabolic cost [27]. Finally, crit-
ical states are functionally beneficial by provid-
ing a broad dynamic range in response to stimu-
lations [28,29] and thus a sensitive standby state
for the brain to respond to constantly changing
environments [30].

Although it is recognized that metabolic cost is
a unifying principle governing neuronal biophysics

[31], the fundamental mechanism underlying the
economical interaction between structures and dy-
namicmodes at the neural circuit level is notwell un-
derstood. Specifically, how do the modular network
(MN)structure and critical dynamics jointly achieve
structural and dynamical optimization for energy-
efficient processing?Deciphering thesemechanisms
is also important for developing brain-inspired effi-
cient computing. Here, we address these questions
with a biologically realistic neural dynamic model of
excitation-inhibition (E–I)-balanced [32,33] spik-
ing neuronal networks clustered in two-dimensional
(2D) space to represent the resting-state dynamics
on a cortical sheet composed of microcolumns. In-
terestingly, when rewiring the initial globally sparse
random network (RN) into locally dense MNs,
the firing rates decrease, the self-sustained dynam-
ics change from asynchronous states to critical
avalanche states, and the response sensitivity to
weak transient external stimuli is greatly enhanced.
Theoretically, we reveal the enhanced response of
neurons by clustered firing and elucidate the dy-
namic transition via a Hopf bifurcation induced by
denser connections within modules during rewiring
through a novel mean-field theory. Overall, our in-
tegrative study of cost-structure-dynamics-function
relationships in neural networks finds that locally
dense connectivity under E–I-balanced dynamics
appears to be the key ‘less-is-more’ solution to
achieving cost-efficient organization.

RESULTS
Dynamic transition from RN to MN
We study a model of N = 5 × 104 neurons spread
on a 2D plane. Considering that other tissues, such
as vessels, may separate microcolumns of neurons,
neurons are randomly placed on Nm = 100 square
regions (modules). Modules are separated by
blank space (Fig. 1 top), and each of the mod-
ules contains 500 neurons (80% excitatory and
20% inhibitory). Initially, we construct an RN
by randomly connecting each neuron pair with a
probability Pc ( Pc = 0.0017 in the main text).
To build an MN, inter-modular links are rewired,
with a probability Pr , into the same module to
become intra-modular links. The rewiring method
is equivalent to constructing small-world net-
works, an essential feature of brain networks [34].
Here, the essential structural property captured
in our model is that the network consists of cou-
pled modules embedded in space [3,5,9]. The
voltage (membrane potential) V of a neuron in
the E–I network is governed by conductance-
based (COB) leaky integrate-and-fire (IF)
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Figure 2.Wiring-economical modular networks support firing-economical avalanches
and greatly enhance response sensitivity. (a) Spontaneous dynamic properties of the
network during rewiring. From top to bottom: the average firing rate representing spike-
generating cost; spike-transmission cost; self-sustained probability Psus ; current ratio
I / I e ; CV of activity; and the MSD of avalanche distribution from power-law function.
(b) Topological properties of the network during rewiring: normalized wiring cost of the
whole network and connection density within a module. (c) Stimulus-response prop-
erties. The upper two panels show the response size of the membrane potential and
firing rate during rewiring, where the stimulus strength is 1%. The lower two panels
compare the responses of RN (Pr = 0) and MN (Pr = 0.99) under different stimulus
strengths.

dynamics [35],

τ
dV
dt

= (Vr e s t − V ) + g e x (V r ev
E − V )

+ g i nh (V r ev
I − V ), (1)

where τ, Vr e s t , V r ev
E , V r ev

I are themembrane time
constant, resting (leaky) potential, and excitatory
and inhibitory reversal potential, respectively.When
a neuron receives a spike from an E, I neuron, its E,
I conductance g e x , g i nh is changed as g e x → g e x +
�g e , g i nh → g i nh + �g i , respectively, followed by
exponential decay, τ E

d
dg e x
d t = −g e x and τ I

d
d g i nh
d t =

−g i nh . The network does not receive other exter-
nal inputs. To launch the network activity, Gaussian
white noise (GWN) is added to Equation (1) in the
initial 200ms and then removed.Then, we study the
properties of its self-sustained dynamics without any
external inputs. Details of themodel parameters and
simulation methods are provided in Supplementary
Notes II. Neural Dynamics.

As the initial RN is rewired into the MN, it is in-
teresting to find that the spike-generating and spike-
transmission costs of the network are significantly
decreased by orders of magnitude (Fig. 2(a)). Here,
the spike-generating cost is defined as the averagefir-
ing rate, and the spike-transmission cost of a neu-
ron is defined as the product of its firing rate and
the total length of its outgoing synapses (the aver-
age spike-transmission cost shown in Fig. 2(a) is
normalized by the value of RN). These two mea-
sures for running costs mimic the energy cost for
generating spikes and transmitting spikes [36,37].
In addition, since many links become local short-
range connections, the normalized wiring cost (de-
fined as the total Euclidian length of all links, nor-
malized by the value ofRN) is decreasedbyorders of
magnitude, and the connection density within mod-
ules increases, approaching a value of pc ≈ 0.17
(Nm times the whole network density Pc , refer to
Equation (4) below). Such smaller wiring length is
desirable, as the reduced membrane areas of the fi-
bres can reducemetabolic cost and reduce the trans-
mission delay (although synaptic delay is not con-
sidered in our model for simplicity).The wiring cost
reduction is more pronounced for larger networks
withmoremodules (see Fig. S1 anddetailed analysis
in Supplementary Notes I. Network Setting). Thus,
MN structures reduce both the wiring and running
costs.

The initial large and sparse RN can self-sustain
asynchronous activity without external input, giv-
ing a sustained probability Psus = 1.0, which is
maintained as the network is rewired into the MN
(Fig. 1). This self-sustained activity [38] resembles
the resting states of the brain and thus may play a
functional role.The results are similarwhen theover-
all connection density Pc changes (Fig. S4). How-
ever, a denser MN (larger Pc ) with too weak inter-
modular connections (Pr → 1) may not maintain
self-sustained activities (Fig. S4). This breakdown
of self-sustainability can be understood later by dy-
namic analysis of a separate module.

Interestingly, the dynamic modes of networks
also covary during rewiring. RNs exhibit a classical
E–I balanced asynchronous state with Poisson-like
neuronal spiking [32]. We measure the balance by
the net synaptic input current rescaled by the excita-
tory synaptic current (I/IE ) averaged over time and
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Figure 3. Dynamic comparison between RN (pr = 0) and MN (pr = 0.995). (a) Spontaneous activity (the average mem-
brane potential) in a module. (b) The distributions of avalanche size S, avalanche duration T and average size 〈S 〉 given
duration T . The upper/lower rows are the results for RN and MN, respectively. The green lines on top of the avalanche size
and duration distribution under critical dynamics indicate the ranges of estimated power-law distributions. (c) Trial-averaged
mean membrane potential (left) and mean firing rate (right) of a module, with transient stimuli (strength 1%) applied at the
time marked by the arrows.

neurons. It maintains ∼0 when an RN is changed
into anMN (Fig. 2(a)), suggesting themaintenance
of overall balance.The asynchronous state in the RN
has a noisy fluctuation of the mean voltages around
an equilibrium value (Fig. 3(a), upper panel). Spikes
in the MN are clustered yet preserve irregular fea-
tures and are interrupted by temporally silent peri-
ods (refer to Fig. S3(d) for raster plots of the spik-
ing time in a module in an MN), exhibiting tempo-
ral dynamic variability in mean voltages (Fig. 3(a),
lower panel), which can be measured from the CV
(coefficient of variability, defined as standard devi-
ation over absolute value of the mean) of the mean
voltages of modules in each millisecond (Fig. 2(a)).

Importantly, MNs support critical neuronal
avalanches in modules. Here, the time bin for
measuring avalanches is the average inter-spike
interval (ISI) of the merged spiking train [13]
in a module. When rewiring an RN into a strong
MN (e.g. Pr = 0.995), the avalanche size and
duration distribution of a module changes from
exponential decay to a power-law (Fig. 3(b)).

Statistical tests and estimations of critical exponents
are made by an accustomed truncation algorithm
[39]. Power-law avalanche size and duration
distributions P (S) ∼ S−τ , P (T) ∼ T−α and
〈S 〉(T) ∼ T1/συz (τ = 2.173, α = 2.426,
1

συz = 1.367 with p value > 0.2) are found
in the truncated ranges, where scaling relation
α −1
τ −1 = 1

συz [20] approximately holds (error
∼0.15). The size distribution is fitted into a power-
law function [39], and its mean square deviation
(MSD) from the fitted curve in Fig. 2(a) bottom
shows that modules in an MN with Pr ≥ 0.99 have
avalanches with power-law distributions, exhibiting
features of criticality. Other measurements of
avalanches in MNs associated with the threshold
of the average membrane potential are presented
in Fig. S5, which also exhibits power-law distribu-
tions. This transition from asynchronous spiking
to critical avalanche dynamics is the approach to a
continuous synchronous transition point, as seen
from the increase in the CV of activity (Fig. 2(a)).
The self-sustained activity of coupled modules
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in the critical states provides the ideal scheme in
which networks can work with a low firing rate. The
reduced firing rate at criticality is a feature of the
critical synchronous transition model [21], whereas
the traditional branching process model does not
exhibit this property—the firing rate of branching
processes at critical states should be larger than that
at subcritical states.

Critical states also induce greatly enhanced re-
sponse sensitivity to transient stimuli. Here, the
stimulus is modelled by raising the voltage V to
−40mVof a proportion x of the neurons in allmod-
ules. We call x the stimulus strength. These neu-
rons driven above the firing threshold emit spikes
immediately, similar to optogenetic stimulation in
experiments.The response sensitivity of a systemcan
be reflected by the returning process of a signal to
its baseline value after a transient perturbation. We
measured the response in membrane potential and
firing rate of the networkmodules.The size of the re-
sponse is defined as ∫t0+T

t0 | f (t) − fb |dt , which is
the area between the signal f (t) (the trial-average
voltage or firing rate of the network) and its rest-
ing value fb , within a window of T = 250 ms,
beginning from stimulus onset at t0 (see also de-
tails in Supplementary Notes II. Neural Dynam-
ics). As shown by the stimulus-induced trial-average
voltage and firing rate of a module (Fig. 3(c)), the
response of MNs is much larger and more pro-
nounced than that of RNs. Interestingly, MNs show
a stronger damped oscillation-like response pattern,
which is a characteristic of event-related potentials
in electroencephalogram signals of the brain’s re-
sponse to stimuli [40]. Importantly, both in mem-
brane potential and in firing rate, MNs with crit-
ical avalanches exhibit response sensitivity that is
much higher than RNs with asynchronous spiking
activity for small stimulus strength (Fig. 2(c)). Fur-
thermore, we check the dynamic range, defined as
� = ln(x0.9/x0.1), where x0.9, x0.1 are the stimu-
lus strengths that induce 90% and 10% responses be-
tween theminimum andmaximum values on a loga-
rithmic scale, as in [28,29]. The dynamic ranges of
MNs (�V = 6.28, �r = 5.47) are greater than
those of RNs (�V = 4.25,�r = 4.25).

The above structure-dynamics relationships are
robust with respect to the overall connection den-
sity Pc (see Fig. S4) and hold in an extended mod-
elling procedurewhere the number of inter-modular
links decays with distance (see Fig. S6). In a word,
MNs can support cost-efficient critical dynamical
modes with greatly enhanced response sensitivity
to encode variable input strength, whereas globally
sparse RNs are both costly in architecture and in
running and cannot properly respond to weak input
signals.

Structural correlation and dynamic
transition of a single separate module

The key features in the structure-dynamics relation-
ship canbeunderstood froman isolatedmodule sep-
arate from the whole network but subjected to a
background excitatory Poisson input train with rate
r i n . Here, we use r i n = 50 Hz to approximate the
weak input receivedby a neuron fromothermodules
in the highly rewired region in the original network.
As the rewiring probability Pr increases, the local
connection within a module becomes denser (Fig. 1
and Fig. 2(b)). For a separate module, as its con-
nection density pc increases, neurons tend to have
more common neighbours in the module, the com-
mon signal received by a pair of neurons becomes
stronger, and their output spikes can be more corre-
lated, as shown in Fig. 4(a).

This correlation in spiking changes the internal
interactions in the network. Figure 4(b) shows the
synaptic current of a randomly selected neuron. For
low density, the net input current fluctuates slightly
around zero due to strong E–I balance (Fig. 4(b),
upper panels), and the distribution is close to a nor-
mal distribution (Fig. 4(c)). With higher density
where spike correlation becomes prominent, cor-
related excitatory spikes induce quick activation of
the network, followed by the activation of inhibitory
neurons after an effective delay (due to slower in-
hibitory synaptic time), and then the activity is de-
pressed. Thus, the net current exhibits oscillations
around zero (thus, the network maintains the E–I
balance on average), as shown in the lower panels of
Fig. 4(b), and its distribution has a large tail on the
positive side (Fig. 4(c)). The dynamic pattern is an
alternation between synchronized firing and quies-
cent states with no spikes (Fig. 4(b), lower panels).

Furthermore, as the module becomes denser,
the self-sustainability of the module decreases
(Fig. 4(a)). Here, self-sustainability is tested by
turning off the external inputs, i.e. letting r i n = 0
after the initial 200 ms. The activity almost can-
not be sustained when pc > 0.17, which is the
module density in the original MN when Pr → 1
(Fig. 2(b); see also Equation (4) below). The
weaker sustainability of a denser network is a result
of the clustered firing dynamic mode (Fig. 4(b),
lower panel).The silent period duringwhich no neu-
ron fires increases with pc (Fig. 4(a)). If this period
is too long, all recurrent inputs drop out, and the
network activity dies out since there is no external
driving.

Under fixed weak external background inputs
r i n = 50 Hz, as the density pc increases, the net-
work dynamics undergo a transition from asyn-
chronous firing patterns (Fig. 4(b), upper panel)
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Figure 4. Spontaneous dynamic of a separate module. (a) The change in properties versus the density pc . From top to bottom:
topological correlation; spike correlation; sustained probability; averaged maximum silent period; the MSD of avalanche
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received by a neuron for pc= 0.05, 0.17 and 0.20. (d) Avalanche distributions (as Fig. 3(b)) for pc = 0.05 (red), 0.17 (blue)
and 0.29 (purple).

to critical avalanches (Fig. 4(b), lower panel)
with reduced firing rates (Fig. 6(b)). The MSD
of the avalanche size distribution from its best-
fitted power-law function in Fig. 4(a) shows a
minimum at ∼pc = 0.18, close to the transi-
tion point of self-sustainability. Typical avalanche

distributions for subcritical, critical and supercriti-
cal dynamic modes for pc = 0.05, 0.17 and 0.29
are shown in Fig. 4(d). Power-law avalanche size
and duration distributions P(S) ∼ S−τ , P (T) ∼
T−α and 〈S 〉(T) ∼ T1/συz (τ = 2.122, α =
2.397, 1

συz = 1.298 with p value> 0.2) are found
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for pc = 0.17, where the scaling relation α−1
τ−1 =

1
συz [20] approximately holds (error∼0.05).

Extended simulation of a separate module
(Fig. S7) shows that this dynamic change is in-
dependent of input strength r i n , while the critical
density pc , where critical avalanches emerge,
depends on r i n . Thus, the emergence of neuronal
avalanches can be understood from the large
transient fluctuations in the postsynaptic currents
induced by correlation, leading to intermittent
activities with lower rates.

Effect of correlation: insight from a
simplified model
To quantitatively illustrate the impact of input cor-
relation on response sensitivity under E–I-balanced
dynamics, we can consider a simplified model as
follows. A single neuron receives spike inputs from
other K = 200 Poisson excitatory spike trains. Each
of the received spikes generates a unit of postsy-
napse current lasting for τs = 0.01 s.The input sig-
nal of the neuron is the summation of these arriv-
ing spikes minus a constant equal to the mean cur-
rent generated by these spikes to mimic the E–I bal-
ance.The input correlation is introduced by copying
a common Poisson spike train into all input trains
[41]; see Fig. 5(a) for a paradigm illustration. To
construct spike trains with rate r and correlation C ,
the common spike train has a rate α = Cr , and
independent spike trains have rates β = (1 − C )r .
Assuming a threshold (θ = 20) of the input sig-
nal above which the neuron fires a spike, we can
numerically obtain the input-output rate response
curves (Fig. 5(c)). Compared with independent in-
put trains (C = 0), the correlation in inputs in-
duces a positive tail in the distribution of the input

signal (Fig. 5(b)), qualitatively capturing the feature
of the IF module (Fig. 4(c)). In the simulation ex-
ample of Fig. 5(b), the common spike train is copied
into a portion of randomly selected input synapses at
different times (such that the probability that more
synapses receive spikes simultaneously is lower), re-
sulting in a decaying positive tail in the distribution
of the input signal when C = 0.05, which quan-
titatively resembles the observation from the spik-
ing neural network simulations (Fig. 4(c)). We can
see that the correlation increases the output rate
when the input rate is the same (Fig. 5(c)). More-
over, this simplified model allows an analytic treat-
ment to explain the effect of the correlation on the
response rate (see Supplementary Notes III. Analy-
sis of the Simplified Model with Correlated Inputs
for details). The theoretical results (red dashed line
for C = 0 and blue solid line for C = 0.05 in
Fig. 5(c)) fitwell to the simulation results of this sim-
plified model.

Hence, the correlation in spikes injected fromdif-
ferent recurrent synapses improves the responsive-
ness of neurons.With input correlation and response
sensitivity, each neuron can maintain spike genera-
tion when the overall firing rate is low.

Mean-field theory of single
module dynamics
To further understand the dynamic mechanism un-
derlying the transition of dynamic modes together
with the reduction in firing rate, we derive the equa-
tions of average neural activity in each module and
the interaction among themodules by a novelmean-
field technique [19] (see Method and Supplemen-
tary Notes II. Neural Dynamics for details). The
field equations of a single separate module with
connection density pc receiving excitatory Poisson
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background input trains with rate r i n are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dVα

dt = Vr e s t−Vα

τ

+
[
τ E
d g e

(
r i n +

√
ri n
Nα

ξα(t)
)

+ 
E

]
× (

V r ev
E − Vα

) + 
I
(
V r ev
I − Vα

)
)

d
α

dt = −
α

τα
d

+ gαNα pc Qα, α = E , I

,

(2)
whereVE , VI are the averageE, I voltages,Qα(t) =
1/[1 + exp( Vth−Vα

σα

π√
3
)] is the average firing rate of

α neurons, 
E , 
I are the average excitatory, in-
hibitory synaptic time courses received by the neu-
ron and gα = �gα

τ
. ξα are GWN terms. σα are effec-

tive parameters to construct the voltage-dependent
mean population firing rate (see Method for more
details). The strong complexity of COB IF dynam-
ics challenges an analytical (self-consistent) estima-
tion of the effective parameters σα [19]. Taking dif-
ferent fixed σα , the field equations can qualitatively
predict the decay of the rate with connection den-
sity pc (Fig. 6(b)). To achieve the best prediction,
we numerically estimate the effective parameters σα

through the formula

σα = Vth − V s s
α

ln
(
(Qs s

α )−1 − 1
) π√

3
(3)

from simulations of the single module IF spik-
ing network. The simulations can numerically
obtain the steady-state mean voltage V s s

α and
mean firing rate Qs s

α of α neurons. The results of
σα from modules with different densities pc are
shown in the bottom panel of Fig. 4(a). Under
this setting, the field equations can well quan-
titatively predict the decrease in firing rate as
pc increases (Fig. 6(b)). Note that qualitative

prediction can already be achieved by fixing the
effective parameters σα value in Equation (2)
(Fig. 6(b)). Importantly, the field equations reveal
that the change in dynamics is associated with a (su-
percritical) Hopf bifurcation. The dominant eigen-
value of the equilibrium in Equation (2) is com-
plex, and its real part approaches zero as pc increases
(Fig. 6(b)). Thus, the firing rate oscillation emerges
by approaching the Hopf bifurcation under noise
perturbation,which induces critical avalanches [19].
However, the finite-size effect in a small module
(500 neurons) hinders the precision of a mean-field
theory. Thus, in the spiking IF model, the MSD

achieves a minimum at ∼pc = 0.17 (Fig. 4(a)),
whereas the field equations donot reach theHopf bi-
furcation point, and the dynamic is perturbed to bi-
furcationbynoise.Note that aHopf bifurcation indi-
cates that a periodic motion emerges from zero am-
plitude, corresponding to the continuous increase of
the synchrony in the spiking network (Fig. 4(a)).
The CV of activity, measured by the firing rate se-
ries of field equations, grows as the pc increases
(Fig. 6(b)). Finally, the response size of the voltage
computed from the field equations (Fig. 6(b)) also
qualitatively predicts the increase in response sensi-
tivity for denser modules (examples of pc = 0.05
and pc = 0.25 are shown in Fig. 6(a), compared to
Fig. 3(c)). This is because when approaching a bi-
furcation point, the system will respond more sensi-
tively andwill take a longer time to damp back to the
fixed point after perturbation, a phenomenon called
critical slowing down [42].

Mean-field theory of the MN
The above investigation of separated modules with
various connection densities under weak external
background driving provides an understanding of
the change in dynamic modes and firing rates with
respect to the rewiring probability Pr in the origi-
nal MN (Fig. 1). First, there is a correspondence be-
tween the density in a module pc and the rewiring
probability Pr :

pc = Pc (1 + (Nm − 1)Pr ) (4)

(refer toEquation (S1.5)), as shown inFigs 6(c) and
2(b). Furthermore, the field equations of the whole
MN can be written as (seeMethod and Supplemen-
tary Notes II. Neural Dynamics for details)⎧⎪⎨

⎪⎩
dV k

α

dt = Vr e s t−V k
α

τ
+

[
τ E
d g e

(
r i n +

√
ri n
Nα

ξ k
α (t)

)
+ 
k

E

] (
V r ev
E − V k

α

) + 
k
I
(
V r ev
I − V k

α

)
d
k

α

dt = −
k
α

τα
d

+ gαNα Pc [(1 + (Nm − 1) Pr ) Qk
α + ∑

l �=k
(1 − Pr ) Ql

α, α = E , I, k = 1, . . . , Nm
,

(5)

with V k
α , 
k

α, Qk
α, ξ k

α corresponding to the quan-
tities of α neurons in the k-th module (see Method
for more details). Thus, the whole MN can be
considered as Nm coupled identical neural oscil-
lators. During the rewiring process, the coupling
strength between different modules (∼1 − Pr ) de-
creases, whereas the self-coupling strength (∼1 +
(Nm − 1)Pr ) increases. In this process, although
different modules become less affected by each
other, the increase in their internal density signifi-
cantly shapes the dynamic properties of each mod-
ule, as revealed in separated modules (Fig. 4). Here,
the effective parameters σE , σI to construct Qk

α
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Figure 6.Mean-field theory to understand the dynamic transition. (a) Examples of the mean membrane potential and mean
firing rate evolution of the single-module field equations when pc = 0.05 and 0.25, with transient stimuli applied at the time
marked by the arrows. (b) Properties of the single-module field equations with different densities pc . From top to bottom: the
firing rate (circles are results from spiking network simulation, curves are results by fixing σα = 6, 7, 8, and by ‘optimal’
σα given in Fig. 4(a)); real part of the eigenvalue of the fixed point; CV of activity; response size of membrane potential.
(c) Properties of the coupled field equations with different rewiring probabilities Pr . From top to bottom: the corresponding
density within a module; the firing rate; CV of activity; response size of membrane potential.

in Equation (5) depend on the rewiring probabil-
ity Pr through their optimal dependence on pc in
separated modules shown in the bottom panel of
Fig. 4(a) and the relationship between Pr and pc
(Equation (4)). The numerical results in Fig. 6(c)
show that the coupled field equations qualitatively
predict the decrease in firing rate and increase in
CV of activity and response sensitivity to transient
stimuli for increasing rewiring probability Pr , as ob-
served in the spiking neural model in Fig. 2. Further-
more, Equation (5) with r i n = 0 also predicts a de-
crease in the nonzero firing rate (Fig. 6(c)), which
is a qualitative prediction of self-sustainability dur-
ing rewiring (Fig. 2(a)). Note, however, that the
mean-field analysis here does not capture the ef-
fect of changes in input patterns (e.g. increased in-
put correlation) of a module during the rewiring
process of the MN. This is a source of prediction
errors that lead to the difference between single-
module field equations and amodule in the coupled-
modules field equations when the latter is con-
structed by the σα parameters of the former (refer
to Fig. S8). An improvement in the future may be
made by assuming oscillatory input in the coupled-
modules fieldmodelwhere the oscillatory amplitude
increases with rewiring. To conclude, themean-field
theory predicts the dynamical transition (approach-

ing a Hopf bifurcation) of a module with increas-
ing internal density, and this emergent behaviour is
maintained for thewholeMNwithmutually coupled
modules when rewiring the inter-modular links to
intra-modular links.

CONCLUSION AND DISCUSSION
In this study, we have unveiled the principle of neu-
ral networks allowing cost-efficient optimization in
both structure and dynamics simultaneously. There
have been many studies on either side, considering
the optimization of brain network structure [7–9]
or energy-efficient neural dynamics [22–26]. For
example, energy-efficient cortical action potentials
are facilitated by body temperature [25], and cellu-
lar ion channel expression is optimized to achieve
function while minimizing the metabolic cost of
action potentials [31]. However, most previous
studies considered the efficiency of the network
structure (wiring cost) or the efficiency of dynamics
(running cost) separately. Here, considering both
structure and dynamics at the circuit level, we show
that a wiring-economicalMN can support response-
sensitive critical dynamics with a much lower run-
ning cost while maintaining self-sustainability. This
is a notable counterintuitive ‘less-is-more’ result
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because we obtained greatly enhanced functional
values with significant decreases in cost rather than
a trade-off between them.

In ourmodel, the efficiency of activity is achieved
by critical avalanche states. Different from the tradi-
tional critical branching region, the critical dynamics
in the synchronous transition region simultaneously
achieve greater response sensitivity and a lower
firing rate. Previous studies have shown that critical
avalanches can appear under various network
topologies, for example, scale-free networks with
small-world features [43]. Here, we show that a
locally dense but globally sparse MN is an efficient
organization of the network structure that enables
both a low global wiring cost and response-
sensitive critical dynamics with a low running
cost. It would be interesting to further explore its
dynamic advantages on specific cognitive tasks
such as working memory recall and decision
making.

The origin and mechanism of functionally
sensitive critical dynamics in neural systems
[13–16,28–30] is a long-standing, challenging
and controversial topic. Considering the physical
mechanism that supports such a co-optimization
of structure and dynamics, here we reveal that
with increasing topological correlation in the E–I
balanced network, the spike correlation increases,
and so does the fluctuation of the inputs received
by neurons. In this case, neurons can be activated
by a lower firing rate, and the network has higher
sensitivity. From the perspective of nonlinear
dynamics, these features are captured by a novel
mean-field analysis, which reduces the whole MN
into coupled oscillators describing the macroscopic
dynamics of eachmodule.We elucidate the dynamic
mechanism for producing avalanches in proximity
to a Hopf bifurcation in the mean field. Close to
the bifurcation point, the resulting synchronized
spikes in each module are temporally organized as
critical avalanches. This stronger collective firing
rate variability allows greater computation and
coding power [44]. In the highly (yet not totally)
rewired MN, the sparse inter-modular connections
can provide weak external input to a module from
other modules. Meanwhile, as modules are dense
enough to be around the response-sensitive critical
dynamic states, these weak inputs are sufficient to
maintain the whole MN in self-sustained states with
low rates.

In principle, the analytical theory for treating bio-
logically plausible COB IF neuronal networks is still
an open question [45]. Our approximation semi-
analytical mean-field technique serves as an effective

theory to study the macroscopic dynamics of such
realistic networks. It is important to stress that our
work put several important features of neural sys-
tems into an integrated framework. Spatial embed-
ding of neural circuits under the wiring cost con-
straint gives rise to local dense connections and
modular organization [7–9]. The E–I balance is
a fundamental property of neural circuits [32,33].
Collective activities such as critical avalanches and
oscillations are pronounced dynamic features of
neural networks [13–16,28–30].Ourmodelling and
theoretical analysis framework reveals intricate in-
teractions among wiring and running costs, MN
topology, critical avalanchedynamicmodes and sen-
sitive responses to weak stimulations. Thus, it pro-
vides an integrative principle for structural-dynamic
cost-efficient optimization in neural systems. Our
integrative studies with generic network manipula-
tion and novel mean-field theory with realistic neu-
ral dynamics can be extended to coupled cortical ar-
eas to offer an understanding of critical dynamics
across the whole brain [46,47] based on a hierar-
chicalmodular connectome [48]. Furthermore, spa-
tial networks with connections to only the nearest
neighbours can exhibit propagating waves with criti-
cal dynamic properties [49]. It would be interesting
to generalize our model to such nearest-neighbour
coupling scenarios and explore the effect of ex-
trasparse long-range connections in such models.
This type of model may share similar principles re-
vealed in this study, as in our extendedmodel where
short-distance links are dominant (see Fig. S6).The
physical principles revealed in our work can guide
further development of brain-inspired efficient com-
puting [50].

METHOD
Mean-field theory of IF neural dynamics
In this section, we present the outline of the mean-
field theory for deriving the field equations Equa-
tion (2) and Equation (5). More details are pro-
vided in Supplementary Notes II. Neural Dynamics.
In our model, for the i-th neuron in the k-th mod-
ule, we denote its spiking train as {t ki (n), n ≥ 1},
its α (E or I) neighbours in the l-th module as ∂

l ,α
k,i ,

its voltage as V k
i (t), its input conductance received

from recurrent excitatory, recurrent inhibitory neu-
rons as G E k

i (t), G I ki (t), its external input spike
trains (with rate r i n) and input conductance from
external neurons as {Tk

i (n), n ≥ 1} and GOk
i (t)

(if there are external inputs). Then, the network dy-
namic equation Equation (1) can be written in the
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following more specific form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV k
i

d t = Vr e s t−V k
i

τ
+ [

G E k
i (t) + GOk

i (t)
] (
V r ev
E − V k

i
) + G I ki (t)

(
V r ev
I − V k

i
)

dG E k
i (t)

dt = −G E k
i (t)

τ E
d

+ g e

⎡
⎣∑

j∈∂
k,E
k,i

∑
n δ

(
t − t ki (n)

) + ∑
l �=k

∑
j∈∂

l ,E
k,i

∑
n δ

(
t − t li (n)

)⎤⎦
dG I ki (t)

dt = −G I ki (t)
τ I
d

+ g i

⎡
⎣∑

j∈∂
k,I
k,i

∑
n δ

(
t − t kj (n)

)
+ ∑

l �=k
∑
j∈∂

l ,I
k,i

∑
n δ

(
t − t li (n)

)⎤⎦
dGOk

i (t)
dt = −GOk

i (t)
τ E
d

+ g e
∑

n δ
(
t − Tk

i (n)
)

, (6)

where g e = �g e
τ

, g i = �g i
τ

.
Denote V k

E = 〈V k
i 〉i∈k,E , V k

I = 〈V k
i 〉i∈k,I ,


k
E = 〈G E k

i 〉i∈k,E or k,I and 
k
I =

〈G I ki 〉i∈k,E or k,I . We first adopt a diffusion approxi-
mation that GOk

i (t) ≈ τ E
d g e (r i n + √

r i nξ k
i (t)),

with {ξ k
i (t)}k, jbeing independent standard GWNs.

Thus, 〈GOk
i (t)〉i∈k,α ≈ τ E

d g e (r i n +
√

ri n
Nα

ξ k
α(t)),

with {ξ k
α(t)}k,αbeing independent standard

GWNs. Then, taking the average 〈 〉i∈k,α to the
first equation of Equation (6), with the decou-
pling approximation [〈G E k

i + G I ki ]V
k
i 〉i∈k,α ≈

〈G E k
i + G I ki 〉i∈k,α〈V k

i 〉i∈k,α , we obtain the first
equation of Equation (5). Next, the firing rate of
the α neurons in the k-th module can be approx-
imated as Qk

α(t) = 〈∑n δ(t − t kj (n))〉 j∈k,α =
1/[1 + exp( Vth−V k

α

σα

π√
3
)] [19]. This form essentially

captures the sub- and supra-threshold microscopic
dynamics of a spiking network, that is, Qk

α(t)
represents the proportion of α type neurons that
spike between t and t + �t (�t is an infinitely
small quantity) as well as the mean firing rate
of α type neurons at time t with unit per ms.
Here, σα are effective parameters to construct the
voltage-dependent mean population firing rate.
Note that this approximation scheme based only on
the first-order statistics neglects several factors that
affect the accurate firing rate, including higher-order
statistics, noise correlation and refractory time.
Thus, it does not have an analytical form, and σα

should be estimated numerically.
Under the mean-field approximation, we

have 〈 ∑
j∈∂

l ,α
k,i

∑
n δ(t − t lj (n))〉i∈k,E or k,I =

nklα Ql
α(t), where nklα is the average number of α

neighbours in the l-th module of a neuron in the
k-th module. Thus, nklα = pkl Nα , where pkl is the
connection probability from module l to module k
so that

pkl =
{
Pintr a = Pc (1 + (Nm − 1) Pr ) , k = l

Pi nter = Pc (1 − Pr ) , k �= l
.

(7)

Taking 〈 〉i∈k,E or 〈 〉i∈k,I to the second and third
equations of Equation (6), we get the second equa-
tion of Equation (5), which finishes the construction
of the coupled field equations.

In the limit of Pr → 1 (all rewired), modules are
almost separated. Let Pr = 1 in Equation (5), and
we obtain the field equations corresponding to one
separate module with additional external excitatory
inputs, i.e. Equation (2), with pc = Pc Nm being the
connection density of the module.
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