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Abstract

Seasonal influenza epidemics offer unique opportunities to study the invasion and re-inva-

sion waves of a pathogen in a partially immune population. Detailed patterns of spread

remain elusive, however, due to lack of granular disease data. Here we model high-volume

city-level medical claims data and human mobility proxies to explore the drivers of influenza

spread in the US during 2002–2010. Although the speed and pathways of spread varied

across seasons, seven of eight epidemics likely originated in the Southern US. Each epi-

demic was associated with 1–5 early long-range transmission events, half of which sparked

onward transmission. Gravity model estimates indicate a sharp decay in influenza transmis-

sion with the distance between infectious and susceptible cities, consistent with spread

dominated by work commutes rather than air traffic. Two early-onset seasons associated

with antigenic novelty had particularly localized modes of spread, suggesting that novel

strains may spread in a more localized fashion than previously anticipated.

Author summary

The underlying mechanisms dictating the spatial spread of seasonal influenza remain

poorly understood, in part because of the lack of spatially resolved disease data to quantify

patterns of spread. In this paper, we address this issue by analyzing fine-grain insurance

claims data on influenza-like-illnesses over eight seasons in ~300 locations throughout the

United States. Using statistical methods, we found that seven of eight epidemics likely

originated in the Southern US, that influenza spatial transmission is dominated by local

traffic between cities, and that seasons marked by novel influenza virus circulation had a

particularly radial, localized spatial structure. These findings are in stark contrast to pre-

vailing theories of influenza spatial transmission that suggest that transmission is favored

in low humidity environments and that spread is a dominated by air traffic between popu-

lous hubs.
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Introduction

Understanding the spatial spread of infectious diseases is essential for clarifying mechanisms

of transmission and targeting control interventions. Seasonal influenza offers a unique oppor-

tunity to study the spatial diffusion of a directly transmitted pathogen in partially immune

populations due the yearly invasion, extinction and subsequent re-invasion of viral strains in

the northern and southern hemispheres [1–4]. Detailed characterization of the underlying

mechanisms of spread has, however, been hindered by lack of spatially resolved incidence data

spanning multiple seasons [5].

A number of studies have explored the roles of human mobility, demography, and environ-

mental factors in the spread of seasonal influenza on global and regional scales. These studies

have suggested the following “principles”: (i) at a global scale, the worldwide air transportation

network serves as the predominant channel for the dissemination of pandemic and seasonal

influenza viruses, A/H3N2 viruses in particular [3,6–11]; (ii) at the regional scale of the US,

short-distance work commutes are a major driver of the spread of seasonal outbreaks, though

longer-range air traffic has been implicated as well [1,12–14]; (iii) influenza is marked by

rapid, hierarchical spread between populous centers followed by subsequent spread to less

populated areas [1]; (iv) low-humidity environments favor viral stability and thus transmission

of influenza [15,16]. These sometimes-conflicting findings highlight the complexity of influ-

enza spatial transmission across geographic scales [5] and indicate that more detailed analyses

are necessary to deepen our understanding of the drivers of spread.

Though rare, influenza pandemics offer valuable opportunities to study the dissemination

of an invasion wave in a susceptible population, with higher than usual attack rates and inten-

sified data collection efforts. Previous work has indicated that gravity models [17] can provide

parsimonious descriptions of the spatial diffusion process of pandemic waves, particularly for

the 1918 pandemic in England and Wales [18], and the 2009 A/H1N1pdm pandemic in the

US [19]. These models describe the pairwise spatial interaction between communities as a

function of population size and distance, each tuned by power-law parameters. A previous

analysis of the 2009 pandemic across the continental US revealed a surprisingly local and radi-

ally diffusive wave of spread originating in the Southeastern US [19]. The observed pandemic

trajectory ran contrary to the prediction of fast hierarchal invasion among populous and inter-

connected locales followed by slower “in-filling” of the interspersed smaller communities. We

currently have no guiding principles for when or whether we should expect such a localized

mode of spread for seasonal epidemics since there are substantial differences in both the age-

groups infected and in population-level immunity during epidemic v. pandemic seasons [20].

Further, prior work has indicated that global and regional patterns of influenza spread and

viral persistence differ by subtype, perhaps mediated by differenced in immunity [1,4]. Within

a subtype, prior exposure history and antigenic changes may render specific age-strata differ-

entially immune to the particular viral strain in circulation, in turn affecting patterns of spread.

In the absence of a full understanding of the interplay between prior immunity and disease dis-

semination, mobility studies and simulation models must be validated with real-world inci-

dence data.

Here, we present a detailed analysis of influenza spread between US cities by modeling a

unique set of geo-referenced time series of influenza-like illnesses generated from a large-vol-

ume compilation of outpatient medical insurance claims across the US, spanning 8 influenza

seasons. Our analysis provides the first detailed characterization of seasonal influenza spread

across the continental US and its relation to subtype-differences in susceptibility/contagious-

ness, human mobility and environmental factors.
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Results

Our analysis builds on earlier work indicating that city-level medical insurance claims of

influenza-like-illnesses (ILI) are useful and specific indicators of influenza virus activity across

the US [21]. We extend previous analyses of the autumn wave of the 2009 A/H1N1 pandemic

[19] to study spatial spread among 310 distinct geo-referenced locations across continental

US during the 2002/03 through 2009/10 influenza seasons, covering both mild and severe

epidemics as well as the 2009 pandemic (Table 1, supporting S1 Text, Table A1). Our spatial

analysis relies on estimates of local influenza onsets, defined as the date associated with the

winter breakpoint in ILI incidence for each location in each season (see methods, Fig 1 and

supporting S1 Text, Fig A1). Depending on the strength of the influenza signal, we were able

to accurately estimate the onset times in 135–306 locations in each season (Table 1). First, we

characterize the timing, origin, trajectory, spatial synchrony and long-range transmission

events of each of the 8 epidemics. We subsequently fit power-law gravity models with and

without explicit mobility indicators to the incidence data.

Temporal and spatial patterns in city-level influenza onset times

Fig 2 depicts the proportion of infected locations over time in each season, illustrating variabil-

ity in both the epidemic period and the shape of the epidemic curves. The time for influenza to

reach all US locations ranged from ~11–22 weeks, while the time for 90% of locations to be

infected had a narrower, but still highly variable range (~5–11 weeks, based on the 5th to 95th

percentiles, Table 1). Across seasons, onset times typically clustered between November and

Table 1. Virological and epidemiological characteristics of US influenza epidemics, 2002–2010.

Season Dominant

Subtype

Antigenic characteristics Age distribution (%

5yrs)

Cities

(#)

Time for spread*
(weeks)

Calendar

time**
Long-range

events*** (#)

2002/

2003

A/H1N1 + B CAL99 (A/H1N1) SY97

(A/H3N2)

69.1% 233 10.22 (6.93; 16.25) Dec.-Jan. 2

2003/

2004

A/H3N2 FU02 (A/H3N2) 67.9% 306 11.94 (4.89; 14.00) Oct.-Nov. 1

2004/

2005

A/H3N2 + B CA04 (A/H3N2) 48.2% 285 9.76 (6.27; 12.80) Dec.-Jan. 5

2005/

2006

A/H3N2 + B CA04 (A/H3N2) 59.0% 232 13.17 (10.88; 22.39) Nov.-Feb. 2

2006/

2007

A/H1N1 + B CAL99 (A/H1N1)

WI05 (A/H3N2)

70.8% 208 14.43 (9.25; 20.19) Nov.-Jan. 3

2007/

2008

A/H3N2 + B WI05 (A/H3N2) 55.7% 290 10.35 (3.82; 12.78) Dec.-Jan. 3

2008/

2009

A/H1N1 + B BR07 (A/H1N1)

WI05 (A/H3N2)

71.6% 135 4.43 (4.55; 10.63) Jan.-Feb. 2

2009/

2010

A/H1N1pdm CA09 (A/H1N1pdm)

PE09 (A/H3N2)

62.5% 303 8.48 (8.22, 12.35) Aug.-Oct. 2

Dominant subtype indicates the subtype representing >50% of circulating viruses in a given season. Antigenic characteristics are based on [40–42];

underlined antigenic clusters represent the dominant influenza strain (if any). The 5th column indicates the number of cities for which accurate epidemic

onsets could be estimated, out of a total of 310 cities in the dataset.

*Time for 50% of cities to be infected (Time from the 5th percentile of cities infected to the 95th percentile of cities infected; Time from the first city to be

infected to the last city to be infected).

**Calendar time for 90% of cities to be infected (5th percentile to the 95th percentile).

*** Above ~940km; see main text for details. See supporting S1 Text, Table A2 for additional thresholds for defining the number of long-range transmission

events.

doi:10.1371/journal.pcbi.1005382.t001
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January, with two notable exceptions associated with major influenza seasons in 2003/2004

(Oct.-Nov.) and the 2009 pandemic (Aug.-Oct.). Epidemic curves were generally sigmoidal,

indicating that the majority of transmission events happen over a narrow time interval relative

to the entire length of the epidemic (Fig 2). Notable exceptions were the 2005/2006 A/H3N2

season and the 2009 pandemic, both of which had a fairly linear and steady progression of cit-

ies becoming infected, and the 2006/2007 A/H1N1+B epidemic which appears to have two

“waves” of transmission (Fig 1, Panel 2 and Fig 2).

Maps of estimated influenza onset times reveal clear spatial patterns in all seasons (Fig 3

and supporting S1 Text, Figure A2). Marked radial patterns are observed in at least four sea-

sons: 2002/2003 (the hub of the epidemic is in the Southern US, see also supporting S1 Text,

Figure A4), 2003/2004 (Southern US), 2005/2006 (Southwestern US) and the 2009 pandemic

(Southeastern US). In order to quantify the role of distance on spatial spread, we plot pairwise

synchrony in epidemic onsets as a function of geographic distance (Fig 4). In all seasons except

2006/2007 and 2008/2009, pairwise synchrony decreased with distance up to 1500–2000 km

and departed significantly from patterns expected under the null hypothesis of complete spa-

tial randomness. This spatial signature was most pronounced in 2003/2004, 2005/2006 and the

2009 pandemic, in which between 30–58% of synchrony estimates were significantly different

from the null (Fig 4). In 2003/2004 there was a trend towards increasing synchrony between

US coasts, as indicated by similar epidemic timings in pairs of locations separated by 2500–

3000 km compared to pairs at intermediate distances.

Fig 1. Standardized influenza-like-illness time series from four locations (Denver, CO; Roanoke, VA;

Bryan, TX; Spencer, IA). Onset times for each season are depicted as red dashed lines. The 2003/2004

epidemic and 2009/2010 pandemic are highlighted in pink as these are major influenza seasons associated

with antigenic novelty, where more than 99% of viruses in circulation were of the same subtype (A/H3N2 in

2003/2004 and A/H1N1 in 2009/2010). These major seasons had the most distinct influenza signals, while

few locations experienced an increase in ILI during the mild 2008/2009 epidemic dominated by the A/H1N1

virus.

doi:10.1371/journal.pcbi.1005382.g001

Spatial spread of influenza in the United States
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Fig 2. Cumulative epidemic curves display the proportion of locations infected over time in each season. In each

panel, the x-axis represents weeks since June 1st, with the corresponding calendar months labeled in orange. Each graph

represents 100 possible epidemic curves generated by varying local onset times within estimated bounds of uncertainty. The

tightness of the curves indicates that uncertainty in local onset times has little effect on the epidemic’s overall trajectory.

Epidemic curves are colored according to the dominant subtype in circulation (black corresponds to A/H1N1 + B, blue to A/

H3N2, red to A/H3N2 + B, and purple to A/H1N1pdm).

doi:10.1371/journal.pcbi.1005382.g002
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Geographic origin of epidemics

To better identify the initial focus of each outbreak, we adapted a previously developed method

[6], where the most likely source location is identified as the location that maximizes the corre-

lation between onset times and the geographic distance to the potential source (see methods).

Notably, of the eight seasons studied, seven were likely seeded in the Southern US (Fig 5 and

supporting S1 Text, Figure A4). The relationship between influenza timing and distance to the

source location was particularly pronounced in four seasons (2002/2003, 2003/2004, 2005/

2006 seasons and the 2009 pandemic, supporting S1 Text, Figure A4), echoing earlier syn-

chrony results (Fig 4). The distance signature generally subsided after 1000–1500 km, pointing

to the importance of one or several long-distance transmission events effectively acting as new

sources and obscuring further distance effects.

Long-distance transmission events

We sought to quantify the number and locations of long-distance transmission events in

each season, based on the minimum distance between a newly infected location and the

set of previously infected locations. We generated an empirical distribution of this statistic

across seasons that takes into account uneven geographic sampling, and defined events occur-

ring in the upper 1st percentile of this distribution as long-range transmission events (methods

and supporting S1 Text, Figure A3). Between 1 and 5 such events were identified per season

(Fig 5); ~55% of these events were associated with increased influenza activity in adjacent areas

within a two-week window (within a radius of ~570km). Long-range events generally occurred

early in the epidemic, within the first ~10–30% of cities infected (Fig 5, supporting S1 Text,

Table A2).

Fig 3. Influenza epidemic onset times across eight seasons, 2002/2003-2009/2010 (as estimated based on outpatient influenza-like-illness time

series). Each circle represents a distinct location, and the size of the circle is proportional to the population size of the location. The relative ordering of

influenza onsets is depicted in color, magenta indicating locations with earliest onsets and purple indicating locations with latest onsets.

doi:10.1371/journal.pcbi.1005382.g003
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Mechanistic models of influenza spread

Next, we developed a mechanistic transmission model to identify essential drivers of the spatial

process in each season, inspired by previous work on influenza [18,19] and the foot-and-

mouth disease epidemic in the UK [22] (see methods). The model captures the directionality

of the infectious process, allowing infected locations to transmit disease to susceptible ones.

The probability of transmission is a function of the geographic distance between susceptible-

infectious pairs (power-law parameter, γ), and each location’s susceptibility is treated as a

function of its population size (power-law parameter μ), the number and position of nearby

locations (normalization parameter, ε) and external seeding (ρ). We also considered two alter-

native formulations of this model, where geographic distance is replaced by one of two proxies

of human mobility based on work commutes or air travel.

Overall, models using the geographic distance metric fit the data best across seasons

(Table 2). The range of power-law distance exponents was narrow (ĝ = 2.1 to 2.7, Table 3),

with a median value of 2.2, indicating a sharp decay in the risk of influenza infection between a

susceptible-infectious pair of locations as the geographic distance between the pair increases

(Fig 6). The most extreme values of the distance exponent (ĝ>2.5), were found in the 2006/

2007 season and the 2009 pandemic. In the 2003/2004 season, the sharp decline in the risk of

transmission as a function of pairwise distance (ĝ = 2.2) indicates that the observed synchrony

between the east and west coasts (Fig 4, Panel 2) is likely the result of radial spread from loca-

tions in the Southern and Midwestern US.

Estimates of μ, the dependence of a location’s susceptibility on its population size ranged

from ~0.1–0.35, with a median value of 0.28 (Table 3), indicating that more populated loca-

tions are at relatively higher risk for influenza transmission (Fig 6). Parameter estimates for

external seeding, ρ, varied several orders of magnitude between seasons, from ~0 in the 2005/

2006 season to 0.98 in the 2004/2005 season. External seeding was weaker in seasons with par-

ticularly radial patterns in epidemic onsets—2002/2003, 2003/2004, 2005/2006. The large het-

erogeneity in estimates of ρ across seasons highlights the variable nature of long-distance

transmission events in seeding epidemics during the seasons studied.

Spatial models based on geographic-distance outperformed those integrating mobility-indi-

ces in all seasons except for 2006/2007, where the work commutes-based model fit marginally

better (Table 2). Models incorporating work commutes systematically outperformed those

using air traffic (Table 2, see also supporting S1 Text, Figure A5 for a comparison of connectiv-

ity between the two mobility proxies). Model estimates suggest that the risk of influenza trans-

mission scales with work commutes according to a power law exponent between 0.6–0.8

(median = 0.67, Table 3). To better understand the differences between the models considered

here, we explored the relationships between work commutes, air traffic and geographic dis-

tance (supporting S1 Text, Figure A6). We found that work commutes tend to be more local-

ized than influenza transmission (distance power-laws of ~3.3 for work commutes and ~2.2

for influenza transmission, Fig 6), while air traffic did not scale with geographic distance (sup-

porting S1 Text, Figure A6). Models relying on mobility proxies did not indicate a strong role

for population size (μ) (Table 3).

Fig 4. Pairwise synchrony as a function of pairwise distance in each influenza season (2002/2003–2009/2010). The y-axis in each panel is

a normalized measure of pairwise synchrony in onset times between locations (values near -1 indicate that epidemics start close together in time,

while values near +1 indicate a substantial lag in onset times). The x-axis is distance (kilometers). Each circle represents the mean pairwise

synchrony for pairs of locations falling in 50-km distance bins. The black line segments are 95% confidence intervals for the mean in each bin. The

red band is the expected pairwise synchrony under the null hypothesis of complete spatial randomness obtained by permutation of the onset

times.

doi:10.1371/journal.pcbi.1005382.g004
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Fig 5. Long range transmission events and potential origins of each epidemic. For each season, the

purple circles indicate long-range transmission events (i.e. locations far from the set of infectious locations

that obtain influenza regardless). Blue circles are locations infected within a two-week window from the last

long-range event. Red circles depict the potential outbreak origin in each epidemic. Grey circles are infected

locations before the first long-range event occurred in each season. Panels on the right indicate when in the

epidemic long-range events occurred. Note that the methods used to identify long-range transmission events

and estimate the origin of each epidemic are agnostic of one another; in 2008/2009 an early “long-range

transmission event” appears near the estimated origin of the epidemic.

doi:10.1371/journal.pcbi.1005382.g005

Spatial spread of influenza in the United States
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Interestingly, the importance of the normalization parameter (�) is seen across all models,

as estimates were generally close to 1 and always excluded 0 (Table 3). This provides support

for a density-independent infectious process, at least at the level of sampling in this dataset.

For illustration, a map of the normalization effect indicates that a density-dependent transmis-

sion model (ε = 0) would tend to under-estimate influenza risk in cities with few close neigh-

bors (supporting S1 Text, Figure A7). In other words, under the current sampling scheme, the

least connected cities, generally located in the central part of the US, have a stronger risk of

infection than their neighborhood alone would predict in the absence of normalization.

Finally, we also considered more complex models incorporating other demographic vari-

ables (population size of the infectious locations) and climatic information (absolute humidity

in susceptible locations), but none of these factors provided substantial improvements to the

Table 2. Change in AIC values for the spatial models using geographic distance, work commutes and domestic air traffic as the links between

locations driving inter-city spread, compared to the model with the minimum AIC in each season. The number of cities available for analysis is based

on the subset of 310 cities for which onset time could be estimated and which could be successfully matched with county-level commute data from the census.

Spatial models were not fit to the 2008/2009 epidemic because of lack of detectable influenza onset times in a sufficient number of locations.

Season Cities (#) Geographic distance Work commutes Air traffic

2002/2003 221 0 25.46 78.87

2003/2004 290 0 30.16 105.13

2004/2005 270 0 24.53 129.61

2005/2006 218 0 45.32 161.8

2006/2007 198 9.27 0 -*

2007/2008 270 0 8.31 59.81

2009/2010 281 0 57.42 247.09

*Unique maximum partial likelihood estimates not identified.

doi:10.1371/journal.pcbi.1005382.t002

Table 3. Maximum partial likelihood parameter estimates from the model l tjjHtj
; m; g; ε;r

� �
¼ l0 tj

� �
Nm
j
P

i2Itj

dg

ij

ð
P

k:k 6¼j
dg

jk Þ
ε þ r

� �

, utilizing each of the three

distance metrics considered (geographic distance, work commutes and air traffic). Spatial models were not fit to the 2008/2009 epidemic because of

lack of detectable influenza epidemic onset times (estimated from outpatient influenza-like-illness time series) in a sufficient number of locations.

Seasons: 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2009/2010

Geographic Distance

ĝ^ (SD)* 2.08 (0.2) 2.22 (0.15) 2.30 (0.19) 2.19 (0.13) 2.65 (0.33) 2.18 (0.22) 2.64 (0.16)

m̂^ (SD) 0.11 (0.07) 0.21 (0.06) 0.35 (0.08) 0.31 (0.08) 0.33 (0.09) 0.28 (0.075) 0.15 (0.070)

ε̂^ (SD) 0.59 (0.09) 1.06 (0.07) 0.96 (0.07) 0.86 (0.09) 0.62 (0.12) 0.91 (0.07) 1.16 (0.05)

r̂^ (SD) 0.0014 (0.0012) 0.031 (0.048) 0.99 (0.47) 0 (1.3E-5) 0.084 (0.035) 0.36 (0.20) 0.28 (0.15)

Work commutes

ĝ^ (SD) 0.60 (0.06) 0.67 (0.04) 0.56 (0.05) 0.81 (0.06) 0.73 (0.07) 0.63 (0.06) 0.71 (0.04)

m̂^ (SD) -0.16 (0.12) 0.09 (0.10) 0.05 (0.11) 0.03 (0.11) 0.31 (0.09) 0.05 (0.12) 0.03 (0.10)

ε̂^ (SD) 0.74 (0.07) 0.9 (0.05) 0.74 (0.08) 0.76 (0.06) 0.69 (0.07) 0.7 (0.07) 0.93 (0.05)

r̂^ (SD) 0.0078 (0.005) 0.022 (0.016) 0.10 (0.07) 0.15 (0.07) 20.29 (9.47) 0.32 (0.21) 0.01 (0.008)

Airline traffic

ĝ^ (SD) 2.25 (0.64) 1.54 (0.23) 1.41 (0.52) 0.70 (0.38) -** 1.88 (0.52) 1.28 (0.34)

m̂^ (SD) -0.09 (0.12) 0.14 (0.09) 0.32 (0.11) 0.29 (0.11) -** 0.29 (0.11) 0.15 (0.11)

ε̂^ (SD) 0.98 (0.02) 0.99 (0.02) 0.98 (0.04) 1.04 (0.04) -** 0.98 (0.02) 1.06 (0.02)

r̂^ (SD) 0.064 (0.024) 0.23 (0.073) 19.69 (7.05) 1.45 (0.67) -** 6.69 (2.90) 0.20 (0.08)

*For ease of parameter interpretation, the model using the geographic distance metric was fit by replacing γ with – γ (see methods).

**Unique maximum partial likelihood estimates not identified.

doi:10.1371/journal.pcbi.1005382.t003
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model fit (supporting S1 Text, Table A3). Sensitivity analyses revealed that parameter estimates

were robust to the inclusion of measurements errors in onset times (supporting S1 Text,

Figure A13), and were comparable to those estimated under a fully-specified likelihood

(instead of the partial likelihood used here) (supporting S1 Text, Table A4). These analyses

also revealed that the risk of influenza infection can vary substantially over the time-course of

an epidemic (supporting S1 Text, Table A5, Figures A8 and A9). In further sensitivity analyses,

we refit the semi-parametric models constraining the highly-variable external seeding term ρ
to 0. Under this nested model, estimates of the distance exponent γ were largest in the 2003/

2004, 2005/2006 seasons and the 2009 pandemic, aligning with patterns of localized spread

observed in maps of epidemic onsets (Fig 2) and synchrony analyses (Fig 4; supporting S1

Text, Table A8).

Discussion

Informed disease control and pandemic planning rely on understanding the mechanisms of

and variability in the spatial transmission of influenza. Here we studied the spatial and tempo-

ral dynamics of annual influenza epidemics in the US over eight seasons, leveraging uniquely

spatially-resolved medical claims data on outpatient influenza-like-illnesses (ILI) through an

active research collaboration with a data-warehouse company. To our knowledge, this is the

most detailed and comprehensive study of the city-level spread of influenza over multiple sea-

sons to date, revealing a number of insights and generating hypotheses about the mechanisms

of disease transmission.

Human mobility and the spatial spread of influenza

While it is well accepted that international air travel plays a crucial role in the global dissemi-

nation of seasonal and pandemic influenza viruses [3,6,7,11], the role of air traffic in the

Fig 6. Spatial transmission kernels and demographic effects summarized across seasons. Left panel. Work commutes scale with geographic

distance according to a power law of 3.3 (95% CI: 2.66 to 3.95); this relationship is depicted in blue (See also supporting S1 Text, Figure A6). Based on

our distance-based transmission model, the force of infection between an infectious and susceptible city, λij, scales with geographic distance according

to a median estimated power law of 2.2 (range: 2.08 to 2.65), depicted in red. This indicates that for a 10-fold decrease in distance between an

infectious and susceptible pair of cities, the hazard of infection on the susceptible city increases by a factor of ~158 (range: 120–467). Right panel. The

force of infection on a susceptible city, λj, scales with its population size according to a median estimated power law of 0.28 (range: 0.15 to 0.35). This

indicates that for a 10-fold increase in population size, the hazard of infection on the susceptible city increases by a factor of 1.9 (range: 1.4–2.2).

doi:10.1371/journal.pcbi.1005382.g006
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regional spread of influenza remains debated [1,12–14]. Our study points to a predominantly

localized mode of influenza transmission within the continental US, even though the exact path-

ways of epidemic spread and initial seeding events were variable across seasons. The estimated

risk of transmission decays sharply with geographic distance from an infected location according

to a power-law of ~2.2 (Range: 2.1–2.7). A particularly localized, radial spatial structure was

observed in the 2003/2004 and 2005/2006 epidemics dominated by A/H3N2 viruses and, as

reported previously [19], in the fall wave of the 2009 pandemic dominated by A/H1N1pdm. We

extended previous models of influenza transmission by explicitly connecting disease data with

human mobility proxies and found that models driven by geographic distance or work commutes

systematically outperformed those driven by air traffic. Taken together, these results do not sup-

port domestic air traffic as the dominant mode of spatial dissemination of influenza in the US.

We identified between one and five long-range transmission events per season, most occur-

ring in the first third of each epidemic and half contributing successfully to the observed

dynamics via secondary onward transmission. In model-based analyses, the estimated effect of

external seeding varied more than 10-fold across seasons. Whether domestic or international

air traffic is responsible for these long-range events and the initial seeding of the epidemic is

an important area for future research, which would benefit from complementary analysis of

phylogenetic data [5,11,23].

Previous work has indicated that work commutes are an important driver of the inter-state

spread of influenza in the US [1,14]; here we show that at the scale of cities, models utilizing geo-

graphic distance outperformed those using work commutes. The range of connectivity implied

by the work commute data may be too narrow to accurately capture influenza transmission,

which occurs on a broader spatial scale, likely contributing to the better fit of distance-based

spatial models (Fig 6). Further differences in model fit may stem from the substantially higher

degree distribution of the geographic distance network compared to the between-city work-

commute network, thereby allowing many more possible pathways for epidemic spread in dis-

tance-based models (see supporting S1 Text, Figure A5). Reassuringly, however, there was

excellent internal consistency between parameter estimates for the work commute and dis-

tance-based models (see supporting S1 Text).

Demography and the spatial spread of influenza

Prior work has indicated that influenza spread at the state-level in the US is dominated by hier-

archical spread between populous states (perhaps driven by inter-state work commutes) [1],

but this work was limited by low-resolution (state-level) mortality data and patterns were aver-

aged across several decades. Our model-based analysis of higher resolution outpatient ILI visits

indicates that while more populated locations are at relatively higher risk for influenza trans-

mission compared to less populous locations, this effect is not strong enough for hierarchical

spread to predominate over local spread. Indeed, a susceptible city’s population size contrib-

uted only marginally to its risk of obtaining influenza early in an epidemic. It is important to

note that this estimated relationship may be confounded by differences in the age-structures of

large and small populations, which are not accounted for in our model. In a supplementary

analysis (supporting S1 Text, Figure A14) we demonstrate that more populous counties are

enriched with persons between 20 and 50 years of age, a segment of the population with pre-

sumably higher rates of travel (both local and long-distance). Enrichment for this segment of

the population in larger counties may confound the relationship between the risk of influenza

infection and population size.

In complementary analyses, we estimated spatial synchrony in ILI data using the approach

proposed in Viboud et al. [1], both at the original resolution of cities and with data aggregated

Spatial spread of influenza in the United States

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005382 February 10, 2017 12 / 23



at the state-level. This sensitivity analysis suggests that the effects of workflows and demogra-

phy are more pronounced at the state-level than at the city-level, validating earlier results [1]

(supporting S1 Text, Table A6, Figures A10, A11). In contrast, the relationship between syn-

chrony and geographic distance predominates at the scale of cities, indicating that spatial data

aggregation likely biases the precise characterization of disease spread. The availability of finely

spatially-resolved disease data is therefore essential to accurately capture the mechanisms of

disease dissemination [24].

Absolute humidity and the spatial spread of influenza

In contrast to previous work [15,16], our analysis did not find that absolute humidity was an

important driver of the spatial spread of influenza. Absolute humidity did not affect the sus-

ceptibility of individual cities to influenza infection (supporting S1 Text, Table A3), though

our models did not allow for spatial variation in the effect of absolute humidity. This finding is

consistent with prior studies of the 2009 pandemic in the US [19] and Europe [25]. Further-

more, our analysis suggests seven of the eight epidemics studied likely originated in the South-

ern US, several in humid areas of Texas and Louisiana, a pattern that does not fit with the

concept that low humidity favors influenza transmission [15]. Analyses of longer epidemiolog-

ical records should shed light on whether the preferred Southern origin of epidemics is due to

frequent seeding of influenza in the Southern US (potentially from Central and South Amer-

ica), or if demographic or geographic conditions favor early influenza activity in the South.

Importantly, our study did not address the potential role of environmental factors on the local

dynamics of influenza, particularly in the weeks immediately following the estimated onset

times in each city.

Schools and the spatial spread of influenza

Prior work on the 2009 pandemic has indicated a role for school openings in modulating the

spatial structure of influenza spread during that season [19,26]. This was especially important in

2009 because (1) influenza transmission in the US occurred much earlier in the year (August-

October) than for seasonal outbreaks, coinciding with the start of the fall school term, and (2)

there is substantial geographic variation across start dates for US school fall terms, with earliest

school openings in the Southeastern US. In contrast, seasonal influenza outbreaks tend to occur

later in the year (onset dates Oct-Jan), typically well into the school fall term. While it is possible

that the Christmas holiday break may modulate spatiotemporal patterns in seasonal influenza

spread, the timing of this break is more uniform across the US and is not as likely to contribute

to spatial variation in spread.

Effect of antigenic novelty on spatial spread of influenza

Given the great interest in predicting how a novel influenza virus will spread through a largely

susceptible population, two high transmission seasons merit special attention: the 2003/2004

drift-variant A/H3N2 epidemic and the fall wave of the 2009 pandemic (previously studied in

[19]). Yang et al. [20] showed that the pre-season population-level susceptibility (~70%), effec-

tive reproductive number (1.4–1.6), and overall attack rates (24–33%) were similar for these

two major influenza seasons, and in the higher range of seasonal influenza epidemics. We

found that in both seasons, influenza virus circulation originated in the Southern US and began

earlier in the year than is typical. The relatively slow spread (9–12 weeks) and strong spatial sig-

nature of these two seasons is surprising because theory suggests that more transmissible influ-

enza viruses, associated with higher effective reproduction numbers, should spread faster and

less radially (because long-distance introductions are more likely) than less transmissible viruses
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[1,19]. The net spatial effect of increased transmissibility is likely modulated by the mobility pat-

terns of the most susceptible hosts, which may vary substantially with age and across seasons.

Though a satisfying explanation for these findings remains elusive, the spatial diffusion of

novel influenza viruses appears more localized than previously speculated and multiple intro-

ductions of influenza may be required to seed an epidemic in any given city, as the probability

that a single introduction sparks an epidemic is low. Because commuting flows are on average

one order of magnitude larger than air traffic volume [13], predominantly localized transmis-

sion is consistent with the idea that local connectivity (which includes work commutes) is the

main driver of epidemic spread [1]. Finally, this finding may also highlight the importance of

children in spreading influenza over short distances, an age group that also tends to be dispro-

portionately impacted during times of novel influenza virus circulation [27,28].

We have not considered the role of human behavior change in shaping the spatiotemporal

dynamics of epidemics [29], but we anticipate that the perception of risk during seasonal influ-

enza epidemics is relatively consistent across seasons, and suspect this may play only a minor

role in modulating spatial spread. During the 2009 pandemic, the US experienced a widely

publicized “herald wave” of H1N1pdm transmission during the spring. By the fall, the US pop-

ulation was broadly aware that H1N1pdm infection was generally mild, likely reducing reac-

tive behavior change during the fall wave of the pandemic. In our study, we model influenza

epidemic onset times, rather than the full epidemic dynamics in each location, and is thus our

approach is less sensitive to reactive behavior changes in response to growing case counts near

the peak of the outbreak.

Modeling strategies and future developments

Numerous strategies exist for modeling epidemic spread. Inspired by previous work on the

foot-and mouth-disease epidemic in the UK [22], we employed semi-parametric transmission

models to quantify the risk of infection as a function of demographic factors and different dis-

tance metrics across several seasons. Previous studies have used fully parametric models and

have focused on a single epidemic with the goal of capturing the entire epidemic process

[19,30–33]. We found that fully parametric models often require time-varying baseline hazards

to capture the temporal dynamics of influenza epidemics (supporting S1 Text, Table A5, Fig-

ures A8 and A9). Accordingly, a constant baseline hazard was unable to fully capture the tempo-

ral dynamics of the 1918 epidemic, with model-predicted onsets times occurring earlier on

average than observations [18]. For the 2009 pandemic, information on school openings was

necessary to allow the baseline hazard for transmission to change over time (and space) [19]. In

this context, the partial likelihood method [22] provides clear advantages in obtaining robust

estimates for key spatial covariates while obviating the need to specify the form of the time-vary-

ing baseline hazard. In sensitivity analyses, we found that parameter estimates for the spatial

component of the model were robust to the choice of baseline hazard in fully-parametric model

formulations (supporting S1 Text, Table A4). One disadvantage of the semi-parametric method,

however, is that it does not allow simulations of epidemic trajectories over time and cannot be

applied for real-time predictions, as the baseline hazard is not fully specified.

Our study is subject to several limitations. First, and most importantly, our study was lim-

ited to eight seasons, making our conclusions difficult to generalize broadly given year-to-year

variability in circulating influenza strains. Second, although ~80% of the US population was

eventually captured in this dataset, this percentage was lower in earlier years of data collection,

and the Midwestern US was geographically under-sampled. Third, our analysis relies critically

on the accurate estimation of epidemic onsets in each location, which is particularly challeng-

ing during mild epidemics because the influenza signal is weaker. To address this issue, we (1)
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analyzed data only from locations with sufficiently robust influenza signals, (2) quantified the

uncertainty in epidemic onset estimates, and (3) computed onset times using more “tradi-

tional” methods (sinusoidal regression models), which showed excellent agreement with our

estimates (supporting S1 Text, Figure A12). Further, we have shown that the main results of

our study are robust to moderate uncertainties in the epidemic onset times (supporting S1

Text, Figure A13). Fourth, our dataset is based on ILI records rather than laboratory-con-

firmed influenza cases. Though outpatient ILI captures the aggregate effects of a number of

respiratory pathogens, previous work has shown strong agreement with laboratory-based indi-

cators of influenza virus activity at the regional and city level [21]. Furthermore, our analysis is

focused on influenza epidemic onset times, which are identified using a linear-spline method

separating background ILI rates from rapid case growth due to influenza activity. This

approach controls for the effect of other respiratory pathogens in the peri-epidemic period.

Another caveat relates to the co-circulation of several influenza virus subtypes or strains in

some winters. Syndromic (ILI) time series capture the aggregate effects of these viruses, making

it challenging to disentangle the transmission dynamics of one virus from another. We speculate,

however, that co-circulation would superpose multiple spatial patterns thereby biasing analyses

towards spatial randomness; reassuringly, we observed a spatial signature during epidemics in

which multiple subtypes co-circulated (2002/2003, 2004/2005, and 2005/2006). Importantly, this

caveat does not apply to the severe and radially diffusive influenza seasons in 2003/2004 and

2009, which were marked by overwhelming predominance of a single antigenically-novel strain.

We relied on gravity-type power-law models of influenza transmission and incorporated

empirical data on human mobility; these models have been validated as parsimonious approxi-

mations of both human movement [1,34] and influenza spread [13,18,19]. A major limitation

of these models, however, is that they consider the pairwise interaction between infectious/sus-

ceptible cities, but ignore higher order interactions, which may prove to be essential in captur-

ing realistic patterns of human movement. In reality, some combination of work commutes,

air travel and other local movements likely drive disease dissemination, and ideally these dif-

ferent connectivity metrics should be integrated in a single model rather than analyzed sepa-

rately. Because the observed mobility networks are captured on different scales both

geographically and temporally, it is not clear how best to combine information across such dif-

ferent networks [35,36]. Finally, the observed data represent a sample of locations within the

network of interacting cities; the effects of geographic sampling on parameter estimation is

poorly understood. Further work is needed to develop realistic model formulations that con-

nect multiple mobility indices and disease datasets at appropriate temporal and spatial scales.

In line with previous work on the spatial spread of influenza [19] our analysis focuses on

epidemic establishment in each location under study, rather than the time of influenza intro-

duction. Epidemic establishment is more complex than the mere importation of influenza

cases, as it requires sustained chains of local transmission, which may depend on climatic or

virus-specific factors, among others. In our study, the unit of analysis is the city, and only after

establishment of sustained local transmission in each city are there sufficient numbers of cases

to allow for influenza spread to other cities, as built into the model framework utilized here.

The frequency of viral introductions and specific viral migration pathways would be interest-

ing to study but are best addressed by phylogeographic analyses, assuming appropriate sam-

pling of viral sequences early in the epidemic [5].

Conclusions

Our analysis of the spatiotemporal dynamics of influenza across eight seasons using granular

surveillance data provides several new insights into how geography, human mobility and
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immunity intermesh to shape the dissemination of influenza in the US. Spatial dissemination

is radial and localized, with domestic air traffic playing little role. Intriguingly, epidemics have

a propensity to begin in the Southern US, a finding contradictory to existing concepts of envi-

ronmental forcing on influenza transmission [15]. Two seasons marked by the circulation of

novel viruses (2003/2004 epidemic and the 2009 pandemic) were unique in that influenza

arrived earlier in the year than is typical and patterns of spread were particularly localized and

radial. Novel influenza viruses appear to spread more locally than previously speculated, per-

haps driven by a younger mean age at infection and in turn a decrease in the range of mobility

of susceptible hosts. Most importantly perhaps, our work points to a need for highly granular

epidemiological datasets to deepen our understanding of influenza transmission, beyond the

data resolution available from traditional surveillance schemes. Moving forward, validation of

our findings using longer epidemiological records and pathogen genetic information at the

same spatial scale will be essential [5]. Further work should also concentrate on the importance

of data resolution, antigenic novelty, and age-specific differences in prior immunity on spatial

transmission.

Materials and methods

Epidemiological data

We compiled weekly time series of influenza-like-illnesses (ILI) from 2002–2010 under a col-

laborative research agreement with IMS Health, a private data and analytics company that col-

lects de-identified CMS-1500 electronic medical claims from outpatient physician visits

throughout the US. The system covered 61.5% of US physicians in 2009 [21]. ILI records

included all visits with a direct mention of influenza, or fever combined with a respiratory

symptom, or febrile viral illness (ICD-9 487–488 OR [780.6 and (462 or 786.2)] OR 079.99)

[21]. Data were stratified by 3-digit zip codes of physicians’ offices and aggregated further

according to sectional center facilities as defined by the United States Postal Service, a division

akin to a city or occasionally a county. After exclusion of locations with fewer than 100,000

inhabitants to decrease demographic noise, and matching with census population data for

denomination, we obtained stable ILI records for 310 locations, which we thereafter denote as

‘cities’ for simplicity. Previous work has shown that standardized ILI time series derived from

this surveillance system accurately capture influenza virus activity on a regional and local

basis, where standardization is obtained by taking the ratio of weekly ILI visits to the total

number of physician visits that week in a given locale, per 100,000 population [21]. Further,

these ILI time series are appropriate for spatial modeling [19].

Human mobility proxies

Work commutes. We obtained data on county-to-county work commutes from the 2000

US Census. Data reflect responses to the question of where a person spent the most time work-

ing in the past week and where said person lives. Therefore, these data contain information on

occasional work-related trips as well as on journeys to an individual’s typical workplace [37].

Domestic air travel. For each influenza season, we obtained domestic air travel data from

the first month with substantial influenza transmission, as provided online from the US

Department of Transportation (www.transtats.bts.gov). We used the “T-100 Market Airline

Traffic Data”, which for each month of a given year, contains information on the number of

enplaned passengers travelling between any two US airports on direct flights. Passengers

changing planes at an intermediate destination airport would be counted twice, once between

the initial airport and the intermediate airport, and once between the intermediate airport and

the final destination.
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Epidemic onset determination

Our goal was to estimate the onset time of influenza in each location for each of the 8 available

seasons, 2002/2003-2009/2010. First we selected locations with a sufficient rise in ILI above

baseline for further study. Specifically, for each location and season, we computed the differ-

ence between the maximum ILI incidence and the maximum ILI incidence in the first 10

weeks of the season (before influenza circulation). We generated an empirical distribution of

this statistic across seasons and locations, and excluded locations if their observed statistic fell

in the bottom 20th percentile of this distribution. This produced between 135–306 locations

per season, based on the strength of the ILI signal in each location.

Among these selected locations, we considered weekly time series of ILI in each season

from the first week of June to the first week with the maximum incidence of ILI. For each sea-

son and location separately, we fit piecewise linear models to capture the timing of the change-

point in incidence which corresponds to the epidemic onset:

Yj;t ¼ b0;j þ b1;jt þ b2;jðt � tjÞ
þ
þ �j;t

�j;t � Nð0; W
2

j Þ

In the above, (.)+ denotes the positive portion of its argument, j indexes the location and t
indexes the week, so that Yj,t is the weekly standardized ILI incidence. εj,t is the model error

term, assumed to be normally distributed with zero-mean and variance θj
2. The knot-location

of the linear spline term, tj, represents the epidemic onset time at location j. Finding the opti-

mal knot location is often a difficult problem, primarily because there are often many local

optima in the surface of the objective function [38]. We proceeded as follows. Let L(β0,j, β1,j, β2,

j, tj) be the likelihood function of the parameters given the data, Yj,t. Define the profile likeli-

hood function L1ðtjÞ ¼ maxb0;j;b1;j;b2;j
Lðb0;j; b1;j; b2;j; tjÞ. In other words, for a fixed value of tj,

L1(tj) is the likelihood maximized over the other parameters. To estimate the epidemic onset

time tj, we maximized logL1(tj) using a Nelder-Mead simplex algorithm. We computed the

inverse of the second derivative of logL1ðt̂jÞ as an estimate of the variance of the estimated

onset time t̂j , denoted ŝ2
j . This procedure was repeated independently for each location and

season and is illustrated in supporting S1 Text, Figure A1.

All analyses in our paper focus on the estimated influenza epidemic onset time in each loca-

tion, t̂j . Conceptually, this time represents epidemic establishment in each city, rather than the

time of influenza arrival/importation. Epidemic establishment is epidemiologically interesting

because it requires sustained chains of transmission to take hold, which may depend on cli-

matic or virus-specific factors. Influenza arrival or importation, on the other hand, simply rep-

resents the first case of influenza in a given location, irrespective of whether this introduction

sparks sustained local transmission and a subsequent epidemic.

Descriptive analyses

Spatial synchrony of epidemics. For each season separately, we computed the difference

(in absolute value) in estimated timing of influenza onset between each pair of locations and

the geographic distance separating them. We created bins of 50 kilometers in length ((0–50),

[50–100), [100–150). . .[4350–4400)) and for each bin computed the mean of the pairwise dif-

ference in epidemic onset times. We used a jackknife procedure to obtain variance estimates

for the estimated mean in each bin and used these estimates to obtain a pointwise 95% confi-

dence interval for the mean in each bin.
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To compare against complete spatial randomness in each season, we generated 150 artificial

datasets by permuting the original onset times in each location and computed the mean and

standard deviation of the absolute value of the difference in epidemic timing in each bin. To

obtain summary statistics of the strength of the spatial signature of each epidemic, we tabulated

the proportion of bins significantly different from the null of complete spatial randomness.

Identifying long-distance transmission events. Long-range transmission events repre-

sent an important aspect of infectious disease dynamics. Here we propose a simple method of

identifying such events using estimates of influenza epidemic onset times in each location and

season, t̂j;s .
The method is based on identifying outliers in the distribution of pairwise distances

between newly infected cities and the set of infectious cities at the previous time step. Let C be

the set of locations in the network. At time tj, we can divide C into the set of infectious loca-

tions (that can transmit infection) Itj , and the set of susceptible locations Stj (that can become

infected; the risk-set):

Itj ¼ fk : tk < tjg

Stj ¼ fk : tk � tjg

For location j, we can compute the minimum distance between location j and infectious cit-

ies in Itj as the most likely pathway of infection in a distance-driven spatial transmission pro-

cess:

dj ¼ min
k
djk

for k 2 Itj . Because we consider only a finite set of locations, we must take into account the

minimum distance between city j and any other location in the network:

Dj ¼ min
i
dji

for i 2 C. Under the hypothesis of a purely spatial process, we would expect locations to be

infected by a close neighbor, which we approximate as the distance to the nearest neighbor,

implying dj − Dj� 0. For each city in each season, we computed dj −Dj, and defined long-

range transmission events as infections in those locations falling in the 99th percentile of the

distribution of dj − Dj across all seasons under study. The choice of threshold is by nature arbi-

trary; the 99th percentile identifies jumps that lie safely in the tail of the dj −Dj distribution

(supporting S1 Text, Figure A3).

Identifying potential sources of an outbreak. To identify the geographic origin of the

epidemic in each season, we adapted the “effective distance” method of Brockmann et al. [6],

which relies on the concept that epidemics spread radially from an origin, so that epidemic

onset times are linearly related to effective distance from the source. This method can be used

to (i) identify the correct distance metrics for the disease system under study (effective dis-

tances can be based, for example, on geographic distance or mobility proxies) and (ii) identify

the most likely origin of the outbreak. Here we focus on the second aspect, and systematically

test a large set of locations as potential sources.

Due to error in our epidemic onset estimation procedure and reporting error, we consid-

ered that any one of the first 10% of locations infected in a season could be a potential source

for the epidemic. For each potential source location, we computed Pearson’s correlation coeffi-

cients for the relationship between each location’s influenza onset time and its geographic
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distance to the source. We selected the “most likely” origin as the location with the maximum

value of the correlation coefficient (supporting S1 Text, Figure A4).

Semi-parametric mechanistic model of the infectious process. The goal of this study

was to model the spatial risk of influenza transmission in each of the eight seasons for which

robust data were available. In each season we treated the finite set of locations under study as

linked populations (the strength of the connections between locations is based on the distance

between them) in which influenza can be transmitted from an infected population to a suscep-

tible one. We adapt the partial likelihood approach for spatiotemporal point processes origi-

nally proposed by Diggle for the foot and mouth disease epidemic in the UK [22,39]. Let Tj be

a random variable representing the epidemic onset time of influenza in city j (j = 1. . .Ns,
s = 1. . .8 seasons). Let Htj

be the history of all past events prior to tj, and lðtjHtÞ be the condi-

tional intensity for an event at time t, given Ht . Informally, the conditional intensity function

is the rate at which events are expected to occur around time t given the history of the process

prior to time t. A partial likelihood can be obtained by conditioning on the observed epidemic

onset times tj and considering the resulting likelihood for the time ordering of the events

1. . .Ns. Adopting the notation of Diggle [22], the partial likelihood for city j is given by:

Pj ¼
lðtjjHtj

Þ
P

k:tk�tj
lðtkjHtk

Þ

Notice that the sum in the denominator is over the risk-set at time tj, the set of susceptible

populations at time tj. Therefore Pj is the probability that city j is infected at time tj, as opposed

to all other cities in the risk-set at time tj. The partial log-likelihood for all the data is given by:

Lp ¼
XNs

j¼1

log Pj

In order to evaluate the partial likelihood, we assumed a semi-parametric model for the

conditional intensity, which decomposes the hazard of infection in city j based on the proxim-

ity of city j to cities infected prior to tj:

l tjjHtj
; m; g; ε;r

� �
¼ l0 tj

� �
Nm

j

X

i2Itj

dg
ij

ð
P

k:k6¼jd
g

jkÞ
ε þ r

2

4

3

5

Above, Itj is the set of infectious cities at time tj, Nj is the population size of location j, dij is

the geographic distance between locations i and j, and λ0(tj), the baseline hazard at time tj, is

an infinite-dimensional nuisance parameter. Notice that this model has the same functional

form as the spatial transmission models considered in Eggo et al. [18] and Gog et al. [19], with

the added benefit that the time-varying baseline hazard, λ0(tj), need not be estimated to obtain

estimates of parameters of interest – μ, γ, ε, ρ. The parameter μ captures how susceptibility to

influenza infection varies as a function of population size. Large positive values of μ provide

evidence for hierarchical transmission, suggesting that influenza preferentially will spread to

larger population centers than smaller ones (within a stratum of distance). The power-law

parameter γ captures how the risk of infection in a susceptible city varies as a function of dis-

tance to the set of infectious cities. This portion of the model incorporates the directionality of

influenza transmission from an infected city to a susceptible one. We considered three differ-

ent possibilities for dij: (i) geographic distance (km), (ii) the number of county-to-county work

commutes, and (iii) the number of domestic airline passengers travelling between each pair of

locations. To allow for ease of interpretation of γ, when considering geographic distance for

Spatial spread of influenza in the United States

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005382 February 10, 2017 19 / 23



dij, we fit the following model, in which γ is replaced by −γ:
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Thus, highly positive values of γ indicate that the risk of infection decays sharply as a func-

tion of geographic distance between the infectious-susceptible pair. If the dij term in the model

refers to the number of work commutes or airline passengers, based on the original model for-

mulation, large positive values of γ indicate that the risk of infection increases as a function of

the number of flows between the infectious-susceptible pair. The parameter ε captures how

the connectivity of a city may vary as a function of the number and location of neighboring cit-

ies. The trivial case of ε = 0 corresponds to a density-dependent transmission model, in which

the total infectious pressure on city j is the sum (weighted by distance and population size) of

the contributions of each infectious city’s pressure on city j. In contrast, ε = 1 corresponds to a

density-independent transmission model, indicating that the total infectious pressure on city j
does not scale with the number or distance of neighbors, but rather the distance-weighted frac-

tion of neighbors infected [18,19]. The parameter ρ represents the additive contribution of

external seeding to the risk of influenza transmission in a susceptible location.

Because mobility data was available at the county-level while the epidemiological data were

aggregated at the level of cities, we first matched each SCF with the county to which it belongs

based on FIPS census information. The vast majority of cities matched to a single county, but

14 cities matched to 6 counties. In this case, we obtained a single epidemic onset for the six

counties by taking the inverse-variance weighted average of epidemic onsets in the cities

matched to those counties. To allow for comparisons across the three different spatial models,

we analyzed data on the same network of cities for each season, and computed Aikaike’s Infor-

mation Criterion (AIC) based on the maximized partial likelihood for each model (Table 2).

To construct a domestic airline traffic network that connects pairs of locations in our data-

set, for each location we identified all airports within 100 km (or the nearest airport in the

event it was beyond 100 km), and assigned all domestic traffic between pairs of airports. Both

the work commute and air traffic networks were symmetrized so that flows from city i to j
equal those from j to i.

Model estimation and computing. We maximized the partial log-likelihood over param-

eters μ, γ, ε, ρ, using a Nelder-Mead simplex algorithm as implemented in the general-purpose

optimization function optim() in R v. 3.1.1. To obtain the asymptotic variance-covariance

matrix associated with parameter estimates, we inverted the Hessian of the log-likelihood func-

tion evaluated at the maximum partial-likelihood estimates (we also verified that the Hessian

was negative definite). For speed, the partial likelihood function was written in C++ and com-

piled in R v. 3.1.1 using the Rcpp package. Code and a simulated dataset are available upon

request.

Sensitivity analyses

Comparison of epidemic onset times with traditional methods. The results described in

this paper rely on accurate estimates of influenza onset times in each location and season. We

compared estimates of influenza onset times derived from our approach with traditional

approaches based on harmonic regression models, and found excellent agreement (supporting

S1 Text, Figure A12).

Incorporation of uncertainty in estimates of epidemic onset. The spatial model

described above operates under the assumption that the onset times of influenza in each city

Spatial spread of influenza in the United States
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are observed, though in reality, they are estimated from weekly time series of influenza-like-ill-

nesses. So, along with each estimate of onset time in city j (t̂j), we also estimated the variance

of the onset time in city j (ŝ2
j ). To evaluate the impact of this uncertainty on parameter esti-

mates from the model, for each city we drew the influenza onset time from a normal distribu-

tion centered at t̂j , with variance ŝ2
j . We generated 500 such datasets for each season and re-

estimated the model described above, with comparable results. Histograms of parameter esti-

mates from this procedure are provided in supporting S1 Text, Figure A13.

Parameter estimates in the setting of spatial randomness. To explore the range of

parameter estimates in the setting of complete spatial randomness, we generated 500 artificial

datasets by permuting influenza onset times between locations in a single season (2003/2004

epidemic). For each dataset, we re-estimated the model. Histograms and summary statistics

for each parameter are provided in supporting S1 Text, Table A7.

Incorporating other demographic/environmental variables into the semi-parametric

model. In addition to the simple four-parameter mechanistic transmission model introduced

above, we considered also the potential role of other demographic and climatic variables in

explaining observed patters in the timing of influenza epidemics. Specifically, for each season

separately, we considered the six-parameter model:
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All parameters are as before, with the addition of AHj(tj), which measures absolute humid-

ity in city j around the time of infection, tj. Here we considered the average absolute humidity

for the two weeks before the time of infection. This expanded model also allowed for the

“infectiousness” of cities i 2 Itj to vary by their population size Ni to some power. Parameter

estimates and 95% confidence intervals from this model are provided in supporting S1 Text,

Table A3.

Supporting information

S1 Text. Sensitivity analyses and supporting figures and tables.

(PDF)
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34. Simini F, González MC, Maritan A, Barabási A-L. A universal model for mobility and migration patterns.

Nature. 2012; 484: 96–100. doi: 10.1038/nature10856 PMID: 22367540

35. Schrödle B, Held L, Rue H. Assessing the impact of a movement network on the spatiotemporal spread

of infectious diseases. Biometrics. 2012; 68: 736–744. doi: 10.1111/j.1541-0420.2011.01717.x PMID:

22171626

36. Geilhufe M, Held L, Skrøvseth SO, Simonsen GS, Godtliebsen F. Power law approximations of move-

ment network data for modeling infectious disease spread. Biom J Biom Z. 2014; 56: 363–382.

37. Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an

influenza pandemic. Nature. 2006; 442: 448–452. doi: 10.1038/nature04795 PMID: 16642006

38. Lindstrom MJ. Penalized estimation of free-knot splines. J Comput Graph Stat. 1999; 8: 333–352.

39. Diggle PJ, Kaimi I, Abellana R. Partial-likelihood analysis of spatio-temporal point-process data. Bio-

metrics. 2010; 66: 347–354. doi: 10.1111/j.1541-0420.2009.01304.x PMID: 19673863

40. Fonville JM, Wilks SH, James SL, Fox A, Ventresca M, Aban M, et al. Antibody landscapes after influ-

enza virus infection or vaccination. Science. 2014; 346: 996–1000. doi: 10.1126/science.1256427

PMID: 25414313

41. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus ADME, et al. Map-

ping the antigenic and genetic evolution of influenza virus. Science. 2004; 305: 371–376. doi: 10.1126/

science.1097211 PMID: 15218094

42. CDC. Influenza (flu) including seasonal, avian, swine, pandemic, and other. In: Centers for Disease

Control and Prevention [Internet]. 29 Apr 2016 [cited 29 Apr 2016]. Available: http://www.cdc.gov/flu/

index.htm

Spatial spread of influenza in the United States

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005382 February 10, 2017 23 / 23

http://dx.doi.org/10.1371/journal.pone.0043528
http://dx.doi.org/10.1371/journal.pone.0043528
http://www.ncbi.nlm.nih.gov/pubmed/22916274
http://dx.doi.org/10.1371/journal.pcbi.1002205
http://www.ncbi.nlm.nih.gov/pubmed/21980281
http://dx.doi.org/10.1371/journal.pcbi.1004337
http://www.ncbi.nlm.nih.gov/pubmed/26291446
http://dx.doi.org/10.1056/NEJMoa051721
http://dx.doi.org/10.1056/NEJMoa051721
http://www.ncbi.nlm.nih.gov/pubmed/16354892
http://dx.doi.org/10.1371/journal.pone.0016460
http://www.ncbi.nlm.nih.gov/pubmed/21326878
http://dx.doi.org/10.1126/science.1065973
http://www.ncbi.nlm.nih.gov/pubmed/11679661
http://dx.doi.org/10.1094/PHYTO.1997.87.2.139
http://www.ncbi.nlm.nih.gov/pubmed/18945133
http://dx.doi.org/10.1371/journal.pcbi.1003587
http://dx.doi.org/10.1371/journal.pcbi.1003587
http://www.ncbi.nlm.nih.gov/pubmed/24762851
http://dx.doi.org/10.1038/nature10856
http://www.ncbi.nlm.nih.gov/pubmed/22367540
http://dx.doi.org/10.1111/j.1541-0420.2011.01717.x
http://www.ncbi.nlm.nih.gov/pubmed/22171626
http://dx.doi.org/10.1038/nature04795
http://www.ncbi.nlm.nih.gov/pubmed/16642006
http://dx.doi.org/10.1111/j.1541-0420.2009.01304.x
http://www.ncbi.nlm.nih.gov/pubmed/19673863
http://dx.doi.org/10.1126/science.1256427
http://www.ncbi.nlm.nih.gov/pubmed/25414313
http://dx.doi.org/10.1126/science.1097211
http://dx.doi.org/10.1126/science.1097211
http://www.ncbi.nlm.nih.gov/pubmed/15218094
http://www.cdc.gov/flu/index.htm
http://www.cdc.gov/flu/index.htm

