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Heart failure (HF) is a major cause of morbidity and mortality worldwide.

Current classifications of HF categorize patients with a left ventricular ejection

fraction of 50% or greater as HF with preserved ejection fraction or HFpEF.

Echocardiography is the first line imaging modality in assessing diastolic

function given its practicality, low cost and the utilization of Doppler imaging.

However, the last decade has seen cardiac magnetic resonance (CMR) emerge

as a valuable test for the sometimes challenging diagnosis of HFpEF. The

unique ability of CMR for myocardial tissue characterization coupled with high

resolution imaging provides additional information to echocardiography that

may help in phenotyping HFpEF and provide prognostication for patients with

HF. The precision and accuracy of CMR underlies its use in clinical trials for

the assessment of novel and repurposed drugs in HFpEF. Importantly, CMR

has powerful diagnostic utility in di�erentiating acquired and inherited heart

muscle diseases presenting as HFpEF such as Fabry disease and amyloidosis

with specific treatment options to reverse or halt disease progression. This state

of the art review will outline established CMR techniques such as transmitral

velocities and strain imaging of the left ventricle and left atrium in assessing

diastolic function and their clinical application to HFpEF. Furthermore, it will

include a discussion on novel methods and future developments such as

stress CMR andMR spectroscopy to assess myocardial energetics, which show

promise in unraveling the mechanisms behind HFpEF that may provide targets

for much needed therapeutic interventions.
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Introduction

Heart failure (HF) is a clinical syndrome caused by

abnormalities in cardiac structure and function resulting in

increased intracardiac pressures and/or reduced cardiac output

(1). Patients with HF frequently present with dyspnea, fatigue

and fluid retention, organ dysfunction due to hypoperfusion and

have a higher risk of sudden cardiac death due to ventricular

arrhythmia or pump failure. Although the range of pathologies

resulting in impaired cardiac function is broad, current clinical

guidance on the classification and management of HF places

great emphasis upon left ventricular ejection fraction (LVEF).

Thus, patients with HF and LVEF of 50% or greater are

commonly categorized as having HF with preserved ejection

fraction (HFpEF). The prevalence of HF is estimated at 64.3

million globally (2) with more than half of these people

having HFpEF (3). In this review, we discuss the utility of

cardiovascular magnetic resonance imaging (CMR) for the

assessment of HFpEF.

In patients presenting with HFpEF, the pathological

hallmarks are abnormal left ventricular (LV) filling and

increased LV end diastolic pressures (LVEDP), collectively

termed diastolic dysfunction. HFpEF has diverse causes

associated with a multitude of co-morbidities. Established

risk factors implicated in the development of HFpEF include

hypertension, type 2 diabetes (T2D), chronic kidney disease and

obesity. HFpEF also appears to be more prevalent in females and

presents at an older age than heart failure with reduced ejection

fraction (HFrEF). Importantly, atrial fibrillation (AF) has a

complex association with HFpEF (4) and AF commonly coexists

with HFpEF with a reported prevalence of up to 65% in older

patients (5). The underlying pathological changes are thought to

be related to chronic inflammation, neurohormonal activation,

changes in intracellular signaling pathways, endothelial and

microvascular dysfunction and myocardial fibrosis (6).

To date, a number of diagnostic algorithms have been

proposed since accurate identification of HFpEF can be

problematic (7). Importantly, a wide range of HFpEF

clinical phenocopies also exist, each with underlying

pathophysiologically distinct etiologies including hypertrophic

cardiomyopathy (HCM), ATTR cardiac amyloidosis, Fabry

disease iron overload cardiomyopathy and cardiac sarcoidosis.

Moreover, unique disease-targeted therapies in these conditions

might reverse, halt or slow disease progression.

Diagnosing HFpEF with CMR

Cardiac imaging plays a pivotal role in the diagnosis of

HFpEF. Echocardiography is the initial modality of choice

to assess LV diastolic function particularly because of its

availability, cost-effectiveness and technical capabilities through

Doppler imaging. However, CMR is increasingly being utilized

for the further evaluation of patients with HFpEF (Figure 1).

CMR is currently second line to echocardiography in the

imaging assessment of diastolic function as it remains a limited

resource, is less economical and is challenging in patients with

claustrophobia. Practical limitations in HFpEF patients include

difficulties in breath holding in older patients and in obese

patients. Image quality may be impacted in patients with AF and

in those with cardiac devices and post valvular intervention. In

addition, there remains a larger clinical and research evidence

base for echocardiographic assessment of HFpEF. Despite these

drawbacks, the strengths of CMR include its higher spatial

resolution and ability to quantify structural changes in the

heart with greater precision and reproducibility compared to

other imaging modalities, and its unique tissue characterization

capability (8). The diagnostic utility of CMR is highlighted

by a study comparing CMR and echocardiography. Kanagala

et al. (9) found that CMR diagnosed new, significant clinical

cardiac pathologies such as myocardial infarction, HCM and

constrictive pericarditis in 27% of 154 patients with HFpEF and

these patients were at higher risk of death andHF hospitalization

at 6 months. Recent data further suggests integration of different

CMR measures of diastolic function into a novel diagnostic

algorithm (10) in a similar vein to echocardiography but further

validation and consensus agreement is required before putting

such algorithms into routine clinical practice.

LV functional assessment

CMR is the current gold standard imaging technique to

assess LV volumes and therefore LVEF, and LV mass, as it

avoids the geometric assumptions made by echocardiography

and provides superior reproducibility (11, 12). Advances in

CMR machine learning further serve to increase repeatability

for measuring LV volumes and mass (13). To provide the

highest spatial and temporal resolution, ECG-gated bright-

blood balanced steady state free precession (SSFP) sequences

of contiguous short-axis slices from the LV base to apex are

acquired (14, 15). In patients with HF, cardiac remodeling

and left ventricular hypertrophy (LVH) are associated

with impairment of myocardial contractility and diastolic

dysfunction even with preserved LV ejection fraction (16). LVH

is an established risk factor for adverse cardiovascular events

(17–19) and is associated with incident HF events (20).

Phase contrast CMR is routinely used to determine flow

for valvular assessment using through-plane velocity encoding.

These sequences can also be utilized to measure transmitral

inflow, generating E (passive diastolic inflow) and A (active

diastolic inflow) waves and pulmonary vein inflow, which

correlate well with echocardiographic Doppler indices (21–

23). However, CMR-derived values tend to be lower and may

underestimate velocities compared to echocardiography, which
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FIGURE 1

Approaches to the assessment of HFpEF by CMR. CMR, cardiovascular magnetic resonance; HFpEF, heart failure with preserved ejection

fraction; LA, left atrial; LV, left ventricular; LVH, left ventricular hypertrophy; RV, right ventricular.

may relate to the lower temporal resolution with CMR (30–

40ms) vs. echocardiography (<5ms) (24, 25). Additional pitfalls

of CMR include time consuming data acquisition and analysis in

addition to positive or negative phase offset errors with through-

plane flow imaging due to local non-compensated eddy currents

(26).The recently developed CMR golden-angle method permits

acquisition of 150 to 250 frames per cardiac cycle to match that

of echocardiography (27). This novel method involves k-space

lines acquired continuously determined by the golden-angle of

each sector, together with alternating velocity-encoding signs

(27). Advances in CMR sequences have led to the development

of 3D and 4D flow sequences which may prove to be useful for a

more advanced assessment of diastolic filling than measurement

of mitral inflow and pulmonary vein inflow by phase contrast

CMR alone. For example, a 3D velocity-encoded MRI with

retrospective mitral valve annular plane tracking sequence

had better agreement with Doppler echocardiography for LV

diastolic filling patterns compared to a 2D one-directional

velocity-encoded sequence (28). Furthermore, in 53 healthy

volunteers, a comparison of 4D flow CMR kinetic energy

to mitral inflow E/A ratio showed a stronger independent

association with age than standard 2D metrics (29).

Tissue Doppler imaging (TDI) for the quantification

of myocardial velocities is a fundamental, clinically

validated method for the assessment of diastolic function

by echocardiography (30, 31). Similarly, phase contrast CMR

can be used to determine myocardial e
′

velocities (peak modal

velocity in early diastole by pulsed TDI waveform at the

mitral valve annulus). CMR-derived mean e
′

and E/e
′

have

consistently shown excellent correlation with echocardiographic

values in patients with diastolic dysfunction (23, 32). In a small

observational study of patients with hypertensive heart disease

(n = 18), CMR E/e
′

strongly correlated with invasively

measured mean pulmonary capillary wedge pressure (PCWP)

(r = 0.8, p < 0.0001) and had a 100% positive predictive value

for E/e
′

< 8 and PCWP ≤ 15 mmHg, and similarly so for E/e
′

> 15 and PCWP >15 mmHg (32). Measurement of CMR LV

fractional area change during the first 30% of diastole (termed

diastolic-index) in the short axis view correlated well with e
′

on

echocardiography (33).

LV strain

Although the use of LVEF is clinically the dominant imaging

method for defining severity, subtype and progression of HF,

it has limitations (34). Other imaging parameters, particularly

LV strain may detect changes in myocardial architecture and
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function before changes in LVEF occur (35). Strain is a measure

of myocardial mechanics that describes the deformation of

LV myocardial fibers which are orientated in the longitudinal,

circumferential and radial directions. Changes in longitudinal

function occur early on in HF (36). Accordingly, global

longitudinal strain (GLS) has been identified as an important

marker of early myocardial dysfunction (37). Indeed, GLS has

proven to have powerful prognostic value superior to LVEF

(38). In a systematic review involving 5,721 patients with

cardiovascular disease (CVD), there was stronger independent

association with mortality with each SD change in the absolute

value of baseline GLS (HR 0.50, 95% CI 0.36–0.69; p < 0.002)

compared to LVEF (HR 0.81, 95% CI 0.72–0.92; p = 0.572)

(38). Different methods to measure strain by CMR have evolved

from myocardial tagging and phase contrast velocity-encoding

to feature tracking, the latter now being the more commonly

employed sequence.

Strain measurement by myocardial tagging using Spatial

Modulation of Magnetization (SPAMM) involves tagging

orthogonally intersecting sets of lines marking rectangular grids

in a 2D image (39). In 1,500 participants from theMESA (Multi-

Ethnic Study of Atherosclerosis) cohort, diastolic function from

circumferential strain curves independently predicted incident

HF and atrial fibrillation over an 8-year follow-up period (40).

However, the requirement to acquire dedicated images and time-

consuming post-processing has meant that myocardial tagging

has not gained routine clinical use for the assessment of LV

diastolic function. Strain-encoded (SENC) imaging uses tags

parallel to the image plane rather than as a series of orthogonal

lines (41). In systole, the tagged planes compress together

leading to a shift in the peak spectrum location in k space (42).

The rate of shift is then used to determine strain. Compared to

conventional tagging, SENC can be acquired in half the time (43)

and provides higher temporal resolution of strain measurements

through the entire cardiac cycle (41). Fast-SENC techniques

can shorten the image acquisition duration down to a single

heartbeat (44).

An alternative method to assess myocardial deformation

is by phase contrast velocity-encoding which offers better

spatial resolution but lower temporal resolution thanmyocardial

tagging (45). This allowsmeasures of instantaneous velocity over

a short time period. Displacement encoding with stimulated

echoes (DENSE) is a free-breathing, phase-velocity based

method which permits measurement of displacement during

most but not all of the cardiac cycle (46). Unfortunately,

this limits the assessment of diastolic tissue displacement and

acquired images have low signal to noise ratio.

Feature tracking (FT) CMR analysis (FT-CMR) tracks

points or features in the myocardium across successive

imaging frames over the whole cardiac cycle, generating strain

values and curves (Figure 2). FT-CMR is increasingly favored

for the assessment of strain due its close correlation with

echocardiographic speckle tracking (47) and myocardial tagging

(48, 49). Moreover, the ability to utilize routine SSFP-based

cine images simplifies clinical workflows. In a small study of 18

HFpEF patients compared to 18 age and sex-matched controls,

GLS independently predicted abnormal relaxation index, Tau, by

invasively measured pressure-volume loops (50). GLS measured

by FT-CMR proved to be a powerful independent predictor of

all-cause mortality in a multi-center study of 1,012 patients with

HFrEF and amedian follow-up of 4.4 years (51). In a study of 131

patients with HFpEF, GLS ≥ −8% by FT-CMR independently

predicted HF hospitalization and cardiovascular death at 2.5

years follow up (52). Novel applications of FT-CMR include

the assessment of LV torsion, rotation and diastolic recoil

(53). Interestingly, different rotational mechanics are found in

patients with amyloidosis and HCM, conditions which often

masquerade as HFpEF (54).

Left atrial size

Changes in left atrial size (LA) are a hallmark of elevated

LV filling pressures in patients with HFpEF (55). Maximal LA

volume measured at end-systole in sinus rhythm and indexed to

body surface area (BSA) has strong predictive value for adverse

cardiovascular events (56). CMR provides a more accurate

measurement of LA size compared to echocardiography,

owing to inherently superior spatial resolution. LA size

can be measured by contouring the LA in the short axis

stack or, more commonly, by the area-length method or

Simpson’s biplane in the 4-chamber and 2-chamber views.

Although Simpson’s biplane is the reference standard to assess

LA size by echocardiography, there is limited consensus

on the preferred method by CMR (57, 58). Nevertheless,

in a multicenter study of nearly 11,000 subjects with a

median follow up of 4 years, increased BSA-indexed LA size

measured by CMR was independently associated with all-cause

mortality (59).

Left atrial function

LA function can be subdivided into its reservoir (LA

filling during LV systole), conduit (passive LV filling in

early to mid-diastole) and pumping (LA contraction to

augment LV filling in late diastole) phases. LA conduit-filling

capacity is calculated by maximum LA volume minus pre-

atrial contraction volume whilst LA active filling capacity

is calculated by pre-atrial contraction volume minus the

minimum LA volume (60). LA stroke volume is defined

as maximum minus minimum LA volume. Furthermore,

LA ejection fraction (LAEF) can be derived from these

measured volumes with both biplane and short axis methods

showing good agreement in sinus rhythm (61). Left atrial

ejection fraction is closely associated with LVEDP on cardiac

catheterization (62).
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FIGURE 2

Feature tracking CMR strain analysis. (A) Feature tracking CMR in the 4-chamber view generating (B) longitudinal strain curves, (C) displayed as a

polar map for each AHA segment. AHA, American Heart Association.

Increased LA volumes, reduced LAEF, reduced LA reservoir

and booster pump strains are all associated with diastolic

dysfunction as well as its severity (63). In the multi-ethnic

population-based Dallas Heart Study of 1,802 patients, lower

LAEF was independently associated with increased mortality

[hazard ratio per 1 SD (8.0%): 1.56 (1.32–1.87)] with superior

and incremental predictive value over maximum LA volume

index (64). These findings were further supported by the MESA

study of 536 patients with T2D, in whom incident cardiovascular

disease was strongly and independently associated with lower

passive, active and total LAEF (65). Kanagala et al. demonstrated

that LAEF is reduced in HFpEF (n= 140) compared to controls

(n= 48) and that a lower LAEF was associated with an increased

risk of all-cause mortality or first HF hospitalization (log-rank,

all p = 0.028; sinus p = 0.036) (61, 66). Furthermore, the strong

association with adverse outcomes was similar for LAEF derived

by either the biplane or short axis methods during CMR (61).

Left atrial strain

Application of CMR-FT to the LA generates strain data

that have been evaluated as measures of LA function (67).

Chirinos et al. (68) compared patients with HFpEF (n = 101),

HFrEF (n = 120) and without HF (n = 640) demonstrating

that conduit and reservoir LA strain measured using CMR-

FT independently predicted risk of incident HF admission or

mortality. In the MESA cohort, incident HF was predicted by

lower longitudinal atrial strain (25 ± 11% vs. 38 ± 16%; p <

0.001) and lower LA emptying fraction (40 ± 11 vs. 48 ± 9%; p

< 0.001) at baseline (69). In a small study of 22 HFpEF patients

compared to heathy controls, LA conduit strain was significantly

reduced in HFpEF and was associated with impaired oxygen

uptake (VO2 max) during cardiopulmonary exercise testing and

invasive measurements of impaired early LV filling (70).

Right ventricle

CMR is also the gold standard non-invasive method to

assess right ventricular (RV) size and function. In a prospective,

observational study the prevalence of RV dysfunction (RVEF <

47%) as determined by CMR was present in 19% of individuals

with HFpEF (n = 135) (71). Furthermore, RV dysfunction was

independently associated with death and HF hospitalization

(adjusted HR 3.946, 95% CI 1.878–8.290, p = 0.0001).

(71). HFpEF is a recognized cause of elevated pulmonary

artery pressures (PAP) and pulmonary hypertension. Resultant

changes in the right heart readily assessed by CMR include

increased right atrial size, RV hypertrophy and septal bowing.

Assessment of diastolic dysfunction must take into account

an estimation of PAP which is typically elevated in patients

with HFpEF. Echocardiography can estimate systolic PAP by

measurement of the peak tricuspid regurgitant (TR) velocity

using the formula PAP = 4∗(TRVmax)
2. While measurement

of the tricuspid regurgitant jet peak velocity is readily assessed

by echocardiography, this is less readily performed by CMR.

However, systolic PAP can be indirectly estimated by identifying

the peak TR velocity using phase contrast CMR flow analysis at

the level of the tricuspid valve (72).

Myocardial tissue characterization

In HFpEF, alterations in the extracellular matrix with

increased collagen deposition are thought to be a result of

inflammation and increased oxidative stress (73). This process

leads to myocardial fibrosis, which may contribute to the

impaired relaxation that is observed in HFpEF. CMR has the

unique capability to detect both focal replacement myocardial

fibrosis using late gadolinium enhancement (LGE) and diffuse

interstitial fibrosis through parametric mapping sequences

(native T1 and extra cellular volume (ECV) quantification).

Frontiers inCardiovascularMedicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.922398
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Lau et al. 10.3389/fcvm.2022.922398

The presence of replacement fibrosis by LGE in patients at

risk of HFpEF including in AF (74) and diabetes (75) has been

shown to increase the risk of mortality. Furthermore, identifying

LGE can provide additional risk stratification for patients at

risk for hospitalization for HF regardless of etiology or LV

systolic dysfunction (76). In an observational cohort study of

1,096 patients with AF, LA fibrosis by LGE was associated with

an overall incidence of developing HF at 3.1% per year (77).

Moreover, 80% of patients developed HFpEF (n = 63) rather

than HFrEF (n= 20) after a median 2.7 years follow-up and that

the incidence of HF increased with increasing LA fibrosis.

T1 measures the time taken for longitudinal relaxation of

excited protons to return to equilibrium following application

of a radiofrequency pulse. Colored maps can be generated so

that pixel values represent the T1 in each voxel. T1 values in the

myocardium and blood pool acquired pre- and post-contrast,

and by accounting for hematocrit, can be used to calculate

ECV. ECV quantifies the relative expansion of the extracellular

matrix acting as a validated surrogate imaging biomarker for

myocardial fibrosis (78, 79).

Both native T1 mapping and ECV are helpful in detecting

inherited and acquired cardiomyopathies, particularly Fabry

disease and cardiac amyloidosis (Figure 3). Diffuse myocardial

fibrosis by native T1 mapping and ECV appears to be associated

with diastolic dysfunction and LV stiffness in HFpEF (n =

62) but not in HFrEF (n = 40) or healthy controls (n = 22)

(80). ECV has been demonstrated to correlate with invasive

measures of load-independent passive LV stiffness (81, 82).

In a study comparing patients with HFpEF, hypertension and

healthy controls, ECV was significantly increased in HFpEF

(35.9 ± 5.0%) compared to both hypertensive patients (31.9

± 5.2%) and healthy controls (27.0 ± 4.3%) (83). Moreover,

ECV was superior to GLS in differentiating between HFpEF

and hypertension.

ECV may have a unique role to play in identifying HFpEF

phenotypes at higher risk of cardiovascular events and death

(84). In a cohort of 410 patients at risk for or diagnosed with

HFpEF, ECV correlated with BNP levels and outcomes of heart

failure hospitalization or death (85). This may indicate that the

degree of myocardial fibrosis occurs in a continuum of severity

andmay precede overt clinical features of HFpEF. These findings

are corroborated by other studies demonstrating that a lower

post-contrast T1 time (median <388ms) is a strong predictor

of adverse events (86). Furthermore, both focal and diffuse

myocardial fibrosis was noted to be more prevalent in HFpEF (n

= 140), compared to age and sex matched control subjects. ECV

indexed to body surface area correlated with LV mass:volume

ratio, RV end-diastolic volume index and maximum LA volume

index and independently predicted adverse outcomes (87).

Interestingly, a recent study demonstrated that anterior RV

insertion point fibrosis measured by increased native T1 times

significantly correlated with markers of increased LV end-

diastolic pressures and filling (88).

Stress perfusion and exercise stress
CMR

Patients with HFpEF may only develop dyspnea on exertion

and have limited indices of diastolic dysfunction at rest. The gold

standard for diagnosing the effects of HFpEF during exertion

is invasive right heart catheterization during exercise (89),

although it is more often assessed indirectly by exercise stress

echocardiography (90). Recent studies have shown a role for

stress perfusion or CMR combined with exercise to increase the

diagnostic yield for HFpEF (91–93). In particular, there appears

to be significant coronary microvascular dysfunction in HFpEF

patients as revealed by myocardial perfusion reserve following

stress perfusion imaging (94). Stress perfusion CMR identifies

patients at higher risk of major cardiovascular events in HFpEF

without known coronary artery disease (95, 96).

In a feasibility study, exercise stress combined with real-

time CMR was able to detect HFpEF, confirmed by right

heart catheterization, with high accuracy (93). The authors

also demonstrated that LA longitudinal shortening was the

most accurate parameter to detect HFpEF. In future, exercise

stress CMR may play a prominent role alongside exercise

echocardiography in the workup of HFpEF patients, without the

need for invasive tests.

Myocardial energetics

The high energy requirement of the heart and minimal

capacity to store energy suggests that an imbalance of energy

supply and demand may predispose to the development of

myocardial dysfunction. MR spectroscopy has the capability to

assess myocardial energetics by measuring phosphocreatine to

adenosine-triphosphate (PCr/ATP) ratio, and cardiac steatosis

by measuring myocardial triglyceride content (MTG). In a small

study of 12 patients with T2D and diastolic dysfunction, there

were reductions in PCr/ATP ratio when compared to controls

(97). Burrage et al. (98) investigated patients with a spectrum

of diastolic dysfunction including T2D (n = 9), HFpEF (n =

14) and cardiac amyloidosis (n = 9) and controls (n = 11).

Across the spectrum of HFpEF, there was a decrease in PCr/ATP

ratio in parallel to increases in E/e
′

, NT-proBNP and lower

LV diastolic filling rates with low workload exercise. Moreover,

patients with HFpEF and cardiac amyloidosis had transient

pulmonary congestion with exercise as revealed by pulmonary

proton density mapping. In HFpEF, significantly greater MTG

and therefore myocardial steatosis correlates with reductions in

CMR measured diastolic strain and VO2max (99).

Recent clinical trials have identified beneficial effects

of therapeutics on cardiac metabolism. Evidence has been

growing for the sodium–glucose cotransporter 2 (SGLT2)

inhibitor, empagliflozin, for the treatment of HFpEF (100). The

mechanism of these benefits have not been fully elucidated
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FIGURE 3

Myocardial tissue characterization by native T1 and ECV di�erentiating disease processes in HFpEF. (A) Normal native T1 and (B) normal ECV

maps. Hypertensive heart disease with LVH showing di�use myocardial fibrosis on (C) native T1 map and (D) increased ECV. Fabry disease

showing (E) globally reduced native T1 values and (F) replacement fibrosis in the basal inferolateral wall on ECV map; Cardiac amyloidosis

showing globally elevated (G) native T1 and (H) ECV values. Color scales are represented for native T1 in milliseconds and ECV in percentage.

ECV, extracellular volume; HFpEF, heart failure with preserved ejection fraction; LVH, left ventricular hypertrophy.

but an improvement in cardiac metabolism has been shown

following in a significant increase in PCr/ATP in a small study of

18 patients with T2D compared to 10 healthy volunteers (101).

The authors also found an increase in mean LVEF of 7% and a

3% increase in GLS.

Epicardial adipose tissue (EAT) surrounding myocardium

and within the pericardium is metabolically active providing

energy to myocardium through the breakdown of triglycerides

and also generates pro-inflammatory mediators (102).

Furthermore, EAT may affect mechanical properties of

ventricular function. In obese HFpEF (n = 99) compared to

non-obese HFpEF (n = 97) and healthy controls (n = 71),

there was significantly higher total epicardial heart volume

[945ml (831–1,105ml) vs. 797ml (643–979ml) and 632ml

(517–768ml); p < 0.0001] and EAT thickness (10 ± 2 vs. 7

± 2 and 6 ± 2mm; p < 0.0001) measured by CMR (103).

Furthermore, the larger epicardial heart volume in obese

HFpEF was associated with increased pericardial restraint and

ventricular interdependence.

Novel methods in assessing HFpEF
by CMR

Recent advances in CMR have generated novel sequences

and measures to assess HFpEF. Diastolic dysfunction results

from altered LV compliance leading to changes in LV filling

patterns. LV time-volume and peak filling rate curves generated

using CMR acquired LV volumetric datasets associate with

the severity of echocardiographic-derived diastolic dysfunction

(104). Patients with HFpEF have a lower peak filling rate

adjusted for end diastolic volume (105), prolonged peak filling

rates (106) and greater diastolic volume recovery (proportion

of diastole required for recovery of 80% of stroke volume) by

CMR (107).

A fundamental aspect of HFpEF assessment is to determine

PAP. Vortices of blood, measured by 3D or 4D phase-contrast

CMR, appear in the main pulmonary artery in pulmonary

hypertension (108, 109). Measurement of the duration of blood

vortices allows estimation of pulmonary artery pressures (110).

A vortex duration ≥15% corresponds to an invasive mean PAP

≥25 mmHg. Using 4D flow analysis there is good correlation

to Doppler echocardiographic estimates with potentially higher

diagnostic yields in the detection of raised pulmonary artery

pressures (111).

Central transit times have long been to known to be

increased in HF (112). Using first pass perfusion, Cao and

colleagues (113) demonstrated that global central transit times

from the right atrium to aorta were significantly prolonged in

HFpEF, which correlated with increased PCWP. Measurement

of central transit time may therefore act as an additional marker

of HFpEF for patients undergoing CMR though data on its use

remains limited.

Experimental CMR sequences in the pipeline may further

serve to characterize the myocardium and alterations in diastolic

function potentially adding to the diagnostic role of CMR in

the assessment of HFpEF. Examples include diffusion tensor

imaging (114), MR elastography (115), artificial intelligence

and radiomics (116), which are beyond the scope of this

review article.

Conclusion

Assessment by CMR enables refinement of a clinical

HFpEF diagnosis into underlying cardiac conditions such as
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HCM and cardiac amyloidosis. Furthermore, the strengths of

CMR over other imaging modalities include the capability

for sub-categorization into pathophysiological sub-types such

as increased myocardial fibrosis, left atrial dysfunction or

microvascular dysfunction. The comprehensive evaluation of

HFpEF by CMR may enable risk profiling of patients with

HFpEF and perhaps allow focused, targeted therapies in the

future. Advances in CMR sequences and postprocessing are

generating novel indices of diastolic dysfunction which not only

aid diagnosis but may hold prognostic risk prediction. The

role of CMR in assessment of diastolic dysfunction continues

to evolve at a rapid rate but large-scale studies are still

required to permit technical reproducibility as well as clinical

validation across different populations and subcategories of

HFpEF. Moreover, future research could focus on the challenge

of identifying which established and novel indices should be

routinely incorporated into clinical workflows. It remains to

be determined how such advances compare to a predominant

echocardiographic based approach to clinical diagnosis and

management of HFpEF, especially whether the use of CMR can

lead to improved prognostication and outcomes.
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