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Abstract: In spite of the large-scale production and widespread distribution of vaccines and antiviral
drugs, viruses remain a prominent human disease. Recently, the discovery of antiviral peptides
(AVPs) has become an influential antiviral agent due to their extraordinary advantages. With the
avalanche of newly-found peptide sequences in the post-genomic era, there is a great demand to
develop a sequence-based predictor for timely identifying AVPs as this information is very useful
for both basic research and drug development. In this study, we propose a novel sequence-based
meta-predictor with an effective feature representation, called Meta-iAVP, for the accurate prediction
of AVPs from given peptide sequences. Herein, the effective feature representation was extracted
from a set of prediction scores derived from various machine learning algorithms and types of
features. To the best of our knowledge, the model proposed herein represents the first meta-based
approach for the prediction of AVPs. An overall accuracy and Matthews correlation coefficient of
95.20% and 0.90, respectively, was achieved from the independent test set on an objective benchmark
dataset. Comparative analysis suggested that Meta-iAVP was superior to that of existing methods and
therefore represents a useful tool for AVP prediction. Finally, in an effort to facilitate high-throughput
prediction of AVPs, the model was deployed as the Meta-iAVP web server and is made freely available
online at http://codes.bio/meta-iavp/ where users can submit query peptide sequences for determining
the likelihood of whether or not these peptides are AVPs.

Keywords: therapeutic peptides; antiviral peptide; classification; machine learning; random forest;
meta-predictor

1. Introduction

Human morbidity, mortality, and economic productivity continue to be affected by viral infections
and their associated diseases. The dominance of sporadic viral outbreaks by zoonotic viruses
such as Ebola and Zika in recent years have added to the prevalence of viral species with which
humans are already in battle (i.e., human immunodeficiency virus (HIV), rhinoviruses, and influenza
viruses). Viruses are successful in causing malaise to humans due to their high genetic variation,
different routes of transmission, efficient replication, and the capability to persist in the host cells [1].
Furthermore, according to the global threat list of 2019 as compiled by the WHO, virus infections were
seen to dominate [2]. Although, up until recently, trial and error has led to the discovery of 90 antiviral
drugs approved for the treatment of 9 virus families (i.e., HIV, hepatitis B virus, hepatitis C virus,
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human cytomegalovirus, influenza virus, herpes virus, varicella-zoster virus, respiratory syncytial
virus, and human papillomavirus), these drugs cannot begin to cover the >200 viruses discovered thus
far [3,4]. In addition, major breakthroughs in combating viral infections by vaccine production have
led to remarkable advances in modern medicine such as the eradication and control of disease such
as small pox [5] and polio [6], respectively. Nevertheless, the development of new vaccines remains
a huge challenge in terms of time and expenses [7]. Unfortunately, the ever-increasing reports of
antiviral resistance [8–10] coupled with the emergence and re-emergence of viral epidemics as observed
for H1N1 [11], Ebola [12], and Zika [13] viruses, demands the production of new antiviral drugs with
broad-spectrum activity [14]. More recently, peptide-based drugs have gained much interest as a new
class of drugs due to their ability to be highly selective, relatively safe while also possessing good
tolerability and a lower production cost [15]. Besides the advantages of peptide-based drugs, a short
half-life, immunogenic potential, and low oral absorption are some of their current limitations [16].

Antiviral peptides (AVPs) is a subset belonging to the group of antimicrobial peptides (AMPs)
and in that regard, exhibits antiviral activity. As of 23 September, 2019, the antimicrobial
database (APD3) contains a total of 3129 AMPs, out of which, 188 are antiviral peptides [17].
Similarly, another database of antimicrobial peptides, DRAMP 2.0, contains 19,899 entries which
consist of general, patent, and clinical AMPs [18,19]. In addition, a database focused solely on antiviral
peptides contains 2683 experimentally verified AVPs including 624 modified AVPs [1]. Additionally,
there are other databases that focus on the structure and antimicrobial activity of natural and synthetic
peptides [20] as well as therapeutic peptides [21–23]. Thus, it is evident that peptide-based research is
gaining momentum. In some cases, a given peptide shows more than one activity and is, therefore,
called a promiscuous peptide (i.e., showing dual antimicrobial and antiviral effects). In addition,
AVPs have been shown to possess cationic and amphipathic characteristics with positive net charges,
all of which are essential for these peptides to work as antimicrobials [24]. Moreover, hydrophobicity
seems to be a key property for peptides with activity against enveloped viruses [25,26]. To date,
Fuzeon™ (Enfuvirtide), a synthetic peptide that blocks viral fusion by binding to gp41 (polypeptide
chain) of HIV type-1 envelope protein is the only peptide to have been commercialized [27]. In addition,
Bulevirtide™ (Myrcludex B), an anti-Hepatitis B and Hepatitis D peptide targeting sodium taurocholate
co-transporting polypeptide (NTCP) of liver cells, has also been studied in a phase IIb clinical trial [28]
and is scheduled for phase III trials [29]. The structure of some AVPs that have already been elucidated
experimentally, are shown in Figure 1.

Furthermore, there are several mechanisms of action whereby antiviral therapeutic agents
can inhibit viral activity (i.e., block the attachment of viruses, prevent fusion of viruses to
host cells, interrupt the signaling process of viruses, or inhibit the replication of viruses in host
cells) [30]. Currently, some studies have shown that AVPs inhibit the fusion of viruses to host
cells [14,31,32]; while others have shown that AVPs interfere with viral replication [33–35] and
attachment of the virus to host cells [36–38]. For example, P9, an AVP derived from mouse
β-defensin acts against various flu strains (i.e., H1N1, H3N2, H5N1, H7N7, and H7N9) by binding
to viral glycoproteins and inhibiting RNA replication through the prevention of viral fusion in the
endosome [39]. Additionally, protegrin-1, a cyclical cationic peptide derived from swine white blood
cells, showed potent antiviral activity against dengue virus by inhibiting the specific viral protease
important for dengue virus replication, named NS2B-NS3pro [40]. Hence, accurately identifying the
biological activities of peptides provides great importance for the exploration of the mechanism of
action of AVPs and the development of antiviral drugs. However, the experimental approaches are
still very slow, inefficient, and expensive. Besides, with the rapid explosion of newly-found peptide
sequences in the post-genomic era, the peptide sequences in various database are rapidly increasing day
by day. In that regard, bioinformatics-based tools are crucial for efficient analysis of the ever-increasing
availability of data. Thus, it is in a great demand to develop a prediction model based on an efficient
machine learning algorithm for fast and reliably identifying the biological activities of peptides
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according to their primary sequences. This process could further shed light on novel AVPs having
potent clinical outcomes.Polymers 2018, 10, x FOR PEER REVIEW  1 of 1 

 

 

Figure 1. Structures of selected antiviral peptides that have been experimentally elucidated.
Each structure is labelled by a common name followed by the Protein Data Bank Identification
number (PDBID) in parenthesis on the subsequent line. * Dermaseptin-S4: The structure and available
PDBID is that of a truncated peptide, which was experimentally tested to be effective.

Until now, there are four prediction models based on various machine learning (ML) algorithms
that have been developed for AVP prediction, i.e., AVPpred [41], Chang et al.’s method [42],
Zare et al.’s method [43], and AntiVPP 1.0 [44]. Three of the four prediction models [41,42,44] were
performed on the same benchmark datasets, as summarized in Table 1. Initially, Thakur et al. [41]
was the first to propose a prediction model for AVP prediction called AVPred as well as established
the two benchmark datasets T544p+407n + V60p+45n and T544p+544n + V60p+60n. AVPred was constructed
by using a support vector machine (SVM)-based model with physicochemical properties from the
AAindex database. AVPred provided moderate prediction accuracies on the independent datasets
V60p+45n and V60p+60n of 85.7% and 92.5%, respectively. Shortly afterward, Chang et al. [42] utilized a
combination feature of amino acid composition (AAC) and aggregation tendencies to develop a random
forest (RF) model. Their prediction model achieved higher prediction accuracies as compared to
AVPred with 89.5% and 93.3% for T544p+407n + V60p+45n and T544p+544n + V60p+60n datasets, respectively.
Recently, Lissabet et al. [44] proposed a computation tool based on RF in conjunction with various
physicochemical properties called AntiVPP 1.0. In their experimental setting, AntiVPP 1.0 was
developed using one of the two benchmarked datasets, i.e., T544p+544n + V60p+60n and obtained a
prediction accuracy of 93.0% which did not show any improvement as compared to AVPpred and Chang
et al.’s method. Although, the above-mentioned methods produced promising results, there is still
room for improvement in regards to prediction performance. First, the features used for constructing
the previous methods did not offer the sequence-order or position-specific information and hence
might considerably limit the prediction quality. Second, most of the existing predictors [41,42,44] were
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developed using the embodiment of redundant features, causing a decrease in performance. Finally,
the accuracy and transferability of the prediction model still require improvement.

Table 1. Summary of existing methods for predicting antiviral peptides.

Method Classifier a Sequence Feature
b

Stand-Alone
Program Webserver

AVPpred [41] SVM AAindex − X
Chang et al.’s method

[42] RF AAC, aggregation − −

AntiVPP 1.0 [44] RF PCP X −

Meta-iAVP (This study) Meta-predictor AAC, Am-PseAAC − X
a RF: Random forest and SVM: Support vector machine. b AAC: Amino acid composition, AAindex: Amino Acid
index database, aggregation: Aggregation propensity, Am-PseAAC: Amphiphilic pseudo amino acid composition,
and PCP: Physicochemical properties.

Motivated by the aforementioned issues, we proposed a novel sequence-based meta-predictor,
called Meta-iAVP, for the prediction of AVPs from given peptide sequences to address the shortcomings
of the existing methods. First, the benchmark datasets were collected to construct a model
and fairly compare with the previous models. Second, we encoded the peptide sequence with
AAC, pseudo amino acid composition (PseAAC), amphiphilic pseudo amino acid composition
(Am-PseAAC), dipeptide composition (DPC), and g-gap dipeptide composition (GDC). Third, we fed
each feature separately into six different ML algorithms, i.e., RF, SVM, k-nearest neighbor (k-NN),
recursive partitioning and regression trees (rpart), generalized linear model (glm), and extreme
gradient boosting (XGBoost), to generate a new feature representation. Subsequently, effective feature
representation was used to build a meta-predictor. The performance comparisons on the two benchmark
datasets illustrated that Meta-iAVP significantly outperformed other existing AVP predictors. To the
best of our knowledge, our proposed model is the first meta-based approach in the prediction of AVPs.
We anticipate that Meta-iAVP may serve as a useful computational resource for high-throughput AVP
prediction and also facilitate experimental researchers in the discovery of novel AVPs. Finally, for the
convenience of experimental scientists, a Meta-iAVP web server was established and made freely
available online at http://codes.bio/meta-iavp/.

2. Results

In this study, AVPs and Non-AVPs were predicted by the proposed method Meta-iAVP.
Firstly, the importance of each amino acid to antiviral activities of peptides using mean decrease
of Gini index (MDGI) and univariate analysis were performed. Secondly, the features that are
beneficial for discriminating AVPs from Non-AVPs were determined by conducting performance
comparisons between five types of features, i.e., AAC (20D), DPC (400D), GDC (400D), PseAAC
(20 + 2λ), and Am- PseAAC (20 + 2λ), and six commonly used ML algorithms. Thirdly, Meta-iAVP
based on the meta-predictor was constructed by using the new feature representation as the input
feature. Finally, to serve easy and rapid classification of query peptide sequence, Meta-iAVP is exploited
as a free prediction web server for discriminating AVPs and Non-AVPs. Figure 2 summarizes the
workflow of the computational approach of Meta-iAVP.

http://codes.bio/meta-iavp/
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Figure 2. Schematic framework of Meta-iAVP. Overview of the proposed methodology for
discriminating AVPs from Non-AVPs involving the following steps: (1) preparing two benchmark
datasets; (2) extracting a peptide sequence with five types of features to encode six models;
(3) constructing six ML models to generate a six-dimentional feature for each type of feature O(M),
where 1 and 0 are represented with AVPs and Non-AVPs, respectively; and (4) establishing the
meta-predictor for each benchmark dataset that separates a query peptide into AVPs and Non-AVPs.

2.1. Biological Space of Antiviral Peptides

As previously mentioned, AAC and DPC descriptors allow us to decipher the biochemical and
biophysical properties of antiviral peptides. Preceding studies have used the AAC and DPC as to
gain further insights on the characterization of therapeutic peptides [45–48] and various protein
functions [49–52]. In this study, the value of MDGI was adopted to rank and estimate the importance
of each AAC and DPC feature. Tables 2 and 3 list the percentage values of the top 20 amino acids for
both AVPs and Non-AVPs as derived from experimental validation and random datasets, respectively.
In addition, a heatmap showing the feature importance for DPC is provided in Figure 3. From Tables 2
and 3, it can be observed that the ten informative amino acids with the highest MDGI values are Lys,
Thr, Leu, Ile, Ser, Trp, Asn, Arg, Cys, and Glu (49.27, 46.27, 35.06, 34.52, 30.95, 30.93, 30.19, 28.52,
26.33, and 24.87, respectively) and Lys, Pro, Cys, Thr, Ser, Trp, Val, Ala, Gly, and Leu (77.11, 68.87,
57.68, 46.84, 39.57, 36.83, 25.69, 24.40, 24.25, and 23.80, respectively) for the experimental validation
and random Non-AVP datasets, respectively. Meanwhile, Figure 3a,b shows that the five top-ranked
dipeptides according to their MDGI value are LL, RK, LV, WI, and EI for the experimentally validated
dataset (T544p+407ndataset) and KR, KK, GP, AS, and SA for the random Non-AVP dataset (T544p+544n

dataset), respectively.
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Table 2. Amino acid compositions (%) of AVP and Non-AVP along with their mean decrease of Gini
index (MDGI) values on T544p+407n dataset.

Amino Acid AVP (%) Non-AVP (%) Difference p-Value MDGI

K-Lys 0.092 0.078 0.014 <0.05 49.27(1)
T-Thr 0.032 0.055 −0.023 <0.05 46.27(2)
L-Leu 0.119 0.09 0.029 <0.05 35.06(3)
I-Ile 0.068 0.046 0.022 <0.05 34.52(4)

S-Ser 0.054 0.057 −0.003 0.464 30.95(5)
W-Trp 0.049 0.024 0.025 <0.05 30.93(6)
N-Asn 0.04 0.049 −0.009 <0.05 30.19(7)
R-Arg 0.079 0.082 −0.003 0.685 28.52(8)
C-Cys 0.038 0.035 0.003 0.499 26.33(9)
E-Glu 0.062 0.051 0.011 <0.05 24.87(10)
D-Asp 0.038 0.042 −0.004 0.204 22.93(11)
A-Ala 0.074 0.079 −0.005 0.384 21.85(12)
V-Val 0.049 0.062 −0.013 <0.05 21.1(13)
P-Pro 0.033 0.054 −0.021 <0.05 19.73(14)
Q-Gln 0.036 0.036 0 0.916 17.84(15)
G-Gly 0.047 0.059 −0.012 <0.05 17.25(16)
H-His 0.016 0.022 −0.006 <0.05 14.9(17)
F-Phe 0.041 0.038 0.003 0.358 14.49(18)
Y-Tyr 0.021 0.03 −0.009 <0.05 12.09(19)

M-Met 0.011 0.014 −0.003 0.085 6.27(20)

Table 3. Amino acid compositions (%) of AVP and Non-AVP along with their MDGI values on
T544p+544n dataset.

Amino Acid AVP (%) Non-AVP (%) Difference p-Value MDGI

K-Lys 0.092 0.046 0.045 <0.05 77.11(1)
P-Pro 0.033 0.068 −0.035 <0.05 68.87(2)
C-Cys 0.038 0.022 0.015 <0.05 57.68(3)
T-Thr 0.032 0.053 −0.021 <0.05 46.84(4)
S-Ser 0.054 0.083 −0.029 <0.05 39.57(5)
W-Trp 0.049 0.015 0.033 <0.05 36.83(6)
V-Val 0.049 0.069 −0.02 <0.05 25.69(7)
A-Ala 0.074 0.087 −0.013 <0.05 24.40(8)
G-Gly 0.047 0.072 −0.025 <0.05 24.25(9)
L-Leu 0.119 0.117 0.002 0.728 23.80(10)
I-Ile 0.068 0.042 0.026 <0.05 23.42(11)

H-His 0.016 0.021 −0.005 <0.05 23.13(12)
E-Glu 0.062 0.056 0.006 0.108 20.13(13)
Q-Gln 0.036 0.04 −0.004 0.18 18.50(14)
N-Asn 0.04 0.03 0.01 <0.05 18.48(15)
R-Arg 0.079 0.061 0.018 <0.05 17.67(16)
F-Phe 0.041 0.038 0.003 0.321 16.57(17)
D-Asp 0.038 0.038 0 0.982 15.75(18)
Y-Tyr 0.021 0.023 −0.001 0.537 10.57(19)

M-Met 0.011 0.017 −0.006 <0.05 10.33(20)
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Interestingly, three of the five top-ranked informative amino acids from both Tables 2 and 3,
are common and represent polar amino acids (i.e., Lys, Thr, and Ser), while the other amino acids
are non-polar and hydrophobic residues (i.e., Leu and Ile for the experimental dataset and Pro for
the random Non-AVP dataset). As stated, the top ranked amino acid, Lysine (Lys) was observed in
both the experimentally validated dataset as well as the random Non-AVP dataset. Being a basic
residue, Lys is abundantly found in the composition of therapeutic peptides due to its ability to
enhance the electrostatic properties that facilitate the interaction and insertion of peptides into the
anionic cell walls and phospholipid membranes of microorganisms [53]. Thus, the cationic role of
Lys is observed in various AMPs which also function as AVPs. For instance, first published in 1986,
the study by Daher et al. [54] reported the antiviral role of a cationic peptide, α-defensin which
was described as inhibiting a number of viruses including herpes simplex virus types one and two,
cytomegalovirus as well as inhibiting the vesicular stomatitis virus with human neutrophil peptide
1 (HNP1) in vitro. Since then, many reports have shown antiviral activity of cationic host-defense
peptides such as α-defensins (i.e., HNP-1, HNP-2, HNP-3, and HNP-4), β-defensins (i.e., HBD-2 and
HBD-3), and θ-defensin (i.e., Retrocyclin-2), and the use of effective antiviral therapy with cathelicidins
(i.e., LL-37), as previously reviewed [36,55–59]. Furthermore, Mandelboim et al. observed that the
initiation of lysis via natural killer cells by the P8 epitope of coxsackie viral peptide was pronounced
with Lys as compared to other basic amino acid residues such as Arg or His [60]. Hence, the role
of Lys in providing cationic properties to a given peptide sequence is fundamental and leads to the
enhancement of its antiviral activities.

Threonine (Thr) is another common amino acid observed between the two datasets of Tables 2
and 3. Thr plays an essential role in the phosphorylation of virus-encoded serine/threonine kinases,
a unique feature of large DNA viruses [61]. This important phosphorylation usually results in
a functional change of the target protein by interfering with its enzymatic activity, cellular location,
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and/or association with other proteins [61]. Therefore, a disruption of this property could hinder
the efficient spread of the virus. This notion was also elucidated in a study conducted by Santos
et al. [62] on a nuclear shuttle protein (NSP)-interacting kinase (NIK1) which acts as a receptor-like
kinase identified as a virulence target of the begomovirus NSP. The authors conducted mutagenesis on
residues Thr-474 and Thr-468 on the A-loop of the NIK1 and observed that these mutations impaired
autophosphorylation and were unable to attain kinase activation. In addition, Hale et al. [63] reported
that an Ala substitution of Thr-215 of the NS1 protein phosphorylation mechanism caused a disruption
in viral propagation of human influenza A virus. Similarly, Hemonnot et al. [64] conducted mutational
analysis of HIV mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase-2 (ERK-2)
by substitution of Thr-23 to Ala-23. The resulting electron microscopy and western blot analysis
showed that the substitution of a single Thr-23 residue, which provided an essential function in the
release of viral particles from the cell surface, was disrupted. Thus, from the aforementioned studies,
it is clear that Thr is extremely vital for proper kinase phosphorylation of viral proteins which further
allow for efficient viral budding from infected cells.

The third most important amino acid observed from Tables 2 and 3 was Serine (Ser) which
plays an essential role in several cellular and metabolic processes [65]. In addition, as previously
mentioned, Ser also makes up an important component of virus-encoded serine/threonine kinases [61].
Furthermore, an extensively studied and well-known AMP, lactoferrin, is recognized as a potent
inhibitor of various viruses such as human immunodeficiency virus, herpes simplex virus types one and
two, human cytomegalovirus, hepatitis C virus, hepatitis B virus, and respiratory syncytial virus. [66].
One such study conducted by Scala et al. [66], examined in detail the structure of lactoferrin-derived
peptides and their activity against influenza virus using protein-protein interactions. In addition,
all the peptide fragments tested were derived from the Ser418-Pro429 loop which formed a structural
conformation that was critical for the resulting peptide activity. The authors noted that the presence of
Ser was observed in the top three active peptide fragments. Hence, the presence of Ser in terms of
formation of effective peptides for antiviral activity is highly advantageous.

2.2. Performance Comparison of Various Types of Features

To assess the effectiveness of each feature in discriminating AVPs from Non-AVPs, the five-fold
CV and independent validation test were conducted for each feature by performing six commonly used
ML models. Figures 4 and 5 provide the performance comparisons over the five-repeated five-fold CV
and independent test results on T544p+407n + V60p+45n and T544p+544n + V60p+60n datasets, respectively.
As seen in Figures 4 and 5, the average Ac over the five-repeated five-fold CV on T544p+407n and
T544p+544n datasets are (78.52%, 78.72%, 79.69%, 78.68%, and 77.04%) and (84.91%, 84.88%, 85.28%,
82.19%, and 86.44%) for ACC, PseAAC, Am-PseAAC, DPC, and GDC, respectively. The average Ac of
each type of feature was obtained by averaging six Ac values derived from six ML algorithms over the
five-repeated five-fold CV and independent validation test. Meanwhile, the performance comparisons
on the independent validation datasets V60p+45n and V60p+60n were (80.29%, 83.17%, 79.01%, 79.49%,
and 77.41%) and (86.16%, 86.44%, 85.88%, 86.02%, and 84.59%) for ACC, PseAAC, Am-PseAAC, DPC,
and GDC, respectively. For performance comparisons among the six ML models, the prediction results
showed that average Ac over the five-repeated five-fold CV and independent test results on T544p+407n

+ V60p+45n and T544p+544n + V60p+60n datasets were (80.55%, 76.36%, 74.46, 86.86%, 85.93%, and 85.65%)
and (82.16%, 78.00%, 74.09%, 86.86%, 85.93%, and 85.65%), respectively.
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Figure 5. Performance comparisons of AVP predictors based on different six machine learning
algorithms types of features, i.e., AAC (a), PseAAC (b), Am-PseAAC (c), DPC (d), and GDC (e), on the
dataset T544p+544n + V60p+60n, respectively.

By observing the performance comparisons in Figures 4 and 5, it could be summarized as follows:
(i) ACC and DPC features did not afford better performance than other three predictors but they
provide more interpretability for discriminating AVPs from Non-AVPs, which is helpful for biologists
in designing novel peptides. This observation is quite consistent with previous works [41,42]; (ii) the
top three most powerful ML models over the five-repeated five-fold CV and independent test are RF,
XGBoost, and SVM; and (iii) these prediction results demonstrate that the three top-ranked important
features in discriminating AVPs from Non-AVPs are PseAAC, AAC, and DPC, where AAC and PseAAC
are the most beneficial features for discriminating AVPs from Non-AVPs on the benchmark datasets
T544p+407n + V60p+45n and T544p+544n + V60p+60n, respectively.
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2.3. Construction of the Meta-iAVP Model

In general, the meta-predictor utilizes an important pattern from the predicted output derived
from different predictors under the assumption that using combined methods will provide substantially
accurate prediction results than a single method [67–71]. As described above, AAC and PseAAC are the
most important features for discriminating AVPs from Non-AVPs. Thus, to verify the power of these
two features in AVP prediction, the six ML models are trained with the AAC and PseAAC features for
performing on the benchmark datasets T544p+407n + V60p+45n and T544p+544n + V60p+60n, respectively,
and their performance comparisons are listed in Table 4. Amongst the six ML models, Table 4 shows
that the RF model with the AAC feature performs best with the highest Ac, Sn, Sp, and MCC of
86.54%, 86.54%, 86.36%, and 0.73, respectively, over the independent validation test on V60p+45n dataset.
Meanwhile, the RF model with the PseAAC feature shows superiority in discriminating AVPs from
Non-AVPs on the dataset V60p+60n with the highest Ac, Sn, Sp, and MCC of 91.53%, 90.00%, 93.10%,
and 0.83, respectively. Therefore, the AAC and PseAAC features were used as the initial features
for constructing the new feature representation to train the meta-predictor, as summarized in the
Section 3.6.

Table 4. Performance comparisons between Meta-iAVP and the six machine learning algorithms as
assessed by the five-repeated five-fold cross-validation and independent validation tests.

Dataset Method a Ac (%) Sn (%) Sp (%) MCC

T544p+407n

k-NN 78.79 88.24 66.13 0.56
rpart 74.09 81.03 64.82 0.47
glm 70.15 82.87 53.27 0.38
RF 84.22 85.70 82.34 0.68

XGBoost 84.33 86.69 80.97 0.68
SVM 79.53 83.81 73.86 0.58

Meta-predictor 88.17 89.23 86.94 0.76

T544p+544n

k-NN 84.15 82.53 86.07 0.68
rpart 80.63 82.37 79.73 0.62
glm 77.11 77.78 76.78 0.54
RF 89.44 84.18 94.68 0.79

XGBoost 89.16 87.48 90.90 0.78
SVM 88.79 87.13 90.71 0.78

Meta-predictor 92.31 88.44 96.16 0.85

V60p+45n

k-NN 80.77 95.00 61.36 0.61
rpart 75.96 86.67 61.36 0.50
glm 68.27 86.67 43.18 0.34
RF 86.54 86.67 86.36 0.73

XGBoost 83.65 85.00 81.82 0.67
SVM 86.54 93.33 77.27 0.72

Meta-predictor 95.19 96.67 93.18 0.90

V60p+60n

k-NN 89.83 85.00 94.83 0.80
rpart 83.05 88.33 77.59 0.66
glm 73.73 78.33 68.97 0.48
RF 91.53 90.00 93.10 0.83

XGBoost 90.68 90.00 91.38 0.81
SVM 89.83 88.33 91.38 0.80

Meta-predictor 94.92 93.33 96.55 0.90
a k-NN: k-nearest neighbor, rpart: ecursive partitioning and regression trees, glm: Generalized linear model,
RF: Random forest, XGBoost: Extreme gradient boosting, and SVM: Support vector machine.

To demonstrate the superiority and capability of our proposed model, we compared the
aforementioned prediction results with the meta-predictor. Table 4 shows that the overall Ac and MCC
values obtained from the meta-predictor are 4–9% and 9–17%, respectively, which are higher than
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those resulting from k-NN, rpart, glm, RF, XGBoost, and SVM models on both V60p+45n and V60p+60n

datasets. It could be stated that our proposed meta-predictors are justified as the more powerful and
highly efficient AVP predictor. For convenience of the subsequent description, we will refer to these
two meta-predictors as Meta-iAVP.

2.4. Analysis of new feature representation

As seen in Figure 4, Figure 5 and Table 4, the improved performances of the proposed model
was achieved due to the method that takes new feature representation as the input feature and the
meta-predictor as the prediction engine. In the previous sub-section, the AAC and PseAAC were
mentioned as the optimum features amongst the five popular-used features, thus, these two features
were used to compare with the new feature representation. To demonstrate the effectiveness of the
new feature representation, the principle component analysis (PCA) approach is used to compare
the distribution of AVPs (red circles) and Non-AVPs (blue circles) by representing them with PCA
scores as illustrated in Figure 6. In this study, PCA analysis was performed using the FactorMineR
R package [72] in R programing environment. To perform PCA analysis, T544p+407n + V60p+45n and
T544p+544n + V60p+60n datasets were represented by the first two PCs (PC1 and PC2), where the
percentage of variance can be explained by the first two PCs where high percentage values is suggestive
of the feature importance for the predictive model. Figure 6a,c depict the distribution of AAC and a new
feature representation, respectively, obtained from the dataset T544p+407n + V60p+45n, while Figure 6b,d
represent the distribution of PseAAC and a new feature representation, respectively, obtained from
T544p+544n + V60p+60n dataset. It should be noted that, more overlap between the red and blue circles
indicate the feature is less capable in AVP prediction. Remarkably, Figure 6c,d revealed that the
new feature representation is efficient and effective as the input feature for discriminating AVPs
from Non-AVPs. This might explain why the proposed model, Meta-iAVP, outperformed the other
conventional models.Int. J. Mol. Sci. 2019, 8, x FOR PEER REVIEW 12 of 25 

 

 
Figure 6. Principle component analysis (PCA) scores plot of the distribution of AVPs and Non-AVPs, 
where AVPs and Non-AVPs are represented by red and blue circles, respectively. (a) and (c) represent 
the distribution of amino acid composition and a new feature representation, respectively, obtained 
from the dataset T544p+407n + V60p+45n, while (b) and (d) represent the distribution of pseudo amino acid 
composition and a new feature representation, respectively, obtained from the dataset T544p+544n + 
V60p+60n. 

2.5. Comparison of Meta-iAVP with the State-of-Art Predictors 

To indicate the effectiveness of Meta-iAVP, we benchmarked it against the three state-of-art AVP 
predictors namely AVPpred [41], Chang et al.’s method [42], and AntiVPP 1.0 [44]. Among the three 
AVP predictors, only AVPpred and Chang et al.’s method provided the prediction results over five-
fold CV and independent test results on T544p+407n + V60p+45n and T544p+544n + V60p+60n. In view of this, we 
only performed comparisons between Meta-iAVP with AVPpred and Chang et al.’s method. The 
overall performance comparisons of Meta-iAVP with other three existing methods over five-fold CV 
and independent test results on T544p+407n + V60p+45n and T544p+544n + V60p+60n are shown in Table 5. The 
pioneer work on the benchmark datasets was firstly reported by Thakur et al. [41]. Initially, they 
provided prediction results (Ac, MCC) on the independent dataset V60p+45n and V60p+60n with (85.70%, 
0.71) and (92.50%, 0.85), respectively. Later on, Chang et al. [42] utilized the RF model cooperating 
with their proposed features to enhance the prediction performance. Their prediction model yielded 
(89.50%, 0.79) and (93.30%, 0.87) on the independent datasets V60p+45n and V60p+60n, respectively, 
indicating that Chang et al.’s method outperformed AVPpred. Meanwhile, as noticed in Table 5, our 
proposed model Meta-iAVP achieved the best performances in terms of Ac, Sn, and MCC (V60p+45n, 
V60p+60n) of (95.20%, 94.90%), (93.20%, 98.30%), and (0.90, 0.90), respectively. Remarkably, Ac and MCC 
of Meta-iAVP were approximately 3.3–11.0% and 3.0–11.0% higher than the three state-of-art AVP 
predictors, thus demonstrating the superiority of our proposed predictor. 

With regard to the performance comparison as discussed in the two previous sub-sections, the 
consistent performance comparison over five-fold CV and independent validation test demonstrates 
that the proposed Meta-iAVP could accurately discriminate AVPs from Non-AVPs on unknown 
peptides. In particular, its high MCC value indicates that this new AVP model could effectively 
reduce the number of both false positive (FP) and false negative (FN) as well as narrow down 
experimental efforts. As our proposed model outperformed the other existing methods, it is 
reasonable due to the following aspects: (i) amongst various types of features employed in this study, 
PseAAC and Am-PseAAC features are firstly employed in AVP prediction. Many studies reported 

Figure 6. Principle component analysis (PCA) scores plot of the distribution of AVPs and Non-AVPs,
where AVPs and Non-AVPs are represented by red and blue circles, respectively. (a) and (c) represent
the distribution of amino acid composition and a new feature representation, respectively, obtained
from the dataset T544p+407n + V60p+45n, while (b) and (d) represent the distribution of pseudo
amino acid composition and a new feature representation, respectively, obtained from the dataset
T544p+544n + V60p+60n.

2.5. Comparison of Meta-iAVP with the State-of-Art Predictors

To indicate the effectiveness of Meta-iAVP, we benchmarked it against the three state-of-art AVP
predictors namely AVPpred [41], Chang et al.’s method [42], and AntiVPP 1.0 [44]. Among the three
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AVP predictors, only AVPpred and Chang et al.’s method provided the prediction results over five-fold
CV and independent test results on T544p+407n + V60p+45n and T544p+544n + V60p+60n. In view of
this, we only performed comparisons between Meta-iAVP with AVPpred and Chang et al.’s method.
The overall performance comparisons of Meta-iAVP with other three existing methods over five-fold
CV and independent test results on T544p+407n + V60p+45n and T544p+544n + V60p+60n are shown in
Table 5. The pioneer work on the benchmark datasets was firstly reported by Thakur et al. [41].
Initially, they provided prediction results (Ac, MCC) on the independent dataset V60p+45n and V60p+60n

with (85.70%, 0.71) and (92.50%, 0.85), respectively. Later on, Chang et al. [42] utilized the RF model
cooperating with their proposed features to enhance the prediction performance. Their prediction
model yielded (89.50%, 0.79) and (93.30%, 0.87) on the independent datasets V60p+45n and V60p+60n,
respectively, indicating that Chang et al.’s method outperformed AVPpred. Meanwhile, as noticed in
Table 5, our proposed model Meta-iAVP achieved the best performances in terms of Ac, Sn, and MCC
(V60p+45n, V60p+60n) of (95.20%, 94.90%), (93.20%, 98.30%), and (0.90, 0.90), respectively. Remarkably, Ac
and MCC of Meta-iAVP were approximately 3.3–11.0% and 3.0–11.0% higher than the three state-of-art
AVP predictors, thus demonstrating the superiority of our proposed predictor.

Table 5. Performance comparisons between Meta-iAVP and the three existing methods as assessed by
the five-repeated five-fold cross-validation and independent validation tests.

Dataset Method a Ac (%) Sn (%) Sp (%) MCC

T544p+407n

AVPpred 85.00 82.20 88.20 0.70
Chang et al.’s

method 85.10 86.60 83.00 0.70

AntiVPP 1.0 - - - -
Meta-iAVP 88.20 89.20 86.90 0.76

T544p+544n

AVPpred 90.00 89.70 90.30 0.80
Chang et al.’s

method 91.50 89.00 94.10 0.83

AntiVPP 1.0 - - - -
Meta-iAVP 93.20 89.00 97.40 0.87

V60p+45n

AVPpred 85.70 88.30 82.20 0.71
Chang et al.’s

method 89.50 91.70 86.70 0.79

AntiVPP 1.0 - - - -
Meta-iAVP 95.20 96.70 93.20 0.90

V60p+60n

AVPpred 92.50 93.30 91.70 0.85
Chang et al.’s

method 93.30 91.70 95.00 0.87

AntiVPP 1.0 93.00 87.00 97.00 0.87
Meta-iAVP 94.90 91.70 98.30 0.90

a Results were reported from the works of AVPpred, Chang et al.’s method, and AntiVPP 1.0. The highest values for
each performance measure are shown in bold.

With regard to the performance comparison as discussed in the two previous sub-sections,
the consistent performance comparison over five-fold CV and independent validation test demonstrates
that the proposed Meta-iAVP could accurately discriminate AVPs from Non-AVPs on unknown peptides.
In particular, its high MCC value indicates that this new AVP model could effectively reduce the
number of both false positive (FP) and false negative (FN) as well as narrow down experimental
efforts. As our proposed model outperformed the other existing methods, it is reasonable due to
the following aspects: (i) amongst various types of features employed in this study, PseAAC and
Am-PseAAC features are firstly employed in AVP prediction. Many studies reported that these two
feature have been successfully implemented to predict many peptides and proteins [15,47,50,73–79];
(ii) the parameters of our proposed model were optimized by using the five-repeated five-fold CV
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indicating that our estimated parameters were more stable and accurate [80]; (iii) most of the existing
predictors [41,42,44] were developed by using a combination of various types of features causing
two outcomes: Information redundancy and the overfitting problem. On the other hand, we used
only six-dimensional (6D) feature vectors that provided not only sufficient but also comprehensive
information for AVP prediction; and (iv) our final meta-predictor was constructed by taking advantage
of feature learning scheme. As seen in Tables 4 and 5, the performance comparisons revealed that our
proposed model is more effective and promising for AVP prediction.

2.6. Meta-iAVP web server

In an effort to maximize the utility of the prediction model by the scientific community, we have
deployed the predictive model as a web server that is also called the Meta-iAVP (i.e., using the best
model as described in previous sections). The web interface of the web server was established using
the Shiny package under the R programming environment. The web server is freely accessible at
http://codes.bio/meta-iavp/. Screenshots of the Meta-iAVP web server are shown in Figure 7 in which
panel A shows the web server prior to submission of input data and panel B shows the web server
after the prediction has been made.
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prediction output.

Briefly, a step-by-step guide on using the web server is given below:

http://codes.bio/meta-iavp/
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• Step 1. Proceed to entering the following URL into the web browser, http://codes.bio/meta-iavp/.
• Step 2. Users have the option of either entering the query peptide sequence directly into the Input

box or uploading the sequence file by clicking on the “Choose file” button (i.e., found below the
“Enter your input sequence(s) in FASTA format heading”).

• Step 3. Click on the “Submit” button in order to start the prediction process.
• Step 4. Once predictions are made, the results output are shown in the grey box found below

the “Status/Output” heading. The prediction process requires only a few seconds to process.
After predictions are made, the prediction output can be conveniently downloaded as a CSV file
by pressing on the “Download CSV button”.

3. Materials and Methods

In practice, the prediction of peptide function is quite difficult and hard, particularly in dealing
with a complicated biological system. Nevertheless, the development of an accurate prediction
method might be deemed rewarding and successful if it could help provide some useful information.
Thus, the present study was devoted to develop a new meta-predictor for discriminating AVPs from
Non-AVPs in peptide sequences. To establish a really useful computational method for a biological
system, we followed Chou’s five-step guidelines mentioned in [81–85]: (i) construct or collect a reliable
dataset that is experimentally validated sequences for training and validating the model; (ii) represent
peptides sequences that can truly reflect their intrinsic properties to be predicted; (iii) develop
a powerful algorithm or engine to operate the prediction; (iv) evaluate the prediction method with
appropriate and rigorous cross-validation tests; and (v) develop a user-friendly web-server for users
that can easily get their desired result without needing to go through the mathematical and statistical
details. Below, we describe in detail how to deal with these steps one by one. Furthermore, Figure 2
shows the workflow of Meta-iAVP which works in discriminating peptides as AVPs or Non-AVPs.

3.1. Dataset Preparation

One of the most important steps is to establish a reliable and stringent benchmark dataset to train
and test the proposed method. To objectively evaluate the performance of the proposed method and
fairly compare it with the existing methods [41,42,44], the same datasets, i.e., T544p+407n, T544p+544n,
T60p+45n, and T60p+60n, which were obtained from the study by Thakur et al. [41] were taken as the
benchmark dataset in this study. For training the prediction model, the two benchmark datasets
T544p+407n and T544p+544n that were used in this study can be summarized by the following formula:

T544p+407n = T544p
∪ T407n (1)

T544p+544n = T544p
∪ T407n (2)

where T544p and T407n represent collections of 544 and 407 experimentally validated AVP and Non-AVPs,
respectively, while T544n represent a collection of 544 non-experimentally validated Non-AVPs and the
symbol ∪ represents the union from the set theory. Meanwhile, for assessing the efficient ability in
predicting unknown peptides, the independent validation datasets V60p+45n and V60p+60n were used to
evaluate the prediction performance from the prediction model constructed by the datasets T544p+407n

and T544p+544n, respectively, summarized by the following formula:

V60p+45n = V60p
∪V45n (3)

V60p+60n = V60p
∪V60nn (4)

where V60p and V45n represent collections of 60 and 45 experimentally validated AVP and Non-AVPs,
respectively, while V60n represent a collection of 60 non-experimentally validated Non-AVPs.

http://codes.bio/meta-iavp/
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3.2. Feature Extraction of Peptides

In development of a sequence-based predictor for predicting the biological activity, the feature
extraction process is one of the most crucial aspects where peptide sequences are represented in
a way that can afford a comprehensive and proper descriptor of the features reflecting their biological
activities. Given a peptide sequence (P), it can be represented as:

P = p1p2p3 . . .p1N (5)

where pi and N denote the ith residue in the peptide P and the peptide length, respectively. To develop
the sequence-based predictor based on machine learning models, five different compositions and
properties (i.e., AAC, DPC, PseAAC, Am-PseAAC, and GDC) that cover various aspects of sequence
information were used. These five features have been successfully used to predict many peptides and
proteins, such as human leukocyte antigen gene [86,87]; protein crystallization [50,88], the oligomeric
states of fluorescent proteins [89], the bioactivity of host defense peptides [48], human leukocyte
antigen gene [86,87], antifreeze proteins [49], hemolytic activity of peptides [46], antihypertensive
activity of peptides [47], and anti-angiogenic activity of peptides [74].

AAC and DPC are the proportions of each amino acid and dipeptide in a peptide sequence P that are
expressed as fixed lengths of 20 and 400, respectively. Thus, in terms of AAC and DPC features, a peptide
P can be expressed by vectors with 20D and 400D (dimension) spaces, respectively, as formulated by:

P = [aa1, aa2, . . . , aa20]
T (6)

P =
[
dp1, dp2, . . . , dp400

]T
(7)

where T is the transposed operator, while aa1, aa2 . . . , aa20 and dp1, dp2 . . . , dp400 are occurrence
frequencies of the 20 and 400 native amino acids and dipeptides, respectively, in a peptide sequence
P. As described, DPC is defined as the fraction of any two adjacent amino acids as a dipeptide pair.
It could be stated that the information of non-adjacent amino acids might be lost. Thus, the GDC
feature is developed to remedy such problem. This feature represents the number of occurrences of
two amino acids that are separated by g gaps (i.e., g = 0 represents a DPC feature). In this work, g = 1,
2, 3, 4, and 5 was used.

As mentioned in previous studies [81–83] and shown in Equations (3)–(4), AAC, DPC and g-gap
features only provide compositional information of a peptide sequence, but all the sequence-order
information may be completely lost. To remedy this limitation, PseAAC and Am-PseAAC approaches
were proposed by Chou [80,81]. According to Chou’s PseAAC, the general form of PseAAC for
a peptide P is formulated by:

P = [Ψ1, Ψ2, . . . , Ψu, . . . , ΨΩ]T (8)

where the subscript Ω is an integer to reflect the feature’s dimension. The value of Ω and the
component of Ψu, where u = 1, 2, . . . , Ω is dependent on the protein or peptide sequences. In this study,
the parameters of PseAAC (i.e., the discrete correlation factor λ and weight of the sequence information
$) were estimated by using the optimization procedure as described hereafter. The dimension
of PseAAC feature is 20 + λ × $. Since the hydrophobic and hydrophilic properties of proteins
play an important role in the folding and interaction of proteins, Am-PseAAC was introduced by
Chou [81]. The dimension of Am-PseAAC feature is 20 + 2λ. The first 20 components are the 20
basic AAC (p1, p2, . . . , p20) while the next 2λ ones denote the set of correlation factors that reveal the
physicochemical properties such as hydrophobicity and hydrophilicity (as) along a protein or peptide
sequence as formulated by:

P =
[
p1, p2, . . . , p20, p20+λ, p20+λ+1, . . .p20+2λ

]T
(9)
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The concrete values of hydrophobicity and hydrophilicity are given in Table A1. In this study,
the five aforementioned features of peptide sequences were generated by using the protr package
in the R programming environment [90]. The parameters of PseAAC (weight1 and lamda1) and
Am-PseAAC (weight2 and lamda2) were optimized by varying weight and lambda values from 0 to 1
and 1 to 10 with step sizes of 0.1 and 1, respectively, on the whole T544p+407n and T544p+544n datasets as
assessed by a 5-fold CV procedure. More details of how to estimate such parameters can be found
elsewhere [15,73–75].

3.3. Machine Learning Algorithms

The capability of prediction for the proposed model developed herein is dependent not only on
the feature representation process but also on the selection of machine learning algorithms. This study
exploited six popular and convenient ML algorithms, namely k-NN, rpart, glm, RF, XGB, and SVM,
for discriminating AVPs from Non-AVPs. Previously, these ML algorithms have been extensively
utilized in various domains [84,85,91–99]. In this study, the six ML algorithms were implemented using
the caret package in the R software [100]. Herein, the b concept and associated parameter optimization
for the six ML algorithm are given as follows:

The k-NN method is conceptually based on a distance function to measure the similarity between
a pair of samples. This method is categorized as an instance-based learning algorithm that has been
shown to be very effective for a variety of problem domains [86]. Given a dataset consisting of labeled
peptide D, a positive integer k and an unknown peptide Pnew, the k-NN classifier finds the k nearest
neighbors of Pnew in the dataset D, called knn(Pnew), and returns the dominating class, i.e., AVPs or
Non-AVPs, in knn(x) as the prediction result of label of the peptide Pnew. Optimization of k-NN
parameter (k) was determined by using the search space to maximize a five-fold CV accuracy on the
benchmark datasets T544p+407n and T544p+544n are [5,23] with the step of two.

The rpart method has been developed since the 1980s [101]. This method uses recursive partitioning
for classification, regression and survival trees. This method can be used to build classification or
regression models using two main steps. Firstly, the single feature which provides the best split for the
dataset into two groups is identified. After that, each dataset in further divided into two groups as
a sub-group, and so on recursively until a particular stopping criterion is reached, i.e., either reaching
a minimum size or on improvement can be made. The second step is to resample a dataset and trim
back to full tree.

The glm method is one of the most useful ML algorithms used for classification and regression
tasks, because it can be applied to many different types of domains. This method is a flexible
generalization of ordinary linear regression that allows the output variables having error distribution
models rather than a normal distribution. The glm method attempts to determine the relationship
between a set of features and classes by fitting a linear equation to a dataset consisting of labeled
peptide D. In the glm analysis, stepwise regression is used to select the most informative feature for
improving the prediction performance. For rpart and glm methods, the default caret parameter setting
was used [90].

RF was constructed according to the described original RF algorithm [101,102]. This model is
an ensemble model consisting of many classification and regression tree (CART) classifiers to perform
classification and regression tasks and improves prediction performances of CART classifiers by
growing a number of weak CART classifiers. RF utilizes the concepts of bagging and random feature
selection. The prediction result of the classification task is obtained by using a simple voting among
outputs of all trees to get one final prediction. In regression, a final prediction is the average of prediction
results of many decision trees. Herein, the RF classifier was established using the randomForest
package in the R software [101]. To enhance the performance of the RF model, two parameters namely
ntree (i.e., the number of tree used for constructing the RF classifier) and mtry (i.e., the number of
random candidate features) were determined using the caret R package [100] with a five-fold CV
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approach. The search space of ntree and mtry are (100,500) and (1,10) with the steps of 100 and
1, respectively.

XGBoost is a meta-algorithm used to construct an ensemble of strong learners from weak
learners, typically decision trees, on a modified dataset [103]. XGBoost, proposed by Chen and
Guestrin [104] is a boosted tree algorithm, which follows the principle of gradient boosting. In recent
years, XGBoost has been used extensively by data scientists and achieves satisfactory results on
various biological problems [105]. In this study, the prediction of AVPs can be considered as a binary
classification problem. Given a peptide sequence, we used XGBoost to predict its class label (−1 or
1), where +1 and −1 represent AVPs and Non-AVPs, respectively. For achieving the best XGBoost
model, five parameters namely eta (i.e., the number of the learning rate), max_depth (i.e., the number
of the depth of the tree), colsample_bytree (i.e., the number of features or variables to construct
a learner), subsample (i.e., the number of samples or observations to construct a learner), and nrounds
(i.e., the maximum number of iterations) were determined using the caret R package [100] with
a five-fold CV approach. The search space of eta, max_depth, colsample_bytree, subsample and
nrounds are (0.3, 0.4), (1,5), (0.6,0.8), (0.500, 1.000), and (50,250) with the steps of 0.1, 1, 0.2, 0.125,
and 50, respectively.

SVM method is a well-known ML algorithm based on the Vapnik-Chervonenkis
theory of statistical learning [106–108], which has been widely used in various biological
problems [67–71,73,75,82,87,109,110]. The principle idea of this method is to map the original
feature vectors having m-dimensional vector into a higher Hilbert space with n-dimensional vector,
where m < n, and then determine a separating hyper plane with the largest distance between two classes.
In this work, each sample on the benchmark datasets T544p+407n and T544p+544n has a corresponding
label (−1 and 1) where +1 and −1 represent AVPs and Non-AVPs, respectively. Many studies reported
that SVM can perform well on small sample size due to its excellent learning and best generalization
abilities [73,75]. In this study, the kernlab R package [111] was used to implement the SVM model.
To obtain an optimal SVM model, the regularization parameter C and kernel parameter γ were tuned
by using grid search method with a cross-validation technique, of which the search space for C and γ

are (2–8,28) and (2−8, 28) with steps of two and two, respectively.

3.4. Feature Importance Analysis

In this work, we performed the analysis and identification of feature importance for each type
of sequence feature by using the RF method to provide a better understanding of the biophysical
and biochemical properties of AVPs. In practice, the RF method provides two measures for ranking
feature importance, i.e., the mean decrease of Gini index and the mean decrease of prediction accuracy.
Since Calle and Urrea [112] demonstrated that the MDGI provided a more robust result as compared
to the mean decrease of prediction accuracy, we utilized the MDGI value to rank the importance of
interpretable features including AAC and DPC. The Gini index can be defined as MDGI is an impurity
measure that corresponds to the ability of each feature in discriminating the sample classes. The Gini
index can be defined as

1−
2∑

c=1

p2(c|t) (10)

where
∑2

c=1 p2(c|t) denotes the estimated class probability for node t in a tree classifier and c is the
class label (i.e., either AVP or Non-AVP). Features with the largest MDGI value is considered to be
an important feature as it significantly contributes to the prediction performance. Herein, the MDGI
values of feature importance for each type of sequence feature is estimated using the randomForest
package in the R software [101].
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3.5. Performance Evaluation

For the prediction problem, it is essential to determine the success and error rates of a given
classifier. In practice, there are three CV methods which are traditional approaches, i.e., sub-sampling
test or k-fold cross-validation (k-fold CV), jackknife test, and independent validation test or external
test. Among these, the jackknife test is recognized as the least arbitrary and most objective one,
as mention by equation 28–32 in Chou [81]. Meanwhile, the external test is considered as one of
the most rigorous and objective methods for cross-validation in statistics. In k-fold cross-validation
procedure, the training set is randomly separated into k subsets. From the k subsets, a single subset
is taken as the testing set to validate the prediction model trained and learned by the remaining k-1
subsets. This process is repeated k times, until each subset had been used as the testing set. During the
jackknifing process, a single sample in the whole dataset having N samples is taken as the testing set
and the remaining N-1 samples are used for training the model. This process is repeated N times,
until each sample has been used as the testing set.

In order to evaluate the prediction ability of the model, the following sets of four metrics are used
as follows:

Ac =
TP + TN

(TP + TN + FP + FN)
(11)

Sn =
TP

(TP + FN)
(12)

Sp =
TN

(TN + FP)
(13)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(14)

where Ac, Sn, Sp, and MCC are called accuracy, sensitivity, specificity and Matthews coefficient
correlation, respectively. TP, TN, FP, and FN represent the instances of true positive, true negative,
false positive and false negative, respectively. In 2009, Kim [80] demonstrated that the repeated k-fold
CV procedure yielded better performances than the non-repeated k-fold CV by reducing the variability
of the model. In this study, the five-repeated five-fold CV in conjunction with an independent validation
test are used to measure the performance of the model.

3.6. Feature Representation Learning

Previously, feature learning scheme has been successfully implemented to predict many peptides
and proteins [68–70]. Therefore, in this study, the same protocol was utilized to generate a new feature
representation, as illustrated in Figure 2. The procedures of this scheme are briefly described as follows:

3.6.1. Constructing Initial Features

As mentioned above, each peptide sequence was extracted as a numerical representation based
on AAC, PseAAC, Am-PseAAC, DPC, and GDC called initial features. The parameters of PseAAC
(weight1 and lamda1) and Am-PseAAC (weight2 and lamda2) were optimized by varying weight and
lambda values from 0 to 1 and 1 to 10 with step sizes of 0.1 and 1, respectively, on the benchmark datasets
T544p+407n and T544p+544n as assessed by a five-fold CV procedure. In this study, values of weight1,
weight2, lamda1, and lamda2 as performed on the benchmark datasets T544p+407n and T544p+544n are
(0.6, 0.1, 3, and 4) and (0.6, 0.2, 4, and 3), respectively. Meanwhile, the parameter of GDC feature (g-gap)
were optimized by choosing from one to five as assessed by a five-fold CV procedure. The optimum
values of g on the benchmark datasets T544p+407n and T544p+544n are one and three, respectively.
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3.6.2. Constructing a New Feature Representation

Firstly, the initial features for each type of feature were exploited to train six ML models
(i.e., k-NN, rpart, glm, RF, XGBoost, and SVM) using the two benchmark datasets and five-fold CV for
generating the predicted label. Secondly, for each type of feature, the new feature representation O(M)
was obtained by concatenating all the predicted labels from the six ML models. In our experiment,
the predicted label is represented with either the value of 0 or 1, where 1 and 0 represent the predicted
results as AVPs and Non-AVPs, respectively. Finally, for a given peptide sequence P, the sequence P is
represented with a new 6D feature vector.

3.6.3. Learning a New Feature for Meta-Predictor Representation

The new feature representations were used as input to train the RF model and subsequently used
for formulating the final meta-predictor separately for the two benchmark datasets by means of the
five-repeated five-fold CV.

3.7. Development of the Meta-iAVP Web Server

The best predictive model was deployed as a web server by harnessing the Shiny R package to
craft the web interface. Firstly, the web server accepts as input the input sequence in FASTA format
(i.e., either by from the input text box or from the uploaded FASTA file). Secondly, upon submission of
the input sequence by invoking the Submit button, the query sequences are subjected to descriptor
calculation and subsequently applied to the predictive model described previously. The resulting
prediction of the class labels (i.e., as either AVP or Non-AVP) along with their probability values are
displayed in the prediction output box. Results from the prediction process is also provided as a CSV
file upon invoking the Download button found directly underneath the output box.

4. Conclusions

Owing to the medical significance and potential utility of AVPs as promising antiviral drug
candidates, there is intensive efforts in the development of computational models for rapidly and
accurately identifying AVPs on unknown peptides. In this study, we have developed a novel
meta-predictor for AVP prediction called the Meta-iAVP. In constructing this meta-predictor, a feature
representation learning scheme based on six different ML algorithms and five feature types were
applied in model construction. Experimental results demonstrated the superiority of the proposed
Meta-iAVP model based on the feature representation learning scheme over models constructed by the
aforementioned ML algorithms and features. Furthermore, to confirm the effectiveness of the Meta-iAVP
model, we have also performed comparative analyses with other state-of-the-art AVP predictors. It was
observed from rigorous five-fold cross-validation and independent validation test that the proposed
model was more effective and promising for AVPs prediction. To maximize the convenience of the vast
majority of experimental scientists, the model was deployed as a web server that also goes by the same
name, Meta-iAVP, which has been made freely available at http://codes.bio/meta-iavp/. It is anticipated
that Meta-iAVP will serve as a useful, high throughput and cost-effective tool for large-scale analysis
of AVPs that would help contribute to a series of interesting follow-up research studies involving
antiviral peptides and other related therapeutic peptides. Although, Meta-iAVP displayed a superior
performance over that of existing methods as assessed by rigorous cross-validation methods, there is
still room for further improvements. For example, to improve the usefulness and efficacy for drug
development and experimental research, we will make an effort to develop a computational model for
predicting the inhibition of specific viruses in future studies.
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Appendix A

Table A1. Original values of hydrophobicity and hydrophilicity for 20 amino acids.

Amino Acid Hydrophobicity [81] Hydrophilicity [81]

A-Ala 0.62 −0.50
C-Cys 0.29 −1.00
D-Asp −0.90 3.00
E-Glu −0.74 3.00
F-Phe 1.19 −2.50
G-Gly 0.48 0.00
H-His −0.40 −0.50
I-Ile 1.38 −1.80

K-Lys −1.50 3.00
L-Leu 1.06 −1.80

M-Met 0.64 −1.30
N-Asn −0.78 0.20
P-Pro 0.12 0.00
Q-Gln −0.85 0.20
R-Arg −2.53 3.00
S-Ser −0.18 0.30
T-Thr −0.05 −0.40
V-Val 1.08 −1.50
W-Trp 0.81 −3.40
Y-Tyr 0.26 −2.30
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