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Neural stem cells (NSCs) persist in the adult mammalian brain in two neurogenic regions:
the subventricular zone lining the lateral ventricles and the dentate gyrus of the
hippocampus. Compelling evidence suggests that NSCs of the subventricular zone
could be the cell type of origin of glioblastoma, the most devastating brain tumor.
Studies in glioblastoma patients revealed that NSCs of the tumor-free subventricular
zone, harbor cancer-driver mutations that were found in the tumor cells but were not
present in normal cortical tissue. Endogenous mutagenesis can also take place in
hippocampal NSCs. However, to date, no conclusive studies have linked hippocampal
mutations with glioblastoma development. In addition, glioblastoma cells often invade or are
closely located to the subventricular zone, whereas they do not tend to infiltrate into the
hippocampus. In this review we will analyze possible causes by which subventricular zone
NSCs might be more susceptible to malignant transformation than their hippocampal
counterparts. Cellular andmolecular differences between the two neurogenic niches, as well
as genotypic and phenotypic characteristics of their respective NSCs will be discussed
regarding why the cell type originating glioblastoma brain tumors has been linked mainly
to subventricular zone, but not to hippocampal NSCs.

Keywords: neurogenesis, glioblastoma, neural stem cells, oncogenicity, cancer-driver mutations
INTRODUCTION

Gliomas constitute the most common and lethal primary tumor in the central nervous system
(CNS). The World Health Organization (WHO) classified CNS tumors by their histological origin,
molecular parameters and malignancy (1, 2). Glioblastoma multiforme (GBM) is considered as the
highest grade (Grade IV) astrocytoma, characterized by poorly differentiated cells with
microvascular proliferation, pseudopalisading necrosis, abundant mitoses and pleomorphic cells.
This type of glioma also shows a high degree of phenotypic, genomic and transcriptional
heterogeneity (3, 4). Extremely invasive, GBMs cannot be completely resected by surgery, and
are resistant to conventional therapies, including chemotherapy and radiation. As a consequence,
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the prognosis for GBM patients is very poor, with an average
survival rate of about 14–15 months even after intensive
treatment (5, 6).

The vast majority of GBMs (about 90% of cases) are primary
GBMs that rapidly develop de novo in elderly patients without
radiological or histological evidence of pre-existing less-
malignant precursor lesion. About 10% of the cases correspond
to secondary GBMs progressing from lower grade gliomas and
preferentially arise in younger patients (2). Although both GBM
types are histologically indistinguishable, secondary GBMs are
unequivocally characterized by the presence of IDH1 (isocitrate
dehydrogenase) mutations (7). For this reason, primary and
secondary GBMs can also be named as IDH-wild type and
IDH-mutant GBM, respectively (2). Primary (IDH-wild type)
GBMs typically present epidermal growth factor receptor
(EGFR) amplification and loss of the tumor suppressor
phosphatase and tensin homolog (PTEN). Inactivation of the
tumor suppressors TP53 (coding a protein called tumor protein
53 or p53) and NF1 (neurofibromin 1), or mutations in the
promoter of TERT (telomerase reverse transcriptase) are also
commonly identified in both GBM types (3, 8, 9).

Identification of the cell of origin for GBM, this is, the cell
type that acquires the initial tumorigenic mutation, is a
fundamental issue for understanding the etiology of the disease
and for developing early prognostic markers and preventive
therapies. Specifically, the cell of origin in IDH-wild type GBM
has been much more object of debate since, in contrast to IDH-
mutant GBM, the wild type arises without any precursor disease.
One of the hypotheses states that neural stem cells (NSCs)
remaining in the adult brain could be the cell of origin of this
devastating disease. NSCs are found in two neurogenic niches:
the subventricular zone (SVZ), lining the walls of the lateral
ventricles, and the subgranular zone (SGZ), in the dentate gyrus
of the hippocampus (10). Recent evidence has shown that SVZ-
derived NSCs might be the cell type harboring the cancer-driver
mutations that lead to GBMs (11). In contrast, to date, no
substantial data support the contribution of hippocampal-
derived NSCs in the development of these malignant tumors.
Remarkably, in mouse models of malignant gliomas and in GBM
patients, the hippocampus appears to be a region spared from
GBM invasion whereas the SVZ is a site for preferred infiltration
of this type of tumor (12).

In this article we will analyze differences in these two
neurogenic niches, as well as between the NSC population
residing in each of them, which might explain why the cell of
origin of IDH-wild type GBM has been linked mainly to the SVZ,
but not to hippocampal NSCs.
THE ADULT BRAIN NEUROGENIC NICHES
IN MAMMALS: SUBVENTRICULAR ZONE
AND HIPPOCAMPUS

In the majority of species of terrestrial mammals, adult CNS new
neurons can be generated from NSCs residing in two specific
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regions: the SVZ and the SGZ in the dentate gyrus of the
hippocampus (10, 13). Young neurons produced in the SVZ
migrate over an extended distance along the rostral migratory
stream toward the olfactory bulb, where their final differentiation
takes place (14). In contrast, neuroblasts generated in the SGZ
mature into granule cells within the same hippocampus (15).
Below, we will describe specific features of these two neurogenic
regions in rodents, since these are the mammals in which most
studies have been reported.

Neural Stem Cells of the Adult
Subventricular Zone
NSCs of the adult rodent SVZ have the ability to generate
neurons, astrocytes, and oligodendrocyte progenitor cells
(OPCs) depending on niche signals (16). They are known as
type B1 cells and the cell body is located under the layer of
ependymal cells (type E cells) lining the ventricle (Figure 1A). B1
cells are polarized cells with a basal process contacting blood
vessels and a non-motile primary cilium that contacts the
cerebrospinal fluid (CSF) of the lateral ventricle (17, 18).
Approximately 20% of B1 cells self-renew through symmetric
divisions whereas ~80% generate transit-amplifying neural
progenitors called type C cells (19) (Figure 1A). Type C cells
are located deeper within the niche, close to the vascular
network, are highly proliferative, and divide symmetrically
before becoming neuroblasts (type A cells) (20) (Figure 1A).
Type A cells are highly migratory and organize into chains to
leave the SVZ through the rostral migratory stream to finally
reach the olfactory bulb. Once in the olfactory bulb, type A cells
change their migration pattern from tangential to radial through
the cellular layers of the olfactory bulb to get to their target layer,
where they ultimately differentiate into mature interneurons (14,
18, 21). In addition, a small proportion of type B1 cells can
generate type C cells that express the oligodendroglial lineage
marker Olig2 and give rise to OPCs (Figure 1A) that migrate to
the corpus callosum and white matter tracts in the striatum and
fimbria fornix (22, 23). SVZ-derived neuroblasts and OPCs can
also migrate toward sites of brain injury, where they contribute
to neural regeneration (24–26).

The SVZ also contains a population of proliferative astrocytes
named type B2 cells (Figure 1A) that are located further beneath
the ventricle but do not contact it. B2 cells isolate neuroblast
chains from other cell types and help to shape the niche (20).
Microglia are also an integral part of the SVZ niche (Figure 1A).
Interestingly, SVZ microglia are clearly distinguished from
microglia in other brain regions both antigenically and
morphologically, and intervene in the control of neurogenesis
through gap junctional communication and the release of soluble
factors and extracellular vesicles [reviewed in (27)].

Additional constituents of the SVZ niche with relevance in
the regulation of neurogenesis are endothelial cells. They have
been reported to intervene in neuroblast migration and
maturation (28) and to secrete soluble factors that regulate
NSCs behavior (29). Moreover, direct cell-cell contact between
B1 cells and endothelial cells is involved in the maintenance of B1
cells in a quiescent state (30).
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Neural Stem Cells of the Subgranular Zone
of the Dentate Gyrus of the Hippocampus
The SGZ of the adult rodent hippocampus contains NSCs in
different states of proliferation or differentiation, as well as other
cell types that contribute to neurogenic functions. NSCs in the SGZ
are radial glia-like cells called type 1 cells (Figure 1B) that are
highly polarized, like radial glia and B1 cells (31). Type 1 cells
harbor a primary cilium that contacts blood vessels in the hilus, a
long process that extends through the granule cell layer and
numerous branches in the inner molecular layer (Figure 1B). All
these processes and branches allow type 1 cells to detect local
neural activity from granule cells and from synaptic terminals, as
well as signals from glial cells and blood vessels (31–33). Indeed, as
it happens in the SVZ, the close proximity of blood vessels within
the SGZ niche provides an abundant source of extrinsic factors that
regulate proliferation, neuronal differentiation and survival (34).
Unlike B1 cells, type 1 cells of the SGZ do not contact the CSF (31).

Under physiological conditions, type 1 cells are multipotent
cells with low rate of division that can remain for long periods
out of the cell cycle in a quiescent state (35, 36). NSC activation
may lead to the expansion of the stem cell pool through
symmetric and asymmetric self-renewal (35). The asymmetric
divisions of hippocampal NSCs generate non-radial transit-
amplifying cells (type 2 cells) destined to become neurons (37).
There are two subtypes of type 2 cells, a glial-like type (type 2a)
and a neuronally determined type (type 2b), which are negative
and positive respectively for the immature neuron marker
doublecortin (Figure 1B). Type 2 cells are highly proliferative
and comprise the transition from a glia-like precursor cell to a
neuronal determination, since they give rise to more committed
intermediate progenitors (type 3 cells) that are constrained to a
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neuronal fate (15, 35, 38). Type 3 cells are neuroblasts with little
proliferative activity, which migrate radially to the granule cell
layer to generate fully functional granule cells (15) (Figure 1B).
During the maturation stage, the newborn neurons extend their
dendrites into the inner molecular layer and their axon to CA3
(15) (Figure 1B). Type 1 cells can also give rise to astrocytes
through differentiation (37) but, unlike SVZ B1 cells, SGZ type 1
cells do not have the capacity to generate OPCs under normal
conditions (39).

In the transition between type 2 and type 3 cells, there is a
drastic decrease in newborn neurons, mediated by apoptosis.
Apoptotic cells are rapidly cleared out through phagocytosis by
microglia present in the adult SGZ niche (40) (Figure 1B).
Astrocytes are also in close contact with different components
of the SGZ niche and intervene in the regulation of the
neurogenic process (41, 42).

As a brief summary, in rodents, neurogenic niches for
hippocampal and subventricular zone neurogenesis exhibit
many similarities but also clear differences. For instance, the
hippocampus lacks ependymal cells and the whole process of
neurogenesis is physically localized in the dentate gyrus (15, 31).
In Table 1, we have summarized the main differences in the
progenitor cell population between these two niches.
DISTINCTIVE FEATURES OF THE HUMAN
SUBVENTRICULAR ZONE AND THE
HUMAN HIPPOCAMPUS

The SVZ of the adult human brain presents some peculiarities
with respect to the SVZ organization of rodents described before.
FIGURE 1 | Schematic drawings of the adult rodent subventricular zone (A) and hippocampus (B). Equivalent cell types within each niche are represented in the
same color. (A). Ependymal cells (type E, in yellow) separate the cerebrospinal fluid (CSF) in the lateral ventricle from the brain parenchyma. Type B1 cells (in dark
blue) are neural stem cells with a basal process in contact with blood vessels (BV) and an apical process in contact with the CSF. B1 cells generate type C cells (in
green) by asymmetric divisions. Type C cells are transit-amplifying intermediate progenitors that divide rapidly and produce neuroblasts (type A, in orange).
Neuroblasts migrate in chains ensheathed by astrocytes toward the olfactory bulb, where they differentiate into mature interneurons. Type C cells can also produce
oligodendrocyte progenitor cells (O, in purple). Other glial cells, such as astrocytes (type B2, in sky blue), and microglia (in gray) intervene in the control of
subventricular zone neurogenesis. (B). Neural stem cells (type 1, dark blue), located in the subgranular zone (SGZ) of the dentate gyrus of the hippocampus, harbor
a basal process that contact BVs and numerous branches in the inner molecular layer (IML). Type 1 cells generate transit-amplifying non-radial type 2 cells (in green),
which can be subdivided in type 2a and type 2b cells. Type 2 cells then give rise to a neuron-committed intermediate progenitor (type 3 cell, in orange). Type 3 cells
generate fully functional granule cells in the granule cell layer (GCL) which, after maturation, develop dendritic arborization in the IML and axonal projection to the
CA3. Microglia (gray) and astrocytes (sky blue) exert different roles in the control of neurogenesis.
November 2020 | Volume 10 | Article 602217

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fontán-Lozano et al. Neural Stem Cell Tumorigenicity
The cytoarchitecture significantly differs since, instead of a layer
of abundant type C and type A cells, characteristic of the rodent
SVZ, an almost acellular layer devoid of neuroblasts is located
beneath the ependymal cells in the human SVZ (43, 44) (Figure
2A). Adjacent to this hypocellular layer there is a dense ribbon of
astrocytes that extend processes across the hypocellular gap layer to
maintain contact with the surface of the lateral ventricle (Figure 2A).
Astrocyte-like NSCs are located in the hypocellular gap layer (43)
(Figure 2A). This appearance is adopted as early as 18months of age,
when both proliferative activity and the expression of markers of
immature neurons are largely depleted (49). In addition, during this
limited postnatal period of neurogenesis, not all neuroblasts generated
in the human SVZ are destined to the olfactory bulb, since many of
them migrate tangentially to the prefrontal cortex (49). The
incorporation of newborn neurons in the human olfactory bulb is
Frontiers in Oncology | www.frontiersin.org 4
nearly extinct by adulthood (50, 51), which may be related to the
reduction in the dependence of olfaction manifested in humans (50).
Surprisingly, the scarce neuroblasts formed in the adult human SVZ
migrate to the striatum, where they differentiate into interneurons, a
phenomenon that has been observed mainly in response to cell loss
due to injury (49, 50, 52). Importantly, newly generated cells from
NSCs in adult human SVZ are mainly oligodendrocytes, not neurons
(50, 52), which suggests that the oligodendrogenic process and its
corresponding myelin maintenance acquires more relevance in the
human brain when compared to other mammalian brains
(Figure 2A).

With respect to the human hippocampus, proliferating neural
progenitor cells and newly generated neurons were described in
the adult human dentate gyrus by the end of the last century (45)
(Figure 2B) and their existence has been suggested, even in the
aged brain, in recent studies (46, 53, 54). The preservation of
neurogenesis throughout life in healthy older people seems to be
important to maintain cognitive function (46, 54). Remarkably, a
larger proportion of hippocampal neurons are subject to
exchange in humans in comparison to the mouse (55).
However, other studies have argued against the existence of
adult neurogenesis in humans (47, 48) (Figure 2B). Sorrells and
colleagues showed that proliferating progenitors and young
neurons in the dentate gyrus declines sharply during the first
year of life and only a few isolated young neurons can be
observed by 7 and 13 years of age (47). Therefore, an
interesting debate has been established about the existence or
not of neurogenesis in the adult human hippocampus. The
contradictory hypothesis seems to be due to differences in the
treatment of human postmortem tissue and in the neuronal
FIGURE 2 | Schematic drawing of the adult human subventricular zone (A) and hippocampus (B). (A) Astrocyte-like neural stem cells (NSCs, in dark blue) are
located beneath the ependymal cell layer (in yellow) lining the lateral ventricles, within a hypocellular layer devoid of neuroblasts and transit-amplifying progenitor cells.
Microglial cells in this layer are represented in gray. Putative oligodendrocyte progenitor cells generated from NSCs are shown in purple. NSCs contact the
cerebrospinal fluid of the lateral ventricle and blood vessels (BV) of an adjacent layer consisted of a dense ribbon of astrocytes (pale blue) with processes in the
hypocellular layer. (B) According to some studies (45, 46) the subgranular zone of the dentate gyrus of the adult human hippocampus contains radial glia-like neural
stem cells (in pale blue) that generate proliferating intermediate neural progenitors (in pale green). These intermediate progenitors form neuronal committed
progenitors (in pale orange) that become mature granule neurons (in orange). In contrast, other studies (47, 48) have reported the total absence of neuronal
progenitors and immature neurons in the adult human subgranular zone. A question mark has been texted on these cells to symbolize this controversy. Other cell
types of the niche are microglia (in gray) and astrocytes (in sky blue). GCL, granule cell layer; IML, inner molecular layer; SGZ, subgranular zone.
TABLE 1 | Main differences between progenitor cells of the adult subventricular
zone and the adult hippocampus in rodents.

Rodent subventricular zone Rodent hippocampus

Neural Stem
Cells

B1 cells. Apical process in
direct contact with
cerebrospinal fluid
(17, 18, 20)

Type 1 cells. Do not contact
the cerebrospinal fluid
(31)

Intermediate
Progenitors

Type C cells. Give rise to
oligodendrocyte progenitor cells
and neuronal progenitors
(18, 20, 23, 24)

Type 2 cells. Give rise to
neuronal progenitors (15, 38)

Neuronal
Progenitors

Type A cells. Migrate
tangentially to the olfactory bulb
to generate interneurons
(14, 18, 21)

Type 3 cells. Migrate radially
in the hippocampus to
generate granule cells (15)
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markers used in diverse studies (56). Thus, while some authors
used doublecortin as a marker for young neurons (54), others affirm
that this marker is not specific to newborn neurons, since they
continue to express it as they differentiate, and it is also expressed by
non-neuronal glial cells (47). Therefore, there is a clear need to unify
criteria in order to have a better understanding of the neurogenic
process in the hippocampus of the adult human brain.
DIFFERENT THEORIES ON THE CELL OF
ORIGIN OF GLIOBLASTOMAS

The cell type that originates this devastating tumor has been a
subject of debate in the last few years, with data supporting
NSCs, astrocytes or OPCs as putative candidates (57). For
instance, several reports in mice have demonstrated that the
knockout/knockdown of tumor suppressor genes (e.g. PTEN,
P53, NF1, retinoblastoma protein RB1) in NSCs from the SVZ
leads to glioma formation (58, 59) (Figure 3). Genetic
modifications in astrocytes or in NSC-derived astrocytes
leading to combined inactivation of several tumor suppressor
genes or in driver oncogenes (EGFR) are also capable of initiating
gliomagenesis in mice (60–62) (Figure 3), although other
authors have reported that oncogenic mutations in mature
astrocytes do not contribute to the formation of gliomas (58,
59). OPCs have also been considered as the cell population that
originates this deadly cancer. Thus, inactivation of p53 and NF1
(63) or p53, NF1 and PTEN (64) in adult OPCs induce glioma
formation in mice (Figure 3).
Frontiers in Oncology | www.frontiersin.org 5
Latest data obtained from human patients have reinforced the
candidacy of NSCs from the SVZ, as the possible cell type
carrying the cancer-driving mutations of GBM (11). Lee et al.
(11) have convincingly demonstrated that tissue from the tumor-
free SVZ of IDH-wild type GBM patients contained low-level
GBM driver mutations (in TP53, PTEN or EGFR), that were
found in the dominant clones of its matching tumors (11). In
addition, TERT promoter mutations were identified in all the
patients with GBM that had driver mutations in tumor-free SVZ
tissue. In the same publication, authors performed experiments
in mice to support their findings in human tissue. Thus, they
generated a mouse model with p53, PTEN and EGFR mutations
in NSCs from the SVZ and showed that mutant cells migrated
from the SVZ to distant regions of the brain and eventually
developed high-grade glioma. Interestingly, mutated cells that
migrated toward the olfactory bulb differentiated into mature
neurons and did not lead to gliomas. The aberrant growth of the
mutated OPC lineage, but not of the mutated astrocytic lineage,
was found to be involved in the glioma formation (11). Previous
experiments performed in a mouse model of glioma led to
similar conclusions (65). In their article, Liu et al. induced p53/
NF1 mutations in NSCs to model gliomagenesis in mice and
analyzed mutant NSCs and their progeny at premalignant stages
(65). They demonstrated aberrant growth of OPCs, but not of
NSCs or any other NSC-derived lineages as neurons or
astrocytes. Upon tumor formation, it was confirmed the OPC
nature of the tumor cells. Consistently, gliomas were also formed
when these mutations were performed directly in OPCs. These
results indicate that while both SVZ NSCs and OPCs could be
the cell of origin of GBM, OPCs could rather constitute the
FIGURE 3 | Schematic drawing summarizing different theories on the cell of origin of glioblastomas. Neural stem cells (NSC) of the subventricular zone, astrocytes
and oligodendrocyte precursor cells (OPCs) of the brain parenchyma might acquire cancer-driver mutations leading to gliomas. Additionally, NSC-derived mutations
can be transmitted to their progeny generating mutated neuroblasts and mutated astrocytes, that do not likely give rise to tumor formation, or mutated OPCs with
the ability to grow aberrantly.
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population involved in the generation of the tumor mass, this is,
the “tumor-propagating cell population”.

Further evidence supporting SVZ NSCs as cell of origin of
GBM comes from striking similarities in marker expression
between NSCs and GBM cells. Some typical NSC markers
identified in GBMs are: nestin, glial fibrillary acidic protein
(GFAP), Sox2, CD44, and CD133 (prominin-1) (66–68).
Nonetheless, characteristic expression profiles of OPCs such as
neuronal glial antigen 2 (NG2), Olig2 and platelet-derived
growth factor receptor a (PDGRa) can also be found in some
GBM subtypes (69–71). This indicates that NSCs and OPCs may
give rise to distinct GBM subtypes contributing to the intertumor
heterogeneity of GBMs (64).

Remarkably, in spite of sharing many features with SVZ
NSCs, NSCs residing in the hippocampus have barely been
involved in glioma formation. Friedmann-Morvinski and
colleagues showed that transduction of hippocampal NSCs
with oncogenic lentiviral vectors gave rise to malignant glioma
in mice (72) but, surprisingly, no further data have been
published supporting a role for hippocampal NSCs in glioma
formation. In addition, the hippocampus is a region spared from
GBM (12). Mughal et al. analyzed the invasion patterns of glioma
cells in two mouse models of invasive GBM and in magnetic
resonance images from GBM patients, and showed that, in all
cases, despite extensive tumor cell infiltration in hippocampal
adjacent structures, very few tumor cells were observed within
the hippocampus itself (12). The absence of NSCs in the adult
human hippocampus reported by some authors (47, 48) may
account for the lack of hippocampal involvement in glioma
formation or invasion. But if adult human hippocampal NSCs
do exist, as other authors have shown (45, 46, 53, 54), alternative
explanations should be provided for the scarce literature relating
hippocampal NSCs with glioma development.
POSSIBLE REASONS UNDERLYING THE
LACK OF DATA RELATING
HIPPOCAMPAL NEURAL STEM CELLS
WITH GLIOMAGENESIS

Differences in NSC Fate in Human SVZ
and Hippocampus: OPCs Are More Likely
to Develop Gliomas Than Neuroblasts
OPCs, also referred to as NG2 cells, represent a major resident glial
cell population in the mammalian CNS with the ability to generate
myelinating and non-myelinating oligodendrocytes [reviewed in
(73)]. Most OPCs are generated during development from the
ventral germinal zones of medial and lateral ganglionic eminences
(74). During both the postnatal period and the adulthood,
additional OPCs are generated from NSCs of the SVZ (16, 22).
OPCs constitute the major dividing cell population of the adult
mouse and human brain (70, 75, 76). Moreover, in rodents, the
proportion of NG2 cells that is actively cycling (~50%) does not
decrease with age, although the cell cycle time does (less than 2 days
at postnatal day 6 (P6), ~9 days at P60, and ~70 days at P240) (77).
Frontiers in Oncology | www.frontiersin.org 6
Proliferation of adult OPCs and subsequent differentiation into
myelinating oligodendrocytes can be activated by stimuli such as
neuronal activity or brain injury (76, 78, 79). As mentioned earlier,
adult OPCs can be reactivated to a highly proliferative state by
oncogenic mutations and give rise to malignant gliomas (63, 64).
Alternatively, OPCs generated from SVZ NPCs carrying cancer-
driver mutations can also proliferate aberrantly to generate GBM
(11). Therefore, adult OPCs are cells to take into account in
gliomagenesis, either for being the cell that acquires the initial
oncogenic mutations or for being the cell type that propagates the
tumor (Figure 3).

As mentioned earlier, adult human SVZ NSCs can form
neuroblasts that migrate to the striatum (52), but their main
progeny are OPCs (50, 52). In contrast, NSCs of the human
hippocampus exclusively generate neuronal progenitors (46, 53,
54). This suggests that, if a cancer-driver mutation occurs in
adult human NSCs of either origin, the mutation would be
transmitted to their progeny, neuroblasts and OPCs in the
SVZ, but only neuroblasts in the hippocampus. In mice,
mutated OPCs can act as tumor-propagating cells (11, 65)
whereas neuroblasts derived from mutated SVZ NSCs migrate
to the olfactory bulb and do not develop gliomas (11). It is
reasonable to think that neuroblasts born from putative mutated
NSCs of the adult human SVZ would not grow aberrantly either
after migration to the striatum. In support of this notion,
Alcantara Llaguno et al. (80) assessed the tumor-initiating
potential of late-stage neuronal progenitors, neuroblasts and
differentiated neurons, in which the tumor suppressors genes
Nf1, p53, and Pten were inactivated by Cre recombinase-
mediated gene targeting. They showed that the susceptibility of
malignant transformation decreases as the lineage restriction
increases. Although cellular and molecular defects were detected
as a consequence of the inactivation of the tumor suppressor
genes, no evidence of glioma formation was observed in any
case (80).

To sum up, if we assume that the population harboring the
initial cell mutations is the same that the population that
develops the tumor, then, NSCs from both SVZ and
hippocampal origin might have similar chances to develop
gliomas. But if the tumor-propagating cell population differs
from the cell of origin, then it is more likely that OPCs originated
from mutated SVZ NSCs, and not neuroblasts born from
mutated hippocampal NSCs, proliferate aberrantly to form a
tumor mass (Table 2).

Neuroblast Final Differentiation Takes
Place in the Hippocampus, but Not
in the SVZ
As explained in detail in a former section, one of the most
remarkable differences between the SVZ and the hippocampus
neurogenic niches is that in the SVZ, neuroblasts generated from
transit amplifying progenitors do not differentiate into neurons
within this region. Instead, they migrate tangentially toward the
olfactory bulb where their final differentiation occurs (14, 18, 21).
In contrast, neuroblasts generated from intermediate progenitors
in the hippocampus differentiate into mature granule cells within
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the same niche (15, 18). There is a high variety of factors that control
the important step of final differentiation, ranging from intrinsic
factors (specific to the progenitor cell population) to extrinsic factors
(as the result of the surrounding microenvironment) (18). This
cocktail of elements together with their induced molecular
responses will determine whether a neuroblast initiates tangential
migration toward the olfactory bulb (as it happens in the SVZ) or
differentiates (as it happens in the hippocampus). The existence of
factors promoting neuronal differentiation in the hippocampus
might constitute another possible explanation for the lack of
literature reporting tumorigenicity of hippocampal NSCs (Table
2). In support of this notion, two recent studies have demonstrated
that reprogramming GBM cells into neurons suppresses tumor
growth and prolongs survival in mice implanted with human GBM
cell lines (89) or with patient-derived GBMs (90). Strikingly, the
reprogramming of GBMs into neurons achieved by treatment with
mTOR (mammalian target of rapamycin) and ROCK (Rho-
associated kinase) inhibitors prevented GBM local recurrence
(89). These are important findings in terms of therapeutics
development for GBM patients.

The Hippocampal Niche Does Not Favor
GBM Invasion
Tumoral cells both in GBM animal models and in patients,
follow preferred migratory paths (e.g. optic and pontine white
matter structures) and avoid the hippocampus despite being
closely located to the tumor (12). However, the SVZ is revealed as
one of the most tumor-infiltrated regions in the same study.
Other reports have demonstrated that the SVZ is a region of
preferred migration for both IDH1-wild type and IDH1-mutant
GBMs (91). The presence of molecular cues derived from the
specific composition of the extracellular matrix of these regions
might guide tumor cell migration toward or away from them
(Table 2). It is reasonable to think that factors released by the
Frontiers in Oncology | www.frontiersin.org 7
SVZ neurogenic niche might be chemoattractive for glioma cells.
Indeed, Qin et al. have shown that NSCs of the SVZ secrete
pleiotrophin, which forms a chemoattractant complex with other
proteins that promote glioma invasion (81). Interestingly, these
authors described that pleiotrophin is undetectable in the
hippocampus. Therefore, pleiotrophin might be an important
molecule involved in the preferred migration of GBM cells
toward the SVZ. Another SVZ-released molecule implicated in
the stimulation of glioma invasion is CXCL12 (C-X-C motif
chemokine 12) (92). In addition, in the SVZ, CXCL12 can
mediate GBM resistance to radiation therapy (93). However,
this chemokine is also expressed in the hippocampus (94), where
it intervenes in the support of newborn neuron maturation (95).
Thus, it is less likely that this chemokine might act as a preferred
cue for glioma cell migration. Besides, in adult human SVZ, the
layer where NSCs reside (hypocellular gap layer) is almost an
acellular layer filled with astrocytic processes that provides and
environment with fewer hindrances to invasion.

Therefore, the difference for preferred migration exists, but is
it connected to a higher lethality of the tumor? In a retrospective
study with a cohort of 207 adult patients who underwent
cytoreductive surgery for GBM followed by chemotherapy and/
or radiation, the authors showed that GBMs contacting the SVZ
show earlier recurrence and lower survival than those contacting
the SGZ of the hippocampus (96). This work concluded that the
SVZ has unique properties that contribute to GBM pathobiology.

On the other hand, the fact that the hippocampus is a region
spared from GBM invasion indicates that molecular cues within
this niche are not favorable either for tumor chemoattraction or
for tumor support (Table 2). Identification of signals from the
hippocampus that do not support tumor formation as well as the
chemoattractants from the SVZ might be of great importance for
the development of novel therapeutic strategies for GBM.

Microglia in the Hippocampus Do Not
Provide Trophic Support to NSCs
Microglial cells are a main constituent of the adult neurogenic
niches (Figure 1) although the role exerted by these immune
cells differs between the SVZ and the hippocampus. Thus,
microglia in the postnatal and adult SVZ provide trophic
support for newly-generated neuroblasts and promote their
migration toward the olfactory bulb (82, 83), whereas
microglia in the hippocampus are involved in the control of
neurogenesis through phagocytosis of newborn cells that become
apoptotic (40). This process of phagocytosis of apoptotic cells is
mediated by purinergic “find me, eat me” signals (97).
Interestingly, microglia in the SVZ and in the rostral migratory
stream show very low level of purinergic receptors, which allows
them to avoid inappropriate activation in response to locally
active purines that might result in undesired phagocytosis of
neuroblasts before they reach the olfactory bulb (83). Therefore,
microglia have a “classical” immune function in the
hippocampus whereas in the SVZ acquire a different
phenotype to support neurogenesis. It is important to highlight
that microglia/macrophages of the GBM microenvironment
adopt a tumor-supportive phenotype characterized by the
TABLE 2 | Analysis of possible factors determining why neural stem cells of the
adult human subventricular zone might be more susceptible to malignant
transformation than neural stem cells of the adult human hippocampus.

Human subventricular zone Human hippocampus

NSCs mainly produce OPCs
(50, 52)

NSCs mainly produce neuroblasts
(45–46)

Niche factors favor
neuroblast migration
(18, 21)

Niche factors favor neuroblast
differentiation and neuronal maturation
(15, 18)

Chemoattractive for glioma cells
(81)

Chemorepellent for glioma cells
(12)

Microglia are supportive
for neurogenesis
(82, 83)

Microglia phagocyte
apoptotic neuroblasts
(40)

NSCs contact the CSF
(17, 18, 84, 85)

NSCs do not contact the CSF
(31)

NSCs do not express the tumor
suppressor gene HOPX
(86)

NSCs express HOPX
(86)

Mutations in TERT might
increase senescence
(11, 87)

Mutations in TERT might not be
relevant to senescence
(88)
CSF, cerebrospinal fluid; HOPX, homeodomain-only protein; NSCs, neural stem cells;
OPCs, oligodendrocyte precursor cells; TERT, telomerase reverse transcriptase.
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release of anti-inflammatory molecules, trophic factors and
metalloproteinases [reviewed in (98)]. It is therefore reasonable
to think that, if a driver mutation occurs in SVZ NSCs, adjacent
microglia might act as supporter cells favoring the proliferation
and migration of these cells. However, if this were the case in the
hippocampus, niche microglia would not have a permissive
phenotype for tumor evolution (Table 2).

NSCs of the Hippocampus Do Not Contact
the CSF
As mentioned before, NSCs in the SVZ are in direct contact with
the CSF through a small apical process harboring a primary cilium
(Figures 1A and 2A) that is likely involved in signal transduction
(84, 85). In contrast, in the SGZ of the hippocampus, type 1 cells
do not contact the CSF (31). This noticeable difference between
the two adult neurogenic niches might determine a higher
susceptibility of NSCs of the SVZ to malignant transformation
or uncontrolled proliferation (Table 2).

Soluble factors in the CSF (which are released by epithelial
cells of the choroid plexus) are important not only for the
maintenance of NSC quiescence in the SVZ, but also for the
regulation of multiple aspects of the adult NSC behavior and
their progeny (84, 99–101). Recently, de Sonnaville et al. have
shown that human ventricular CSF increases proliferation of
SVZ NSCs (102). Some of the soluble molecules contained in the
CSF are growth factors which have been reported to be involved
in the stimulation of NSC proliferation, such as insulin-like
growth factor 2 (IGF-2) (103), transforming growth factor-b
(TGF-b) (104), vascular endothelial growth factor A (VEGFA)
(105), leukemia inhibitory factor (LIF) (106) or endogenous
ligands of the EGFR (107). Noteworthy, these factors have also
been shown to contribute to glioblastoma growth or support
(103, 108–111). Consequently, the direct contact of SVZ NSCs
with these mitogens might confer them growth advantages if the
concentrations of these factors were increased or if NSCs had
acquired somatic mutations which made them more responsive
to these proliferative signals.

Lately, other constituents of the CSF have gained much
importance in intercellular communication: the extracellular
vesicles (EVs). EVs are small membrane vesicles (30 nm–10
mm) secreted by almost all cell types that are implicated in the
transfer of mRNAs, microRNAs, proteins and lipids between
cells and thus are able to modify the function of recipient cells.
Isolation of membrane vesicle-enriched fractions and further
proteomic studies have demonstrated the presence of EVs in the
human CSF (112, 113). This might be relevant since EVs can
transfer oncogenic cargo to recipient cells. For instance,
EGFRvIII contained in EVs released by glioma cells has been
shown to be transferred to indolent glioma cells in which they
induce oncogenic activity (114). Similarly, Gutkin et al. reported
EV-mediated horizontal transfer of hTERT mRNA from cancer
to non-cancer cells (115). These observations raise the
hypothesis that NSCs may be susceptible to malignant
conversion via EV-mediated molecular transfer.

Therefore, NSCs in the SVZ, due to their direct contact with
the CSF, are exposed to growth factors and EVs that might
Frontiers in Oncology | www.frontiersin.org 8
increase their susceptibility to aberrant growth or malignant
transformation (Table 2).

Adult Hippocampal, but Not Adult SVZ
NSCs, Express the Tumor Suppressor
Gene HOPX.
SVZ and hippocampal NSCs share astroglial features and
expression of numerous molecular markers (18). However,
there are some differences that might be relevant in terms of
susceptibility to malignant transformation. One of these
differentially-expressed proteins is HopX (homeodomain-only
protein), an atypical homeodomain protein that cannot bind
DNA and exerts its actions by interacting with serum responsive
factor (SRF) and blocking its transcriptional activity (116).
HOPX gene is selectively expressed by quiescent NSCs of the
adult hippocampus, but not by adult SVZ NSCs (86). Specifically
in the dorsal SVZ, this protein is present during embryonic and
postnatal stages in NSCs primed toward astrocytic fates but
declines to nearly undetectable levels in adulthood (117). In the
adult hippocampus, HopX has been described to intervene in the
regulation of neurogenesis by promoting apoptosis of NSCs.
Remarkably, HOPX expression is down-regulated in GBMs and
on the other hand, a cell-permeable version of HopX protein with
gain of function characteristics causes an increase in apoptosis in a
subset of GBM cells and a decrease in clonogenicity (118). It is
worth mentioning that HOPX expression is lost or down-
regulated in other cancers as well (119, 120). Hence, we
hypothesize that the restricted expression of HOPX in adult
NSCs of the hippocampus might confer tumor-suppressive
properties to this population of cells (Table 2).

Mutations in the Catalytic Subunit of
Telomerase Reverse Transcriptase (TERT)
Might Have Different Implications in SVZ
NSCs Than in Hippocampal NSCs
Telomere length is essential for the prolonged persistence of stem
cell functions in organs with extensive cell turnover (121, 122).
The maintenance of telomere length is mediated by telomerase,
an enzyme that adds nucleotides to the end of the chromosomes
and prevents the replication-dependent loss of telomere and
cellular senescence (122, 123). The active telomerase enzyme
consists of a protein component TERT that serves as catalytic
subunit, and a telomerase RNA component (TERC) (124, 125).
Human somatic cells lack telomerase activity, which can be
considered as a tumor suppressor mechanism since it prevents
unlimited clonal expanding. Accordingly, 90% of human tumors
are telomerase positive (126).

In the context of GBM, Lee and colleagues demonstrated that
all the IDH-wild type GBM patients with driver mutations in
tumor-free SVZ tissue also presented mutations in the TERT
promoter in this tissue (11). Indeed, they suggested that
mutation-driven activation of TERT in SVZ NSCs might be the
earliest event by which these cells, having limited self-renewal
capability, are able to avoid replicative senescence thereby
increasing their chances of acquiring other driver mutations
over time (11). Hippocampal NSCs might also acquire mutations
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in TERT that could increase their senescence and the subsequent
possibility of becoming tumorigenic. However, current data do
not support this hypothesis, as will be discussed below.

First, in humans, TERTmutations have been reported to occur in
NSCs of normal or non-cancer aged hippocampus at much lower
rates than those found in SVZ NSCs of IDH-wild type GBM (11).
Second, overexpression of TERT in mouse hippocampal NSCs does
not lead to tumor formation (88). Third, in rodents, the SVZ and
olfactory bulb have significantly higher levels of telomerase activity
than the hippocampus (87). And fourth, in the mouse hippocampus,
TERT exerts additional roles independent of its telomerase activity
(88). Thereby, by knockdown and overexpression of TERT, Zhou
and colleagues (88) demonstrated that TERT is required for neural
circuit integration of hippocampal newborn neurons, as well as for
spatial memory processing. TERT actions through non-canonical
pathways have not yet been described in SVZ NSCs.

These data suggest that putative mutations in TERT leading to
increased telomerase activity would have more chances to induce
glioma formation in SVZNSCs than in hippocampal NSCs (Table 2).
CONCLUSIONS

Experiments performed in mice have revealed that oncogenic
mutations in NSCs of the SVZ, astrocytes or OPCs can all lead to
glioma formation. However, recent data obtained from GBM
patients have reinforced the hypothesis that NSCs of the SVZ
are the cell of origin of IDH-wild type GBM. Since NSCs are
anatomically restricted in the SVZ whereas astrocytes and OPCs
are widely distributed in the brain, the clinical implications on the
diagnosis and therapy for these lethal tumors may considerably
vary depending on the cell of origin.
Frontiers in Oncology | www.frontiersin.org 9
NSCs of the hippocampus, however, have not been associated
either to the origin or to the propagation of GBM. Throughout
this article we have provided some possible explanations for this
fact that are summarized in Table 2.

One of the reasons supporting SVZ-derived NSCs as cell of
origin of IDH-wild type GBM rely on the specific progeny of
NSCs of every neurogenic niche. SVZ-derived NSCs mainly
produce OPCs in the human brain, whereas hippocampal-
derived NSCs produce neuroblasts. Progenitors committed to a
neuronal fate are less prone to develop gliomas than those
committed to the oligodendroglial lineage. In addition, factors
within the SVZ niche might be more permissive for aberrant
tumoral cell migration and growth than those present in the SGZ
niche. Other possibilities such as differential expression of tumor
suppressor genes and differential effects of TERT mutations and
roles between SVZ and SGZ NSCs can be taken into account to
find possible explanations for the higher susceptibility of
malignant transformation of SVZ NSCs.
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