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Abstract: The study investigates the potential of two new machine learning methods, least-square
support vector regression with a gravitational search algorithm (LSSVR-GSA) and the dynamic
evolving neural-fuzzy inference system (DENFIS), for modeling reference evapotranspiration (ETo)
using limited data. The results of the new methods are compared with the M5 model tree (M5RT)
approach. Previous values of temperature data and extraterrestrial radiation information obtained
from three stations, in China, are used as inputs to the models. The estimation exactness of the models
is measured by three statistics: root mean square error, mean absolute error, and determination
coefficient. According to the results, the temperature or extraterrestrial radiation-based LSSVR-GSA
models perform superiorly to the DENFIS and M5RT models in terms of estimating monthly ETo.
However, in some cases, a slight difference was found between the LSSVR-GSA and DENFIS methods.
The results indicate that better prediction accuracy may be obtained using only extraterrestrial
radiation information for all three methods. The prediction accuracy of the models is not generally
improved by including periodicity information in the inputs. Using optimum air temperature and
extraterrestrial radiation inputs together generally does not increase the accuracy of the applied
methods in the estimation of monthly ETo.

Keywords: reference evapotranspiration; temperature input; least square support vector regression;
gravitational search algorithm; dynamic evolving neural-fuzzy inference system

1. Introduction

For irrigation management, agricultural processes, and hydrological cycles, the reference
evapotranspiration (ETo) is considered as one of the fundamental variables that should be accurately
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estimated [1]. For example, it is essential to adequately estimate the ETo in order to figure out the
amount, timing, schedule, and frequency for the agricultural procedure and irrigation management [2].
Additionally, nowadays under the expected increase of water scarcity and the reduction of food
production, it is vital to get proper knowledge of the estimation of the ETo at different time increments
in order to optimize the management of the available water resources, whether conventional or
non-conventional water resources [3,4]. Estimation of ETo is fundamental due to the ETo key role in
affecting the hydrological cycle [5]. Accurate estimation of ETo will help in understanding the impacts
of human influences on the hydrological cycle and in improving water resource management [6].

Estimation of ETo is a challenging task due to complex interactions between meteorological and
site-specific factors [7]. Generally, there is a need to standardize a single robust method to be used at a
large scale (i.e., region, large basin) for reference evapotranspiration-ETo estimation, based on limited
climatological and hydrological data. However, we are aware that such a method would still require
further adjustment and calibration, considering the local conditions of the study site. In this context,
even well-recognized methods in use so far, such as Penmen–Monteith (PM), require adjustment
on many occasions [6,8]. Over the last 50 years, several scientists developed different methods to
calculate the ETo; however, these methods have been subjected to local conditions and have several
limitations to their applicability on a large scale. One of the most popular methods that have been
validated and recommended by the Food and Agriculture Organization (FAO) is the PM method,
and it is now recognized as FAO 56 PM. Although the FAO 56 PM method has been proved to be the
most accurate one and achieved the most minimal errors, it required much information to be applied,
which is mostly unavailable in several areas worldwide. Therefore, considering physical parameters
and physically-based formulas might not be feasible and/or realistic for estimating the ETo.

Due to the complexity of estimating the ETo-based physical process, several machine learning
methods were employed to estimate the ETo during the last two decades of the 21st century [8].
More recently, during the last two decades, artificial neural network (ANN) models have been
examined for estimating the ETo, such as the multi-layer perceptron neural network (MLP-NN),
fuzzy logic (FL), the adaptive neuro-fuzzy neural network (ANFIS), and least square support vector
regression (LSSVR) [8–11]. The motivation for utilizing the ANN models is that these methods can
provide high accuracy and robustness, are modeless, and can easily handle big data [12,13].

Although the ANN showed outstanding performance for estimating the ETo, there is a need
to include several meteorological and hydrological variables in the model input in order to achieve
relatively high estimating accuracy for the ETo utilizing ANN, [14,15]. Additionally, it has been
reported in a few studies that the ETo prediction model using the ANN experienced a few challenges,
such as over-fitting and the selection of the appropriate input variables based on the climate conditions
of the study area [16].

Recently, the M5 model tree (M5RT) has been developed and considered as one of the most
common methods used for simulation [17]. The process of the M5RT is designed to divide the data into
sub-regions and consider the tree applying data of each sub-region. The input space should be divided
into sub-regions, and then a fitted linear model could be used for each sub-region, [18]. There are
a few studies which showed that the M5RT could achieve proper estimation accuracy but requires
extensive sampling input data [19]. In general, M5RT is considered a straightforward procedure that
could be worthwhile for estimation applications, especially with the availability of quite large amounts
of data [17,20,21].

Furthermore, the ANFIS method has successfully shown a high ability to provide accurate
predictions in different engineering applications, especially for the hydrological and climatological
variables [22–25]. Even with a limited amount of available data of climate parameters, ANFIS could
achieve accurate estimation for daily pan evaporation [24]. Further enhancement of the ANFIS
model, including either grid partitioning (GP) or subtractive clustering (SC), has been developed
by Sanikhani et al. [26]. It showed outstanding performance for estimating the daily evaporation;
however, it required several input variables and a relatively large amount of data. More recent novel
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enhancement for the ANFIS model has been developed, which is defined as a dynamic evolving
neural-fuzzy inference system (DENFIS) in order to be more suitable for dynamic time series prediction
applications [27,28]. Conceptually, the DENFIS is designed to generate and update new fuzzy rules
during the learning of the system. Such a procedure allows the DENFIS to calculate the desired output
according to them-most activated rules, which have been chosen dynamically from the set of the fuzzy
rules [27–29]. It could be noticed from the DENFIS structure and procedure and the nature of ETo that
the DENFIS model has the potential to adequately and effectively estimate the ETo. To the knowledge
of the authors, there is no study in the literature related to the application of DENFIS in modeling ETo.

More recently, LSSVR has been known as a useful tool for several engineering prediction
applications. LSSVR has a simple and effective structure; however, it includes three unknown
parameters that should be estimated and initialized at the beginning, which is considered one of the
major disadvantages of the LSSVR. Kisi [19] showed that the more accurate the estimation of the
LSSVR’s unknown parameters, the more accurate the estimation of the desired variable. However,
the most common method to estimate these three unknown parameters is based on trial and error,
as in many previous studies. One innovation for the development of a successful LSSVR model is
to be integrated with a suitable optimization algorithm that could be able to search for the optimal
estimation values for these three unknown parameters [19]. It has been reported that the gravitational
search algorithm (GSA) is a useful optimization algorithm which is comparatively fast in convergence
and free from trapping in local minima over the other optimization algorithms [30]. Therefore,
integrating the LSSVR with (GSA) as an efficient optimizer for searching for the optimal values of
the LSSVR’s unknown parameters could be a suitable solution to enhance the LSSVR’s ability to
estimate the desired ETo. Available literature indicates that new methods are essential to enhancing ETo
estimation preciseness and decreasing the model’s uncertainty. For this reason, novel hybrid heuristic
soft computing methods were examined in this study for performing effective evapotranspiration
modeling. A number of studies [31–35] have compared one or more of the hybrid heuristic models
using several meteorological variables at different time steps, and the results obtained have shown that
hybrid heuristic soft computing methods generally provided good accuracy. However, even though
the aforementioned studies demonstrated successful applications of hybrid heuristic soft computing
models, the most important point to note is that, generally speaking, these models do not use fewer
independent input variables; instead, they require several inputs—i.e., U, RH, SH, Tmean, Tmax,
and Tmin—and among them the U, RH, SH, and SR are the meteorological variables reported as
the most significant factors influencing ETo and of primary importance. To the author’s knowledge,
there is not any published study that investigates the potential of the LSSVR-GSA method in modeling
ETo. First, we developed the hybrid of GSA and LSSVR for modeling ETo. Second, we used the
already applied standalone soft computing method (M5RT) with only average temperature input,
whereas most of the other studies in the literature used a mix of the Tmax and Tmin and several other
meteorological variables during applications of such models. Third, we used extraterrestrial radiation
which is easily obtained from the Julian date and latitude information as input to the models. Fourth,
we demonstrated the effect of periodicity (month number) as an input variable for ETo estimation
using limited climatic inputs.

In the current study, an attempt to develop a model to estimate the ETo based on a minimal number
of input variables has been proposed utilizing advanced machine learning methods. LSSVR-GSA,
DENFIS, and M5RT models have been developed to estimate the ETo considering only the temperature
as an input variable. Data from three stations in the Jinsha river basin of China have been used in order
to evaluate and examine all the proposed models. Additionally, in-depth, comprehensive analyses for
the performance of all models have been accomplished in order to elucidate the logic and the cause
behind each model’s estimation accuracy.
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2. Materials and Methods

2.1. Case Study

The study uses monthly average temperatures (T), extraterrestrial radiation (Ra),
and evapotranspiration (ETo) data of three meteorological stations, represented as 56004 (latitude
34.21 N, longitude 92.43 E), 56021 (latitude 34.13 N, longitude 95.78 E), and 56029 (latitude 33.01 N,
longitude 97.01 E,) stations situated in the Jinsha river basin of China. The location of each station
can be seen in Figure 1. These stations are operated by the China Meteorological Administration
(CMA). Jinsha river basin consists of three provinces (Qinghai, Yunan, Sichuan, and Tibet Autonomous)
covering the 473.2 × 103 km2 drainage area of China. The Jinsha river basin has a very vital role in
regional and national economic development due to its contribution to irrigation, water supply, flood
control, wood drift, tourism, and plentiful hydropower resources (58,060 MW). The mean annual
rainfall in the Jinsha river basin is 750 mm, 90% of which occurs from May to October. The basin
selected area belongs to humid warm temperate, which is the primary source of water, having annual
mean rainfall of about 1200 mm with mean annual potential evapotranspiration of about 1350 mm.

Figure 1. Study area.

In the study, the data periods of three meteorological stations from 1961 to 2012 were used. Available
data were divided into three parts as training (50% of the whole data covering 1961–1986), validation
(25% of the whole data covering 1986–1999), and testing (25% remaining part covering 2000–2012).
The brief statistical characteristics of the user data are summed up in Table S1. Evapotranspiration data
of three meteorological stations are calculated using the FAO-56 PM method. The detailed procedure
of the FAO-56 PM method is described by Allen et al. [36] and She et al. [37].
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2.2. Methods

2.2.1. Dynamic Evolving Neural-Fuzzy Inference System (DENFIS)

DENFIS is a neural-fuzzy modeling approach that evolves through gradual hybrid learning
procedures resulting from the tuning of local elements regarding the new data entry to the model-specific
categorization [27]. DENFIS is an extension of the evolving fuzzy neural network (EFuNN), which uses
a clustering approach called the evolving clustering method (ECM) [38]. Dynamic features of the
EFuNN make DENFIS useful for online adaptive systems also. ECM itself is an online fast-evolving
clustering method that considers the maximum distance between points and the cluster’s center.

ECM is based on triangular membership functions, which serve as fuzzy sets and the utilization
of an alternative weighting scheme for local learning of resulting parameters. Usually, the input and
output neurons can be fuzzified by a fuzzy quantization approach [39]. The offspring fuzzy rules are
consequently generated and updated while the system is in operation. The outputs resulting from
DENFIS are computed through FIS-based activated fuzzy rules, which are dynamically chosen from a
given fuzzy set of rules. Notably, the ECM used in the DENFIS interface utilizes a scatter partitioning
of the input space to create fuzzy inference rules [38]. Uses of ECM improve the computational
performance for the dynamic estimation of the cluster’s quantity in the given dataset by facilitating
the finding of their current centers in the input space. A typical structure and detailed description
of the EFuNN interface based on ECM from which the DENFIS approach is derived can be found
at [27]. DENFIS uses a typical model architecture, which is based on the Takagi–Sugeno type fuzzy
inference engine [34]. In this regard, DENFIS utilizes a model-based approach called the “lazy” learning
approach. According to this approach, the fuzzy network estimates the position of each input vector in
the attribute space and forms accordingly; meanwhile, a fuzzy inference system which predicts the
output through a dynamic process is created during the incremental learning.

The classical “lazy” learning process of the fuzzy network utilizes a sample-based approach,
wherein a small local model on demand is constructed regarding local samples taken from the closest
query point. The learning process and governing equations used in the DENFIS model and applied
in this study are described in detail in [39]. DENFIS models are being applied in different water
resource-related areas and other disciplines as well. The use of DENFIS in rainfall-runoff modeling
showed that results attained from the local learning model were significantly better than results
achieved from physically-based models [38]. In another study related to evaporation modeling based
on limited meteorological data, it was found that DENFIS models increased the accuracy of the outputs
significantly [39]. Similar results were obtained in other studies as well [40]. DENFIS models were
recently applied to predict solar radiation [41]; the results showed that DENFIS provides faster and
much more accurate results compared to the other neuro-fuzzy models.

2.2.2. Least Squares Support Vector Regression (LSSVR)

Least squares support vector regression was initially proposed by [42]; it is a version of the
support vector regression (SVR) algorithm improved by adopting the loss function differently from
SVR and minimizing the square error. In the LSSVR interface model, the inequality constraints have
been replaced with equality constraints by transforming quadratic programming issues into a linear
equation to overcome the calculation issue of the large-scale dataset [43]. SVR itself is well known,
and a robust algorithm applied in different areas mainly for data regression and also to overcome the
over-fitting issue. LSSVR differs from SVR, mainly due to the types of functions used by each of them.
LSSVR handles square errors instead of non-negative errors, and it uses equality constraints instead of
inequality constraints, as opposed to the conventional SVR [44].

Similarly, to the DENFIS, LSSVR performs the training procedure in terms of solving a linear
system instead of using a quadratic programming problem, which thus significantly improves the
computation time and the accuracy of the model learning ability [45]. Figure 2 illustrates the structure of
a typical LSSVR model. A detailed explanation about LSSVR applications, parameters, and respective
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governing equations is given by Yuan et.al [44]. LSSVR is widely applied in solving challenging
problems in different areas. Wu and Peng [43] used LSSVR to improve the prediction performance of
the potential wind power; they found that LSSVR can enhance the accuracy of up to 20% compared to
other single or hybrid models. A similar conclusion was obtained by Lu et al. [46] who applied LSSVR
for short-term forecasting of wind power. The application of the LSSVR has shown promising results
in the prediction of nanoparticles as well [47].

Figure 2. LSSVR model for evapotranspiration (ETo) modeling.

2.2.3. Gravitational Search Algorithm (GSA)

GSA, which is based on the law of gravity and motion proposed initially by Rashedi et al. [30],
represents one of the most effective optimization algorithms compared to other evolutionary algorithms.
In GSA, each nod is characterized by four parameters: position, inertial mass, gravitational mass,
and velocity. The location of each node corresponds to a solution of the problem, while the gravitational
and inertia masses for each node were obtained utilizing a fitness function [48]. The location of the
nodes can be expressed as follows:

Xi = (x1
i , . . . , xk

i , . . . , xs
i

)
i = 1, 2, . . . , np (1)

where xk
i represents the location of the ith node for the kth dimension. The mass of each node is

computed after calculating the fitness of the given population as follows:

Xi =
f iti(t) −worst (t)
best(t) −worst (t)

(2)

Mi(t) =
mi(t)∑N

j=1 m j(t)
(3)

where fiti(t) and Mi(t) represent the fitness value and mass of the ith node at time t, respectively,
whereas best(t) and worst(t) are the minimum fitness value and maximum fitness value, respectively,
the gravitational acceleration of the node i, is calculated as follows: firstly, the force exerted by a large
node on the node i is computed.
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Fk
i j(t) = Gc(t)

Mi(t).M j(t)

||xi(t), x j (t) ||2 + ε
.
(
xk

i (t) − xk
j(t)

)
(4)

where Mi(t) and Mj(t) are the passive and active gravitational mass, respectively, corresponding to
nodes i and j at the t generation; Gc(t) and ε are gravitational and small constants; xk i (t) and xk j (t)
indicate the positions of the kth dimensions of nodes i and j at the t generation; and ‖xi(t), xj(t)‖ is the
Euclidean distance between nodes i and j. The total gravitational acceleration of the ith node was
calculated using the law of motion as follows:

ak
i (t) =

∑N
j=1, j,i rand. Fk

i j(t)

Mi(t)
(5)

where ak
i (t) represents the gravitational acceleration of the node i in the kth dimension, and the rand

represents a random variable with uniform distribution within the interval (0,1). The total gravitational
force exerted on the node i in the kth dimension is calculated as follow:

Fk
i j(t) = Mi(t)xak

i (t) =
N∑

j=1, j,i

rand. Fk
i j(t) (6)

Afterward, the speed and location of each node were updated as follows:

vk
i (t + 1) = rand vk

i (t) + ak
i (t) (7)

xk
i (t + 1) = xk

i (t) + vk
i (t + 1) (8)

As highlighted above also, GSA utilizes the gravitational force as the direct form with which to
communicate the cooperation of the nodes. The heavy nodes in GSA are processed, infer reasonable
solutions, and move more gradually than lighter ones. Thus, the GSA searches for the ideal solution
by appropriately calibrating the inertia and gravitational masses of nodes where every node provides
a specific solution.

2.2.4. HLGSA (Hybrid LSSVR-GSA)

The combination of LSSVR with the gravitational search algorithm (GSA) has been reported to
improve the forecasting accuracy and computational performance [43] significantly. To our knowledge,
there are only a few studies applied to hybrid models, such as combining GSA with other ANN
models. Yuan et al. [44] applied LSSVM–GSA to predict day-ahead wind power; they concluded that
GSA provided higher accuracy and improved the computational duration. Similar conclusions were
reported by Lu at al. [46] and Sun at al. [47] in the case of PM2.5 concentration prediction. The process
of the evapotranspiration prediction model HLGSA using the hybrid of LSSVR and GSA methods
consists of the following steps:

1. Firstly, divide meteorological datasets into training, validation, and testing parts.
2. Second, select the RBF kernel function and initial parameters for the HLGSA method to build the

initial LSSVR model. The initial values of the parameters are set as follows: the range of penalty
factor γ is 0.1 to 1500, the range of RBF parameter σ2 is 0.001 to 10, the iteration range is 20–30,
the number of particles can be set up to 30, and constant alpha was found to perform better in
range of 12–18, whereas initial gravitational constant G0 was found to perform better in the range
from 102 to 120.

3. Third, compute the particle fitness value of each node. The RMSE is selected as the fitness function
in this study. The fitness function of this method is defined as follows:
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4. Fourth, chose the best parameter combination through GSA to obtain the optimal values for the
LSSVR parameters.

5. Fifth, utilize the new combination of parameters to reconstruct the LSSVR if it does not meet the
stopping criterion.

6. Last, the optimal LSSVR model for forecasting evapotranspiration was built based on the typical
parameter values.

2.2.5. M5 Model Tree

M5 model tree (M5RT) is a novel neural approach developed initially by Quinlan [49] to help in
solving continuous class learning problems. This model is based on a binary tree that serves as the
backbone for the model itself. An M5 model tree consists of a linear regression function applied to
terminal leaf nodes to describe the relationships of independent and dependent variables. Since the
M5 model tree is a quantitative data focus model, this feature increases the accuracy, and as a result,
the importance compared to other models [50]. In general, the principle of the tree-based model
consists of “divide-and-conquer” approach for constructing a relationship between independent and
dependent variables or input and output parameters. They can also be used for qualitative and
quantitative data assessment [51]. All model trees can effectively learn and succeed in tasks with very
high dimensionality. The main advantage of the M5 model tree compared to regression trees and
other models is that it is much smaller than regression trees [52]. Additionally, the decision strength is
evident, and the regression functions do not usually contain abundant variables, which in some cases
can reduce the computational performance.

M5 model tree consists of two steps. The first step has to do with the splitting of the datasets
into subsets. Splitting process: it often creates an excessive tree-like structure that leads to overfitting.
In the second step, the overrun tree is trimmed; then trimmed subtrees are replaced with linear
regression functions (Figure 3). M5 model tree has found many applications in water resource-related
areas. Rahimikhoob et al. [53] applied the M5 model tree to compute evapotranspiration (ETo) in a
semi-arid region. They found that the M5 model tree provides more robust results compared to other
conventional or empirical methods. However, for the arid zone, Rahimikhoob [54] found that ANN
estimated ET0 better than the M5 model tree.

Figure 3. Schematic view of M5 model tree (a) structure and (b) splitting data space into sub-regions.
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Nevertheless, both models performed in agreement for that study case, and the results were
very similar to the results obtained from the FAO56-PM method. Kisi and Kilic [52] estimated ETo
considering several empirical and neural-fuzzy approaches, including the M5 model tree. They found
that the M5 model tree showed better accuracy, particularly comparing to the empirical models.

3. Application and Results

The potential of new machine learning methods, LSSVR-GSA and DENFIS, was investigated by
applying them to temperature (T) and extraterrestrial radiation (Ra) data of three stations located in
China, and the results were compared with the well-known M5RT method. The models’ accuracy
was evaluated based on three statistical criteria: root mean square error (RMSE), mean absolute error
(MAE), and determination coefficient (R2). The RMSE and MAE can be defined as:

MAE =

∑N
i=1

∣∣∣ETim − ETip
∣∣∣

N
(9)

RMSE =

√∑N
i=1

(
ETim − ETip

)2

N
(10)

where N is the number of datapoints used, ETip is predicted ETo, and ETim is ETo calculated by FAO
56 PM.

Table S2 sums up the validation and test results of the and M5RT models concerning different
input combinations comprising previous values of temperature (T) and extraterrestrial radiation (Ra)
for the first station (56004). In Table S2, Tt and Rat refer to the mean air temperature and extraterrestrial
radiation at time t and vice versa. In the tables, t represents the month which ETo needs to be predicted,
whereas t-1 represents the previous month.

It is apparent from Table S2 that the LSSVR-GSA has slightly better accuracy than the DENFIS,
and they both perform superiorly to the M5RT in modeling monthly ETo. There are not large differences
between the optimal T-based and Ra-based models; the RMSE differences are 12.6%, 12.9%, and 5.9%
for the LSSVR-GSA, DENFIS, and M5RT, respectively. It is worth noting that Ra-based models only
use Julian date and do not require temperature measurement.

In Table 1, the model results are presented for the optimal (best) inputs, including periodicity
input (α), which indicates the month number of the output. In the table, Opt T and Opt Ra refer the
optimum T and optimum Ra inputs, which provided the best accuracy in the test stage (see Table S2);
Opt T based models for LSSVR-GSA, DENFIS, and M5RT are found as Tt, Tt-1, Tt-2, Tt, Tt-1, Tt-2, Tt-3,
Tt, Tt-1, and Tt-2 respectively. For the optimal Ra input combination, Rat, Rat-1, Rat-2, and Rat-3 input
combination provided the best results for DENFIS and LSSVR-GSA models, whereas, Rat, Rat-1, Rat-2

provided best results for the M5RT model. As clearly observed from Table 1, the models’ performances
are also examined by considering both optimum temperature and extraterrestrial radiation inputs.
As evident from the table, including periodicity input marginally improves the models’ accuracy,
and combining optimal T and optimal Ra inputs worsens the performances of the three methods in
prediction of monthly ETo.

Model estimates of each method with Opt T and Opt Ra inputs in the test period are compared in
Figure 4a,b in the form of hydrograph for the first station (56021). It can be seen from the zoomed sections
that the LSSVR-GSA is closer to the FAO 56 PM ETo than the DENFIS and M5RT models. Figure 5
makes a scatterplot comparison of the model estimates. As seen from the graphs, LSSVR-GSA has
less scattered points, closely followed by the DENFIS model, for both temperature and extraterrestrial
radiation inputs.
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Figure 4. (a) Time variation graphs of the FAO 56 PM and estimated ETo by LSSVR-GSA, DENFIS,
and M5RT in the test period of Station 56004 using optimal T inputs. (b) Time variation graphs of the
FAO 56 PM and estimated ETo by LSSVR-GSA, DENFIS, and M5RT in the test period of Station 56004
using optimal Ra inputs.
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Figure 5. Time scatterplots of the observed and estimated ETo (by LSSVR-GSA, DENFIS, and M5RT) in
the test period of Station 56029 using optimal (a) T and (b) Ra inputs.

Table 1. Validation and test statistics of the models in monthly ETo prediction using the optimal inputs
of T, Ra, and α—Station 1 (56004).

Model Inputs
Validation Period Test Period

RMSE MAE R2 RMSE MAE R2

LSSVM-GSA
Opt T 0.246 0.184 0.958 0.246 0.182 0.953

Opt T, α 0.243 0.180 0.959 0.244 0.180 0.955
Opt Ra 0.341 0.246 0.920 0.277 0.219 0.935

Opt Ra, α 0.339 0.244 0.922 0.274 0.217 0.936
Opt T, Opt Ra 0.285 0.210 0.940 0.301 0.226 0.930

Opt T, Opt Ra, α 0.284 0.209 0.942 0.299 0.225 0.932
DENFIS

Opt T 0.271 0.198 0.947 0.249 0.190 0.950
Opt T, α 0.263 0.193 0.950 0.246 0.185 0.952
Opt Ra 0.342 0.248 0.919 0.281 0.221 0.934

Opt Ra, α 0.341 0.250 0.920 0.280 0.221 0.935
Opt T, Opt Ra 0.288 0.212 0.939 0.305 0.229 0.927

Opt T, Opt Ra, α 0.286 0.211 0.940 0.304 0.228 0.928
M5RT

Opt T 0.322 0.221 0.923 0.305 0.232 0.928
Opt T, α 0.304 0.215 0.931 0.323 0.239 0.931
Opt Ra 0.350 0.266 0.917 0.323 0.267 0.932

Opt Ra, α 0.348 0.264 0.918 0.322 0.264 0.933
Opt T, Opt Ra 0.304 0.219 0.931 0.309 0.231 0.923

Opt T, Opt Ra, α 0.301 0.215 0.933 0.306 0.230 0.925

Validation and test statistics of the three applied methods are reported in Table S3 for the prediction
of monthly ETo of the second station (56021). It is observable from Table S3 that the temperature-based
LSSVR-GSA models outperform the corresponding DENFIS and M5RT models. The best LSSVR-GSA
model has lower RMSE (0.230 mm) and MAE (0.179 mm) and higher R2 (0.956) compared to the other
two best models. In the case of extraterrestrial radiation input, however, LSSVR-GSA has slightly better
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accuracy than the DENFIS and M5RT models. It is worth noting here that Ra-based models perform
superiorly regarding the T based models, except LSSVR-GSA, so that there is a marginal difference
between R-based and T-based models. This result caries practical importance because R-based models
only use Julian’s date, and they can predict monthly ETo without climatic data. For station 56021,
the optimal T inputs were found Tt, Tt-1, and Tt-2, for LSSVR-GSA and M5RT models, whereas they
were Tt, Tt-1, Tt-2, and Tt-3 for DENFIS model.

The optimal models with the periodicity information are compared in Table 2 for the second station
(56021). In this station, also adding periodicity information slightly improves prediction accuracy,
and in some cases, it negatively affects the models’ accuracies (e.g., see DENFIS with Opt Ra input
and M5RT with Opt T and Opt T, Opt Ra inputs). Here, also combining optimal temperature and
extraterrestrial radiation inputs does not improve the models’ exactness compared to optimal T and/or
optimal Ra input-based models.

Table 2. Validation and test statistics of the models in monthly ETo prediction using the optimal inputs
of T, Ra, and α—Station 2 (56021).

Model Inputs
Validation Period Test Period

RMSE MAE R2 RMSE MAE R2

LSSVM-GSA
Opt T 0.235 0.161 0.954 0.230 0.179 0.956

Opt T, α 0.233 0.158 0.955 0.228 0.176 0.961
Opt Ra 0.276 0.195 0.933 0.236 0.176 0.949

Opt Ra, α 0.273 0.192 0.935 0.234 0.175 0.950
Opt T, Opt Ra 0.245 0.170 0.944 0.238 0.195 0.940

Opt T, Opt Ra, α 0.236 0.164 0.950 0.232 0.182 0.952
DENFIS

Opt T 0.242 0.162 0.951 0.301 0.253 0.945
Opt T, α 0.240 0.162 0.952 0.227 0.171 0.961
Opt Ra 0.286 0.209 0.932 0.241 0.186 0.947

Opt Ra, α 0.288 0.213 0.930 0.268 0.207 0.942
Opt T, Opt Ra 0.276 0.187 0.944 0.284 0.215 0.938

Opt T, Opt Ra, α 0.260 0.178 0.945 0.269 0.208 0.940
M5RT

Opt T 0.265 0.189 0.940 0.310 0.227 0.921
Opt T, α 0.303 0.220 0.929 0.341 0.260 0.908
Opt Ra 0.289 0.211 0.929 0.251 0.191 0.942

Opt Ra, α 0.281 0.205 0.931 0.250 0.185 0.943
Opt T, Opt Ra 0.300 0.216 0.930 0.336 0.258 0.905

Opt T, Opt Ra, α 0.306 0.220 0.925 0.339 0.261 0.901

Figure 6a,b illustrate the ETo estimates of three methods with Opt T and Opt Ra inputs in the
test period for the second station (56021). As can be seen, the LSSVR-GSA estimates are closer to the
FAO 56 PM ETo than the DENFIS and M5TR models. It can be said that the fluctuations of the model
estimates are very close to each other in the case of Opt Ra input (Figure 6b). This confirms the statistics
provided in Table 2. Scatterplot comparison of the model estimates is shown in Figure 7. It is evident
from the graphs that the LSSVR-GSA has less scattered estimates compared to the other two models
and is closely followed by the DENFIS. In the case of Ra input, the distributions of all three models are
similar to each other.
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Figure 6. (a) Time variation graphs of the FAO 56 PM and estimated ETo (by LSSVR-GSA, DENFIS,
and M5RT) in the test period of Station 56021 using optimal T inputs. (b) Time variation graphs of the
FAO 56 PM and estimated ETo by LSSVR-GSA, DENFIS, and M5RT in the test period of Station 56021
using optimal Ra inputs.
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Figure 7. Time scatterplots of the observed and estimated ETo (by LSSVR-GSA, DENFIS, and M5RT) in
the test period of Station 56021 using optimal (a) T and (b) Ra inputs.

Table S4 gives the validation and test statistics of the LSSVR-GSA, DENFIS, and M5RT models
for prediction of monthly ETo of the third station (56029) using previous values of temperature and
extraterrestrial radiation to find their optimal input combinations. In this station, the LSSVR-GSA
method performs better than the DENFIS and M5RT methods; however, there is a slight difference
among the Ra-based methods, similarly to the previous station (56021). Among the all models,
the LSSVR-GSA with Tt, Tt-1, Tt-2, and Tt-3 inputs has the lowest RMSE (0.230 mm) and MAE
(0.172 mm) and the highest R2 (0.954) in monthly ETo prediction.

Table 3 compares the optimal T- and R-based models, together with periodicity input (α). For the
LSSVR-GSA method including α generally, it worsens the prediction accuracy, while the performances
of DENFIS models are considerably improved by importing periodicity input; the most considerable
improvement is 25% for the model with Opt T input. Combining optimum T and optimum Ra
inputs also considerably improve the prediction accuracy of DENFIS; improvements are 22% and 10%
compared to Opt T and Opt Ra inputs. For this station, it can be concluded that the DENFIS model
with Opt T, α input performs better than the other models.

Figure 8a,b provide the ETo estimates of three methods with Opt T and Opt Ra inputs in the test
period for the third station (56029). In this station, the difference between LSSVR and the other two
methods is more clearly observed, mainly for the optimum temperature inputs. Figure 9 compares
the models’ estimates concerning their scatterplot distributions. The LSSVR-GSA has the estimates
which are closer to the FAO 56 PM ETo with less scattered distribution compared to DENFIS and M5RT
models. In the case of Ra input, the other two models and are closely followed by the DENFIS. In the
case of Ra input, however, the distributions of all three models are very close to each other.
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Table 3. Validation and test statistics of the models in monthly ETo prediction using the optimal inputs
of T, Ra, and α—Station 3 (56029).

Model Inputs
Validation Period Test Period

RMSE MAE R2 RMSE MAE R2

LSSVM-GSA
Opt T 0.202 0.160 0.968 0.230 0.172 0.954

Opt T, α 0.199 0.157 0.970 0.291 0.240 0.957
Opt Ra 0.230 0.179 0.957 0.262 0.205 0.947

Opt Ra, α 0.228 0.176 0.958 0.260 0.202 0.949
Opt T, Opt Ra 0.208 0.161 0.966 0.298 0.243 0.959

Opt T, Opt Ra, α 0.208 0.161 0.966 0.301 0.246 0.959
DENFIS

Opt T 0.217 0.160 0.964 0.291 0.239 0.951
Opt T, α 0.222 0.166 0.962 0.218 0.165 0.959
Opt Ra 0.231 0.178 0.957 0.268 0.209 0.944

Opt Ra, α 0.242 0.190 0.957 0.252 0.192 0.947
Opt T, Opt Ra 0.226 0.169 0.960 0.226 0.167 0.950

Opt T, Opt Ra, α 0.221 0.166 0.961 0.219 0.158 0.952
M5RT

Opt T 0.276 0.209 0.938 0.317 0.224 0.910
Opt T, α 0.270 0.205 0.942 0.315 0.220 0.912
Opt Ra 0.232 0.193 0.954 0.272 0.215 0.940

Opt Ra, α 0.228 0.180 0.956 0.269 0.210 0.943
Opt T, Opt Ra 0.263 0.195 0.944 0.302 0.213 0.920

Opt T, Opt Ra, α 0.260 0.193 0.946 0.299 0.210 0.922
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Figure 8. (a)Time variation graphs of the FAO 56 PM and estimated ETo (by LSSVR-GSA, DENFIS,
and M5RT) in the test period of Station 56029 using optimal T inputs. (b) Time variation graphs of the
FAO 56 PM and estimated ETo by LSSVR-GSA, DENFIS, and M5RT in the test period of Station 56029
using optimal Ra inputs.

Figure 9. Time scatterplots of the observed and estimated ETo (by LSSVR-GSA, DENFIS, and M5RT) in
the test period of Station 56021 using optimal (a) T and (b) Ra inputs.
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4. Conclusions

The potentials of two new machine learning methods, least-square support vector regression with
a gravitational search algorithm and the dynamic evolving neural-fuzzy inference system, for modeling
reference evapotranspiration using only temperature data, were investigated in the study, and estimates
of the new methods were compared with the well-known M5 model tree method. Previous values of
air temperature and extraterrestrial radiation were tried as inputs to the models to estimate monthly
ETo. Three stations from China were used as case studies. The results obtained from the applications
provided the following conclusions:

1. In all three stations, the temperature or extra-terrestrial radiation-based LSSVR-GSA models
performed superiorly to the DENFIS and M5RT models in estimating monthly ETo. In some
cases, especially for the Ra based models, however, a slight difference was found between the
LSSVR-GSA and DENFIS methods, while the M5RT provided the worst estimates.

2. The results revealed that the only extra-terrestrial radiation input might provide better prediction
accuracy for all the three methods, and this implies that the monthly ETo can be easily calculated
with only Julian date or without temperature information.

3. Importing periodicity information to the model’s inputs generally improved the prediction
accuracy, and the accuracy of DENFIS was considerably increased in the third station (56029).

4. Combining optimum air temperature and extra-terrestrial radiation inputs generally did not
increase the accuracy of the methods in terms of estimation of monthly ETo. In one station (third
station), however, the combination of both inputs improved the accuracy of DENFIS methods
by 22% and 10% (RMSE) compared to optimum T and optimum Ra inputs, respectively. In this
station, this method performed better than the LSSVR-GSA and M5RT.

The results of this study recommend the use of the LSSVR-GSA model as an efficient tool for
estimating monthly ETo using only temperature or extraterrestrial radiation. This is very important
in practical applications, especially for the developing countries, where some climatic data may be
missing or absent because of technical reasons or lack of opportunities.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/5/547/s1.
Table S1: The statistical parameters of the applied data. Table S2: Validation and test statistics of the models for
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ET0 prediction—Station 2 (56021). Table S4: Validation and test statistics of the models for monthly ET0
prediction—Station 3 (56029).
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