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Abstract

Tail-anchored (TA) proteins represent a unique class of membrane proteins that contain a single C-terminal transmembrane
helix. The post-translational insertion of the yeast TA proteins into the ER membrane requires the Golgi ER trafficking (GET)
complex which contains Get1, Get2 and Get3. Get3 is an ATPase that recognizes and binds the C-terminal transmembrane
domain (TMD) of the TA proteins. We have determined the crystal structures of Get3 from two yeast species, S. cerevisiae
and D. hansenii, respectively. These high resolution crystal structures show that Get3 contains a nucleotide-binding domain
and a ‘‘finger’’ domain for binding the TA protein TMD. A large hydrophobic groove on the finger domain of S. cerevisiae
Get3 structure might represent the binding site for TMD of TA proteins. A hydrophobic helix from a symmetry-related Get3
molecule sits in the TMD-binding groove and mimics the TA binding scenario. Interestingly, the crystal structures of the
Get3 dimers from S. cerevisiae and D. hansenii exhibit distinct conformations. The S. cerevisiae Get3 dimer structure does not
contain nucleotides and maintains an ‘‘open’’ conformation, while the D. hansenii Get3 dimer structure binds ADP and stays
in a ‘‘closed’’ conformation. We propose that the conformational changes to switch the Get3 between the open and closed
conformations may facilitate the membrane insertions for TA proteins.
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Introduction

Tail-anchored (TA) proteins represent a unique family of

transmembrane proteins that contain a single transmembrane

helix (about 25 residues) at the C-terminus. The N-terminal

fragments of TA proteins are exposed to the cytosol. TA proteins

can be found in the secretary pathways, nuclear envelope,

peroxisomes and mitochondria. The TA proteins are present in

all eukaryotic systems ranging from yeast to human [1]. It is

estimated that human genome encodes more than 400 TA

proteins [2]. A large number of the TA proteins target their C-

terminal TMD into ER. The TA proteins localized at the ER

membranes play central roles in protein secretion, folding,

translocation and degradation [1,3]. The TA proteins in

mitochondria function to facilitate mitochondrial fission, protein

translocation and apoptosis. Well-known TA protein examples

include ER translocon member Sec61b, vesicle trafficking proteins

SNAREs, the apoptosis-related protein Bcl-2 and signal transduc-

tion proteins such as PTP1B [2,4,5,6,7,8,9,10].

The mechanisms how the TA proteins insert the TMD into

membranes are distinct from the well-studied co-translational

insertion pathway, which is mediated by the signal recognition

particle (SRP), the ER-localized SRP receptor and the ER

translocon formed by Sec61 complex [3,11,12]. Because TA

proteins contain the TMD at the C-terminus, the main cytosolic

fragment of the TA protein is delivered into the cytosol as it exits

from the ribosome while the TMD remains in the ribosomal

channel. This prevents the TA protein from utilizing the

traditional co-translational membrane insertion pathways.

The TA protein insertion into ER membrane is ATP-dependent

[6]. A soluble cytosolic ATPase TRC40/Asna-1 has been shown

to interact with the newly synthesized TA protein Sec61b in the

rabbit reticulocyte lysate (RRL) by biochemical studies [13]. The

complex is then translocated to the ER membrane where the

TMD of Sec61b is incorporated into ER membrane in an ATP-

dependent fashion [13]. Disruption of TRC40 results in early

embryonic lethality [14]. Recently yeast genetics and biochemical

studies indicated that the post-translational insertion of the TA

proteins into ER membrane requires the co-operation of the Golgi

ER trafficking (GET) complex which contains Get1, Get2 and

Get3 [15,16,17]. Get3 (also named as Arr4) is the yeast homologue

of TRC40 of mammals. Get3 can recognize and bind the TMD of

the TA proteins. Get1 and Get2 are ER transmembrane proteins

which can recruit and form complexes with the TA protein-bound

Get3. The GET complex carries out an energy-dependent process

to facilitate the insertion of the TA protein TMD into the ER

membrane. The complex formation of Get1, Get2 and Get3

ensures the specific TA protein insertion into the ER membranes.
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Loss of the GET complex results in the mis-localization of the TA

proteins [15,17]. New GET complex members such as Get4 and

Get5 were identified that also play roles in TA protein membrane

insertions [17].

The crystal structure of E. coli ATPase ArsA, which shares about

25% sequence identity with yeast Get3, is available [18]. Bacteria

ArsA plays a role in metal detoxification, which is different from

yeast Get3 or mammalian TRC40 [15,19]. In this study, the

crystal structures of Get3 from two yeast species, S. cerevisiae and D.

hansenii suggest that Get3 may adopt two distinct conformations:

an open conformation in nucleotide-free state and a closed

conformation in ADP-bound state. A highly hydrophobic groove

was identified as the binding site for the TMD of the TA proteins.

We propose that the conformational changes of Get3 between the

open and closed states may facilitate the membrane insertions for

the TA proteins.

Results and Discussion

The S. cerevisiae Get3 Homo-Dimer Structure
The crystal structure of S. cerevisiae full-length Get3 was

determined to 2.3 Å resolution (Table 1). The resultant electron

density map from the SAD phasing followed by two-fold

molecular averaging was readily traceable. The Get3 forms a

homo-dimer (molecules A and B) in the crystal structure (Fig. 1). In

molecule A, residues 191 to 210 are missing and in molecule B,

residues 93 to 116 are missing.

The structure of the S. cerevisiae Get3 monomer consists of 14 a-

helices (a1–a14) and eight b-strands (b1–b8) (Fig. 1). The Get3

structure contains a nucleotide-binding domain (NBD) and a smaller

finger domain. The b-strands b 1 to b 8 form a large b-sheet which

constitutes the core of the NBD. All the b-strands are parallel to each

other except b3 which is anti-parallel to others. A1-A3 and A13-A14

are located on one side of the b-sheet and a11–a12 are on the other

side of the sheet. This topology represents a Rossmann fold that is

found in many nucleotide-binding domains. One Magnesium ion can

be located at the ATP-binding site in the NBD but no nucleotide

molecules can be found even in the presence of ATP (or ADP) in the

crystallization conditions. The small finger domain of Get3 protrudes

out of the ATPase domain. The finger domain of Get3 consists of

helices a4 to a10. The finger domains appear to be flexible in the

crystal structure because helices a8 and a9 are missing in monomer

A. In the finger domain of monomer B, helix a4 is missing.

In the asymmetric unit, two Get3 monomers form a dimer

through a non-crystallographic two-fold axis. The dimer interface

of Get3 is about 1100 Å2, which accounts for only 6% of the

monomer surface area. The relatively small dimer interface

between the two Get3 monomers indicates possible flexibility

between them. The two Get3 monomers are associated together

primarily through a novel inter-molecular Zinc-finger motif, which

was not previously revealed by Get3 sequence (Fig. 2a, b). In the

crystal structure, one Zinc ion is coordinated by four Cys residues,

C285 and C288 from molecule A and B, respectively. C285 and

C288 protrude out from the helix a12 in the structure and form

Table 1. Data collection, phasing and refinement statistics for S. cerevisia and D. hansenii Get3 structure.

Native ScGet3 Se-Met ScGet3 DhGet3

Data collection

Space group P21212 P21212 I222

Cell dimensions

a, b, c (Å) 218.53, 113.84, 48.22 219.40, 113.74, 48.37 59.85, 87.29, 230.59

Remote

Wavelength(Å) 0.9792 0.9750 0.9795

Resolution (Å) 2.3 3.1 1.8

Rsym or Rmerge 0.076(0.586) 0.102 (0.480) 0.039 (0.155)

I/sigmaI 32.8(2.2) 22.7 (2.6) 42.9 (9.9)

Completeness (%) 99.3(93.7) 94.2 (59.7) 91.4(65.7)

Redundancy 6.2(4.3) 8.8 (4.4) 4.5(4.5)

Refinement

Resolution (Å) 2.3 1.8

No. reflections 54950 49282

Rwork/Rfree 22.2(29.3)/24.5(34.8) 23.3(32.2)/24.7(38.5)

No. atoms

Protein 5073 2082

Water 324 401

B-factors

Protein 48.90 32.47

Water 53.52 39.70

R.m.s deviations

Bond lengths (Å) 0.007 0.011

Bond angles (u) 1.1 1.3

*Highest-resolution shell is shown in parentheses.
doi:10.1371/journal.pone.0008061.t001

Crystal Structures of Get3
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the Zinc finger motif with the C285 and C288 from another

monomer. This inter-molecular Zinc finger motif provides the

major driving force for Get3 dimerization since no other major

contact areas can be identified from the dimer interface. Sequence

alignment shows that C285 and C288 are absolutely conserved

among the Get3 family members from yeast to human (Fig. 3).

The Transmembrane Domain (TMD)-Binding Groove of
the S. cerevisiae Get3

Biochemical and genetics studies have shown that Get3 directly

interacts with the TMD of the TA proteins [15,16,17]. Because of

the highly hydrophobic nature of the TMD of TA proteins, we

examined the hydrophobic surfaces of Get3 molecule to identify a

potential TMD-binding site. A large hydrophobic groove is found

on the finger domain of Get3 structure that might represent the

binding site for TMD of TA proteins (Fig. 4a). One side of this

groove is formed by helix a6. The other side of the groove is

generated by helices a8 and a9. This hydrophobic surface of this

groove is constituted primarily by residues A125, L129, I133 and

P134 from helix a6, residues L183, L186, L187, F190, I193 and

L197 from a8 and residues P199, M200, L201, F204, M205 and

A207 from a9 (Fig. 4a). This groove represents the largest

hydrophobic surface of the Get3 molecule. The hydrophobicity of

residues forming the groove is nicely conserved among the Get3

family members (Fig. 3), suggesting that this hydrophobic groove is

a common feature for Get3 from difference species.

Strong support that the hydrophobic groove on the Get3 finger

domain can accommodate the TMD from TA proteins comes

from the crystal packing. In monomer B of the Get3 dimer, a

hydrophobic helix a9 from a symmetry-related Get3 monomer

makes strong hydrophobic interactions with the putative TMD-

binding groove (Fig. 4a). This hydrophobic helix a9 sits anti-

parallel to the helix a6 which forms one side of the groove. The

hydrophobic side chains from residues M200, L201, F204, and

M205 from helix a9 make extensive interactions with hydrophobic

residues from residues L186, L187, F190 and I193 from helix a8

at the TMD-binding groove. We propose that this helix a9 from

symmetry-related monomers may mimic the binding status for

TMD of TA proteins for Get3. The hydrophobic helix a8 may

also play an important role in stabilizing the TMD of TA protein

in the TMD-binding groove by acting as a ‘‘finger’’.

In monomer A of the Get3 dimer, no helix is present in the

TMD-binding groove due to different crystal contacts. It is

tempting to postulate that monomer A may exhibit the ligand-free

state and the monomer B may represent the ligand-bound state for

Get3 (Fig. 4a, b). It is interesting to note that one side of the groove

(helices a8 and a9) is disordered in monomer A while it is ordered

in the monomer B’s electron density map. This observation

indicates that TMD binding may stabilize the Get3 TMD-binding

groove which would otherwise be flexible when empty. Moreover,

in monomer B, the helix a5 merges with helix a6 and forms an

extended helix a6 while in monomer A, helix a5 and helix a6 are

positioned at an angle of about 90u. Thus, the TMD binding may

promote the merging of the helices a5 and a6, resulting in the

extension of the binding site for the TMD.

Very recent structural studies on yeast Get3 indicated that the

long helix a7 may be also involved in the TA protein binding

[20,21]. In the published Get3 structures (PDB code 2WOO,

3.0 Å resolution; PDB code 3IDQ, 3.7 Å resolution), a major part

of the finger domain that includes helices a8 and a9 is missing.

Therefore, it is likely that Get3 may adopt multiple conformations

to interact with the TMD of TA proteins.

The D. hansenii Get3 Homo-Dimer Structure
The S. cerevisiae Get3 crystal structure was determined free of

nucleotides. We were not able to grow crystals of S. cerevisiae Get3

complexed with nucleotide. To obtain the nucleotide-bound Get3

crystal structure, we have expressed and purified Get3 from another

Figure 1. Ribbons drawing of the S. cerevisia Get3 homo-dimer structure in side-by-side stereo mode. The monomer A is in silver and the
monomer B is in gold. The a-helices and b-strands are labeled in the structure. The nucleotide-binding domain (NBD) and the finger domain (Finger)
are labeled. The Zinc ion is shown in a blue sphere and the two Mg ions at the nucleotide-binding sites are shown in red spheres. The missing parts of
the structure are linked by dotted lines.
doi:10.1371/journal.pone.0008061.g001
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yeast species, D. hansenii. We were able to crystallize D. hansenii Get3

complexed with ADP. The crystal structure of D. hansenii Get3 was

determined to 1.8 Å resolution using molecular replacement method

(Table 1). The D. hansenii Get3 forms a homo-dimer in the high

resolution crystal structure (Fig. 5b). The bound ADP molecule can be

clearly identified in the Get3 nucleotide-binding domain (NBD) in the

crystal structure. The finger domain in the D. hansenii Get3 structure,

however, is missing in the electron density map (Fig. 5b).

The D. hansenii Get3 shares 65% sequence identity with the S.

cerevisiae Get3. When we compare the S. cerevisiae Get3 homo-dimer

structure with the D. hansenii Get3, a striking feature is that the two

Get3 monomers are associated in a very distinct fashion. In the S.

cerevisiae Get3, the two Get3 monomers are swung away from each

other. In the D. hansenii Get3 structure, the two nucleotide-binding

domains (NBD) face to each other and make close contacts. The

distance of the two Mg ions located in the NBDs within S. cerevisiae

Get3 dimer is 26 Å while the two Mg ions located in the NBDs of

D. hansenii Get3 dimer are spaced only ,5 Å apart. In the S.

cerevisiae Get3 dimer structure, the two monomers are twisted away

from each other by 36u from the positions of their counterparts in

the D. hansenii Get3 homo-dimer structure (Fig. 5a, Fig. 5b).

The S. cerevisiae Get3 structure was solved free of nucleotides and

the D. hansenii Get3 structure was complexed with ADP. We

hypothesize that Get3 may adopt an ‘‘open’’ conformation in

nucleotide-free state and a ‘‘closed’’ conformation in ADP-bound

state. The S. cerevisiae Get3 crystal structure represents the open

conformation while the D. hansenii Get3 structure exhibits the

closed conformation. In the D. hansenii Get3 structure, the bound

ADP plays an important role in associating the two Get3

monomers in the closed conformation. The flexibility between

the two Get3 monomers may provide evidences that the

conformational changes to switch Get3 between the open and

closed states may be possible.

The recently published Get3 structures from S. cerevisiae and S.

pombe indicated that Get3 may exhibit open conformation in

nucleotide-free state (PDB code 2WOO; resolution 3.0 Å) and

closed conformation in ADP-ALF4-bound state (PDB code 2WOJ;

resolution 2.0 Å), which is consistent with our findings [21]. The

closed Get3 structure (2WOJ) showed an extended hydrophobic

groove possibly for TA protein binding in the finger domain while

in the open conformation (2WOO), the hydrophobic surfaces of

the groove are shielded. In an independent study, both Get3

structures from A. fumigatus complexed with ADP (PDB code

3IBG; resolution 3.2 Å) and Get3 from S. cerevisiae in nucleotide-

free state (PDB code 3IDQ; resolution 3.7 Å) were determined in

the open conformations [20]. However, in this paper the structure

of D. hansenii Get3 complexed with ADP was found in closed

conformation. It is possible that Get3 in the ADP-bound state may

exist in both open and closed conformations, which might be

important for its biological functions. In the Get3 structure from A.

fumigatus complexed with ADP (3IBG), three homo-dimers are

associated into a hexamer through the finger domain interactions.

The finger domains appear to be quite flexible in the Get3

structure because all the Get3 structures do not contain the intact

finger domain in the electron density map. In some cases, the

finger domains are completely missing possibly due to lack of

crystal contacts. The flexibility of the finger domain may render

Get3 the ability to accommodate the TMD of TA proteins with

different sequences.

The Working Model for Get3 to Facilitate TA Protein
Biogenesis

We have proposed a working model how Get3 facilitates the TA

protein biogenesis by switching between open and closed

conformations (Fig. 6). In the open conformation, the two

TMD-binding grooves within one Get3 dimer can interact with

the TMD of the nascent TA proteins to initiate the TA protein

membrane insertions. The ATP binding of Get3 may switch Get3

to the closed conformation, where the two TMD-binding grooves

from the two Get3 monomers may approach each other to form

an enclosed binding site to protect the TMD of the TA proteins.

The TA protein-bound Get3 docks with the ER-located Get1-

Get2 complex. The Get1-Get2-Get3 complex formation may

catalyze the ADP release from Get3 that will switch Get3 to the

open conformation to expose the TMD of TA proteins for

membrane insertions.

Figure 2. Dimerization of S. cerevisia Get3 molecule. a) The Get3
dimer illustrated by PYMOL. The molecular surface of the Monomer A is
shown in silver and Ribbons drawing of the monomer B is shown in gold.
The orientation of this Get3 dimer is about 180u rotation along the vertical
axis from that in Fig. 1. The dimer interface is located at the bottom of the
structure. The Zinc ion is shown in a blue sphere and the two Mg ions at
the nucleotide-binding sites are shown in red spheres. b) The inter-
molecular Zinc-finger motif. The Zinc ion is bound by C285 and C288 from
the N-terminal end of helix A12 from monomer A and B, respectively. C285,
C288 and a12 are labeled. The Zn ion is shown in a blue sphere.
doi:10.1371/journal.pone.0008061.g002

Crystal Structures of Get3
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We have modeled the Get3 dimer in the closed conformation

based on the D. hansenii Get3 dimer. In the modeled structure, the

finger domains from two Get3 monomers collide with each other

(data not shown), suggesting that the Get3 finger domains may

undergo conformational changes when the Get3 dimer switches

from the open to the closed conformation.

Materials and Methods

Structure Determination of S. cerevisia Get3
The protein expression and crystallization of the yeast Get3 has

been previously described [22]. Briefly, the recombinant proteins

of Get3 were expressed from E. coli and purified using Ni-chelating

column and gel-filtration column. The Get3 proteins were

crystallized by hanging drop vapor diffusion method with the

well solution of 100 mM MES buffer (pH 6.0), PEG 3350 15%,

0.2 M Ammonium Sulfate.

The native Get3 crystals diffracted X-ray to 2.3 Å at beamline

GM-CAT in APS. We solved the crystal structure of Get3 by using

Se-Met Get3 crystals through the single-wavelength anomalous

dispersion (SAD) method (Table 1). The SAD data set for Se-Met

Get3 crystals were collected at SER-CAT in APS. The Selenium

positions were located by use of the program ShelxD and the

initial phasing was carried out by using SOLVE [23]. The

Figure 3. Sequence alignment of the Get3 family members. Program ClustalW was utilized to align the Get3 sequences from S. cerevisiae
(yeast) with those from D. hansenii, H. sapiens, D. Melanogaster and C. elegans. The amino acid residues are numbered at the right side of the
alignment. The conserved C285 and C288 responsible for the Zinc-finger motif formation are labeled in blue. The conserved hydrophobic residues
involved in forming the TMD-binding groove are labeled in green.
doi:10.1371/journal.pone.0008061.g003

Crystal Structures of Get3
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subsequent phase improvement was performed by using RE-

SOLVE [23].

The resultant electron density map was traced using program

COOT [24]. Refinement was carried out using the program

Refmac5 [25]. The native data set was used for the refinement.

(Table 1).

Structure Determination of D. hansenii Get3
The crystal structure of D. hansenii Get3 was crystallized by

hanging drop vapor diffusion method with the well solution of

0.2M ammonium mono-basic phosphate, 20% Glycerol, 1 mM

MgCl2, 5 mM KCl and 2 mM ADP. The data collection was

carried out at beamline 7–1 at SSRL. The D. hansenii Get3 crystal

structure was determined by using molecular replacement

method using the Get3 monomer as the search model. Program

Phaser was utilized to carry out the molecular replacement

method [25].

Accession Number
Atomic coordinates of S. cerevisia and D. hansenii Get3 have been

deposited in the Protein Data Bank under the accession codes of

3H84 and 3IO3.

Figure 4. The TMD-binding groove of S. cerevisia Get3. a) The
hydrophobic surface of Get3 molecule is shown in gold. The orientation
of the finger domain is similar as that in Fig. 1. The hydrophobic
residues constituting the TMD-binding groove are labeled in blue. The
extended helix a6, a8 and a9 in the finger domain of monomer B are
labeled. Helix a9 from the symmetry-related Get3 molecule is shown in
magenta. The hydrophobic residues from helix a9 are labeled in black.
b) The finger domain of Get3 in the monomer A. This finger domain is
positioned to the similar orientation as for that in Fig. 1b. The
hydrophobic residues are shown in gold. The missing part of the
structure is shown in dotted line. Helices a4, a5, a6, a8 and a10 are
labeled. The helices a5 and a6 in this figure are merged into an
extended helix a6 in Fig. 4a.
doi:10.1371/journal.pone.0008061.g004

Figure 5. The structural comparison between S. cerevisia and D.
hansenii Get3 dimer. a) The molecular surface drawing of the Get3
dimer by Pymol. The monomer A is in silver and the monomer B is in
gold. The orientation of the Get3 dimer in the left panel is similar as that
in Fig. 1. b) The Ribbons drawing for D. hansenii Get3 homo-dimer. One
monomer is in red and the other is in blue. The missing finger domains
are indicated in dotted circle. The Zinc ion is shown in a pink sphere.
The bound ADP molecules are labeled and shown in rod model.
doi:10.1371/journal.pone.0008061.g005

Figure 6. The working model for Get3 to facilitate the TA
protein biogenesis. The TMD of the TA protein is shown in a green
helix. Get1, Get2 and Get3 are labeled. The ATP-bound state and ADP-
bound state of Get3 are labeled.
doi:10.1371/journal.pone.0008061.g006

Crystal Structures of Get3
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