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Abstract

Recently, an increasing number of studies have demonstrated that miRNAs are involved in

human diseases, indicating that miRNAs might be a potential pathogenic factor for various

diseases. Therefore, figuring out the relationship between miRNAs and diseases plays a

critical role in not only the development of new drugs, but also the formulation of individual-

ized diagnosis and treatment. As the prediction of miRNA-disease association via biological

experiments is expensive and time-consuming, computational methods have a positive

effect on revealing the association. In this study, a novel prediction model integrating GCN,

CNN and Squeeze-and-Excitation Networks (GCSENet) was constructed for the identifica-

tion of miRNA-disease association. The model first captured features by GCN based on a

heterogeneous graph including diseases, genes and miRNAs. Then, considering the differ-

ent effects of genes on each type of miRNA and disease, as well as the different effects of

the miRNA-gene and disease-gene relationships on miRNA-disease association, a feature

weight was set and a combination of miRNA-gene and disease-gene associations was

added as feature input for the convolution operation in CNN. Furthermore, the squeeze and

excitation blocks of SENet were applied to determine the importance of each feature chan-

nel and enhance useful features by means of the attention mechanism, thus achieving a sat-

isfactory prediction of miRNA-disease association. The proposed method was compared

against other state-of-the-art methods. It achieved an AUROC score of 95.02% and an

AUPR score of 95.55% in a 10-fold cross-validation, which led to the finding that the pro-

posed method is superior to these popular methods on most of the performance evaluation

indexes.

Author summary

Identifying miRNA-disease associations accelerates the understanding towards pathoge-

nicity, which is beneficial for the development of treatment tools for diseases. Different

from existing methods, our GCSENet captures the deep relationship between miRNA and

disease through three heterogeneous graphs (disease, gene and miRNA) to promote an
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accurate prediction result. We performed the 10-fold cross validation to evaluate the per-

formance of GCSENet, which can outperform many classic methods. Furthermore, we

carried out case studies on four important diseases, which were used to evaluate the per-

formance of our model regarding to the associations with experimental evidences in liter-

ature. The result shows that most predicted miRNAs (48 for lung neoplasms, 48 for heart

failure, 48 for breast cancer and 50 for glioblastoma) in the top 50 predictions were con-

firmed in HMDD v3.0. As a result, it shows that GCSENet can make reliable predictions

and guide experiments to uncover more miRNA-disease associations.

Introduction

MicroRNAs (miRNAs) are a type of small non-coding RNAs (22~24 nucleotides in length),

which function as an important regulator in human body [1]. MiRNAs have been proven to

exert influence on such physiological processes as cell growth, cell differentiation, immune

reaction by affecting gene expression after transcription. More and more studies have revealed

that miRNA is closely related to human diseases, such as Parkinson’s disease [2] and cancer

[3]. Therefore, the identification of association between miRNAs and diseases is of great signif-

icance for the study on disease pathogenesis and the development of drugs. However, it is

costly and time-consuming to identify the associations between a pair of miRNA and disease/

phenotype through biological experiment. Therefore, computational approaches have been

adopted to predict these associations. The basic assumption is that the miRNAs associated

with the same or similar diseases are more likely to be functionally related. The existing meth-

ods can be roughly divided into two categories: network based methods and machine learning

based algorithms.

Network based predictions

Jiang et al. [4] presented a miRNA-disease association (MDA) identification method through

the hypergeometric distribution. However, it considered only the direct neighbors of each

miRNA in the miRNA functional network and the number of overlapping genes while ignor-

ing the functional connection between them. Liu et al. [5] introduced a computational model

of random walk with restart for miRNA-disease association (RWRMDA) to identify new dis-

ease-related miRNAs, but it may be ineffective for new diseases without any known related

miRNAs. By constructing a heterogeneous graph that integrated different types of heteroge-

neous biological datasets, Xuan et al. [6] proposed an algorithm of human disease-related miR-

NAs prediction (HDMP) to predict miRNA-disease associations based on the weighted k most

similar neighbors. According to the miRNA-miRNA and disease-disease networks, Shi et al.

[7] introduced a miRNA-disease association prediction method by constructing a gene layer

between miRNA and disease, based on which the disease genes and miRNA target genes were

taken as seeds for the calculation performed by random walk algorithm. Chen et al. [8] pro-

posed another model called within and between score for miRNA-disease association predic-

tion (WBSMDA) through integrating similarity for miRNAs and diseases, and combining

within-score and between-score to obtain the final score for potential miRNA-disease associa-

tion prediction. You et al. [9] proposed a novel path-based miRNA-disease association

(PBMDA) prediction method to calculate the association score between miRNAs and diseases.

Ji et al. [10] introduced a network embedding based heterogeneous information integration

method by combining the known associations between protein, miRNA, lncRNA, disease and

drug.
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Machine learning based predictions

Chen and Yan [11] proposed a regularized least squares method for the identification of

miRNA-disease association. It applied a semi-supervised algorithm to identify the association

between miRNAs and diseases. Xuan et al. [12] introduced two convolutional network based

methods for predicting the candidate diseases. Based on the known miRNA-disease associa-

tions, Li et al. [13] proposed a matrix completion method for MDA (MCMDA). It applied the

matrix completion algorithm to update the adjacency matrix of known miRNA-disease associ-

ations for the prediction of potential associations. Liang et al. [14] developed a novel method

for identifying those disease-related candidate miRNAs based on adaptive multi-view multi-

label learning. Peng et al. [15] adopted a regression model to obtain the feature input, before

the transferral of it to convolutional neural network (CNN) for the final miRNA-disease asso-

ciation prediction result to be obtained by the supervised training.

Despite the effectiveness of above-mentioned methods in identifying MDA, there remain

some challenges facing the improvement of prediction results. As for the network-based pre-

diction, most of them are un-supervised ones solely based on networks without the involve-

ment of labeled information. Recently, various relationships between miRNAs and diseases

have been detected on the basis of biological experiment, which provides opportunities to pre-

dict the miRNA-disease association using the supervised model. Though some methods rely

on convolutional neural networks to extract miRNAs and characterize diseases, they are inca-

pable to capture the detailed structural information from their heterogeneous network, such as

network topology and node neighborhood. Li et al. [16] introduced a method of nonlinear

inductive matrix completion with graph convolutional network (GCN), but it is limited to

extracting the feature from two heterogeneous networks of disease and miRNA, which means

no consideration is given to the influence of gene network.

In this paper, a new prediction model integrating with GCN, CNN and SENet (GCSENet)

was proposed to identify miRNA-disease association. Firstly, our consideration was given to

the influence of gene network on the prediction of miRNA-disease association for the con-

struction of a three-layer heterogeneous network containing disease, gene and miRNA. As this

heterogeneous network possesses no regular spatial structure, GCN is applied to extract the

features of disease-gene association and miRNA-gene association. Secondly, considering the

influence of a gene on various diseases and miRNAs varies significantly when the disease-gene

association and the miRNA-gene association are manifested, a feature weight for each disease-

gene association and miRNA-gene association was set to reflect this difference. Thirdly, to dis-

tinguish the different importance of these two associations to determining the miRNA-disease

association, a new feature component was constructed by combining the miRNA-gene associ-

ation and the disease-gene association. Then, with regard to the characteristics of disease-gene

association, miRNA-gene association and their combined association, the squeeze and excita-

tion blocks of SENet were applied to determine the importance of each feature channel by

means of the attention mechanism, and the re-calibration of the feature channel was realized

through the weight matching. Finally, the fully connected layer and the softmax layer were set

to make the final prediction of miRNA-disease association.

Materials and methods

Data

In this study, the interactions between miRNAs and diseases were captured using a heteroge-

neous network, which consists of a disease layer, a gene layer and a miRNA layer. It also

involves data with the experimentally validated miRNA-disease associations, disease-gene
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associations, miRNA-gene associations, disease semantic similarity, miRNA functional simi-

larity, disease network, gene network and miRNA network.

On the basis of miRNA-disease prediction tasks, our model was also verified on the pheno-

type of human disease and miRNA prediction. It contains the phenotype network, gene net-

work and miRNA network. The gene network and miRNA network in the miRNA-phenotype

task are the same as those used for the miRNA-disease prediction. The association data

involves miRNA-phenotype associations, phenotype-gene associations and miRNA-gene asso-

ciations. In order to construct the phenotype network, it entails the calculation of phenotype

similarity as well.

Human miRNA-disease associations, disease-gene associations and

miRNA-gene associations

The known human miRNA-disease associations were obtained from the experimentally veri-

fied miRNA-disease database HMDD v3.0 [17], including 1206 miRNAs, 893 diseases and

32281 experimentally supported miRNA–disease association entries. The association of

miRNA-disease is indicated in the form of adjacency matrix Y, where Y(i,j) = 1 denotes a

miRNA mi is associated with a disease dj, Y(i,j) = 0 means the association between them is

either unknown or unobserved.

The disease-gene associations were captured from DisGeNET v7.0 database [18]. It inte-

grates disease-gene associations from expert curated repositories. Only the manually con-

firmed disease-gene associations were used in our experiment. The link to the data is http://

www.disgenet.org/.

As a comprehensive archive, miRWalk2.0 [19] provides the largest available collection of

both predicted and experimentally verified miRNA-gene associations. The miRNA-gene asso-

ciations were identified by inputting the target miRNA to obtain the associated gene from this

database.

Disease semantic similarity

The Mesh database (http://www.ncbi.nlm.nih.gov/) is available for conducting analysis of the

relationship between different diseases. It divides all of the diseases into different categories.

Our hierarchical directed acyclic graph DAG(T(D), E(D)) was constructed directly on the basis

of Mesh. Herein, T(D) denotes the disease node set, including disease D and its ancestor

nodes, E(D) indicates the directly connected set of all father nodes and child nodes in this set,

representing the relationship between different diseases, then the semantic contribution of a

disease d to the disease D is denoted by Dd(d)

DdðdÞ ¼ 1 if d ¼ D

DdðdÞ ¼ maxfD � Ddð
�d Þj�d 2 children of dg if d 6¼ D ð1Þ

(

DVðDÞ ¼
X

d2TðDÞ
DdðdÞ ð2Þ

where Δ is the semantic contribution decay factor, which shows that as the distance between

disease D and its ancestor diseases increase, their contribution to the semantic value of disease

D diminishes on a continued basis. Accordingly, the contribution to the semantic value of dis-

ease D itself is defined as 1 when disease D is located in the 1-th layer. The contribution of its

ancestor disease is supposed to be multiplied by the semantic contribution decay factor. Usu-

ally, Δ value is set as 0.5 [8,20]. DV(D) represents the contribution value as obtained by disease

D. Based on this assumption, the semantic similarity between two diseases d(i) and d(j) can be
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calculated as

S dðiÞ; dðjÞ
� �

¼

X

t2T dðiÞð Þ\TðdðjÞÞ
DdðiÞðtÞ þ DdðjÞðtÞ
� �

DV dðiÞð Þ þ DV dðjÞ
� � ð3Þ

MiRNA functional similarity

MiRNA functional similarity was obtained by the associated diseases. Firstly, the maximum

similarity S(dt, DT) between one disease dt and one group of diseases DT was calculated by

Sðdt;DTÞ ¼ max
1�i�k

Sðdt; dti
Þ

� �
ð4Þ

where S(dt, DT) is the similarity between disease dt and the disease set DT ¼ fdt1
; dt2

; . . . ; dtk
g,

dti
is one of the diseases in DT, k is the number of diseases.

For the similarity of two miRNAs, consideration was given to the impact of each disease in

its corresponding disease set, which is expressed as

MISIMðm1;m2Þ ¼

X

1�i�m
sðdti

;DT2
Þþ
X

1�j�n
sðdtj

;DT1
Þ

mþ n
ð5Þ

where DT1
is the disease set associated with m1, DT2

is the disease set associated with m2, m is

the number of diseases in DT1
, n is the number of diseases in DT2

.

Disease network, gene network and miRNA network

The disease similarity network was obtained from You et al. [9]. The diseases having no associ-

ated genes in the gene network were removed. The interactions of genes in STRING [21] were

manually extracted from the literature by the expert biologists responsible for reading, inter-

preting and analyzing the published data. The gene network was downloaded from STRING

database (https://string-db.org/cgi/download). To construct the miRNA network, a miRNA

similarity matrix generated by the miRNA similarity (MISIM) database (http://www.cuilab.cn/

files/images/cuilab/misim.zip) was applied.

Phenotype network

The phenotype network was constructed using the traditional Resnik method [22] through

Human Phenotype Ontology (HPO) [23], which was also used by Masino et al. [24]. The spe-

cific information can be obtained from https://hpo.jax.org.

Human miRNA-phenotype associations, phenotype-gene associations and

miRNA-gene associations

The data on miRNA-phenotype was obtained from miRWalk2.0 database [19]. It is based on

the published and validated experimental data (http://zmf.umm.uni-heidelberg.de/apps/zmf/

mirwalk2/index.html). Phenotype-gene associations were obtained from HPO database

(https://hpo.jax.org/app/download/annotation). MiRNA-gene associations were the same as

what were used in the miRNA-disease association task.

Phenotype similarity

The HPO also provides a standardized vocabulary of phenotypic abnormalities (phenotypes)

encountered in human disease. Let p1 and p2 be two phenotypes, and S be the set of all com-

mon ancestors of p1 and p2. pm indicates the phenotype that has a minimum of gene
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annotations in S. The similarity between p1 and p2 can be defined as

simðp1; p2Þ ¼ � log
NPm

N
ð6Þ

where NPm
represents the number of gene annotations of pm, including the gene annotations of

its descendants, and N refers to the total number of genes involved in HPO. Only the pheno-

type terms that have a minimum of one gene involved in the gene network were selected. The

human phenotype ontology and annotation data can be obtained from https://hpo.jax.org/

app/.

The disease semantic similarity network, gene network, miRNA functional similarity net-

work, experimentally valid miRNA-disease, disease-gene, and miRNA-gene interactions were

combined to obtain the whole disease-gene-miRNA heterogeneous network as illustrated in

Fig 1A. Similarly, the phenotype-gene-miRNA network is shown in Fig 1B.

The association types include disease-gene associations from DisGeNET v7.0, phenotype-

gene associations from HPO, miRNA-gene associations from miRWalk2.0, gene-gene associa-

tions from STRING, and the number of associations are 10283, 29511, 5114, 19237,

respectively.

GCSENet prediction model

Our miRNA-disease association prediction model is comprised of three parts as shown in Fig

2. The first one is the extraction of interaction feature based on GCN from the disease-gene-

miRNA three-layer structure. The second one sets weight for the features and adds new feature

components to refine the features. The third one applies CNN combined with SENet to make

the prediction of miRNA-disease associations.

Feature generation

Based on the three-layer heterogeneous network (disease, gene and miRNA), the graph feature

of disease-gene and miRNA-gene networks was extracted respectively through GCN [25,26] to

obtain the disease-gene feature components and miRNA-gene feature components, before the

use of them for generating the disease and miRNA feature vector.

Herein, G = (υ, e) was used to represent the structure of a graph, where υ represents the set

of nodes and e indicates the set of connected edges. The adjacency matrix is denoted as A, and

the feature information of the nodes is indicated by xi 2 R
mi , i 2 υ, where the value of mi is

Fig 1. (A) shows the composition of the three-layer heterogeneous network (disease-gene-miRNA network), where

yellow lines represent disease-gene connections, blue lines mean miRNA-gene connections. (B) shows the phenotype-

gene-miRNA network, where purple lines represent phenotype-gene connections and blue lines mean miRNA-gene

connections.

https://doi.org/10.1371/journal.pcbi.1009048.g001
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different depending on the exact type of nodes i (disease, gene or miRNA). Thus, the embed-

ding processing was adopted to make the features equivalent to zi 2 Rc, c�mi, with a unified

dimension.

In our disease-gene and miRNA-gene heterogeneous network, GCN aggregates and trans-

forms the feature information from the node feature, node neighborhood and network topol-

ogy. The architecture of signal transmission is shown as follows

hi;k ¼
X

l

X

j2Nl
i
ci;jW

k
l zj;k þWk

ti;s
zi;k ð7Þ

zi;kþ1 ¼ �ðhi;kÞ ð8Þ

where zi;k 2 R
ck is the embedding feature of the node i (disease, gene and miRNA) in the k-th

graph convolutional layer, ck is the element dimension of the hidden layer. hi,k represents the

feature vector output through the k-th hidden layer. Wk
ti ;s

is the weight parameter of the node

to itself, ti represents the type of node. Nl
i is the neighborhood of node i, l is the type of connec-

tion (gene-gene, disease-disease, miRNA-miRNA, disease-gene, miRNA-gene). Wk
l is a weight

Fig 2. The framework of GCSENet.

https://doi.org/10.1371/journal.pcbi.1009048.g002
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parameter of type l, such as Wk
dd, W

k
gd, Wk

gg , W
k
dg , W

k
mg , W

k
mm. ci,j is the normalization parameter

[26], ϕ is the non-linear activation function, here refers to linear unit ReLu [27].

Above is the calculation formula for a node. It is worth noting that the aforementioned

aggregation and transformation formulas are related to the neighbors of a certain node, which

means the computational graph architecture can show the difference for nodes depending on

the structure of local neighborhood. However, the parameters Wk
l and Wk

ti ;s
are related solely

to the connection type, rather than the node neighborhoods, which means these parameters

can be shared throughout the graph.

Finally, zi;Nþ was used to represent the last embedding feature of the i-th node, where N+

denotes the number of layers involved in graph convolution.

After the embedding feature was obtained by GCN, the relationship between disease-gene

pairs and miRNA-gene pairs was established. The association between disease di and gene gj as

well as the association between miRNA mk and gene gj can be expressed as

pðdi; gjÞ ¼ sðz
T
di
WdgzgjÞ ð9Þ

pðmk; gjÞ ¼ sðz
T
mk
WmgzgjÞ ð10Þ

where zTdi 2 R
c is the embedding feature of the disease node di obtained by learning, zgj 2 R

c is

the embedding feature of the gene node gj. Wdg 2 Rc×c is a trainable parameter matrix repre-

senting the modeling of the interaction between diseases and genes. Wmg 2 Rc×c is a trainable

parameter matrix representing the modeling of the interaction between miRNAs and genes. σ
is the sigmoid activation function which controls the association in the range of (0,1).

Feature processing

Since the number of diseases and miRNAs connected to the genes leads to different impacts

on the disease-gene and miRNA-gene associations, the weighting operation was further con-

ducted to treat the relationship between disease-genes and miRNA-genes in (9) and (10),

which is illustrated in Fig 3. It was assumed that a gene connected to only one disease or linked

to many diseases represents different cases, and the contribution from a gene to one disease or

multiple diseases is different [9]. Here, a weighting method was applied for the feature vectors

of miRNA-gene and disease-gene associations, namely, we introduced the parameter D which

Fig 3. Weighted feature processing for disease-gene and miRNA-gene.

https://doi.org/10.1371/journal.pcbi.1009048.g003
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is set as the reciprocal of the number of diseases or miRNAs linked to a gene to reflect the dif-

ferent contribution. The following formula was applied to update the feature between disease

and gene Xdi
as well as the feature between miRNA and gene Xmk

Xdi
¼ ½ð1þ Ddg1

Þpðdi; g1Þ; . . . ; ð1þ Ddgn
Þpðdi; gnÞ� ð11Þ

Xmk
¼ ½ð1þ Dmg1

Þpðmk; g1Þ; . . . ; ð1þ Dmgn
Þpðmk; gnÞ� ð12Þ

where Ddgi
¼

0; degðdgiÞ ¼ 0

1

degðdgiÞ
; degðdgiÞ 6¼ 0

8
<

:
, deg(dgi) denotes the number of diseases connected to

gene gi, Dmgi
¼

0; degðmgiÞ ¼ 0

1

degðmgiÞ
; degðmgiÞ 6¼ 0

8
<

:
, deg(mgi) is the number of miRNAs connected to

gene gi.
Besides, it was considered that the disease-gene and the miRNA-gene relationships play a

different role as well in determining whether miRNA-disease association is existent. Therefore,

a new feature component Xdimk
¼ a� Xdi

þ ð1 � aÞ � Xmk
; a 2 ð0; 1Þ, α 2 (0,1), was intro-

duced to reflect this difference, as shown in Fig 4. Finally, ½Xdi
;Xmk

;Xdimk
�, i 2 υ(d), k 2 υ(m)

was formed as the complete feature input of the neural network.

Neural network framework

Our neural network framework includes GCN, CNN and SENet. Firstly, the features of three

heterogeneous networks of miRNA, gene and disease were extracted through GCN. After the

normalization of the above-mentioned complete features, these features were inputted to the

convolution layer in CNN, and the feature channels were assigned the weight through SENet.

Then, the pooling layer was used to reduce the dimensionality of features. Finally, the fully

connected layer and the softmax layer were set to make the final prediction.

Fig 4. New feature component addition.

https://doi.org/10.1371/journal.pcbi.1009048.g004
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The final form of graph convolutional neural network is

Hðlþ1Þ ¼ sð~D � 1
2 ~A ~D � 1

2HðlÞWðlÞÞ ð13Þ

where H(l) 2 RN×D is the input of l-th GCN network, the initial input is H(0) = X, N is the num-

ber of nodes in the graph, each node is represented by a D-dimensional feature vector. ~A = A +

IN is the adjacency matrix with added self-connections, ~Dis the degree matrix ~Dii ¼
X

j
~Aij.

W(l) 2 RD×D is the parameter matrix that needs training, σ is the activation function.

Then, the CNN combined with SENet block [28] was chosen to process the feature infor-

mation. The SENet network is equivalent to an embedding structure used to weight features

on the channel level. It consists of two parts, one of which is Squeeze. Through this operation,

the information related to the feature space was averaged to a value for obtaining the global

feature on the channel level

zc ¼ FsqðucÞ ¼
1

W �H

XW

i¼1

XH

j¼1
ucði; jÞ ð14Þ

The second part is Excitation, which is realized by two fully connected layers. The first full con-

nection layer compresses C channels into C/r channels to reduce the amount of calculation,

and the second one recovers C channels, where r is the compression ratio. In this operation,

the model learns the correlation between channels before assigning the learned channel corre-

lation coefficient to each channel. This mechanism is effective in making the model pay more

attention to the channel features with essential information, thus suppressing those insignifi-

cant channel features

s ¼ Fexðz;WÞ ¼ sðgðz;wÞÞ ¼ s W2dðW1zÞ
� �

ð15Þ

Finally, the maximum pooling layer was applied to downsample the intermediate features. The

result obtained after pooling was inputted to our last two layers (the fully connected layer and

the softmax layer) for the final classification.

We have verified the effects of GCN module, feature weights, new feature component and

SENet module, and found each component is beneficial to our prediction model, which are

described in the following section of comparison with different GCSENet components.

Experiment settings

In our GCSENet model, a three-layer network in GCN was adopted for the framework setting.

For the miRNA-disease prediction, the compression factor r of SENet is 4, the dropout per-

centage equals 0.5. The L2 regularization parameter is 0.002. α is set as 0.57. With 64 samples

included in every batch, 150 epochs were run in the miRNA-disease prediction task. For the

miRNA-phenotype prediction, α is set as 0.5, the batch size is 128 and the number of epochs is

20. For both of the prediction tasks, the Adam optimization algorithm with an initial learning

rate 1e − 2 was used to optimize the cross-entropy loss. The initial parameter is set according

to the references Peng et al. [15] and Hu et al. [28]. All parameters are obtained by the grid

search method.

We evaluate the performance of GCSENet and other five methods (i.e., WBSMDA [8],

PBMDA [9], MDACNN [15], SAEMDA [10], NIMCGCN [16]) on the task of predicting

miRNA-disease associations. As for training, the data is obtained from five datasets (Mesh,

DisGeNet, STRING, miRWalk2.0 and MISIM). We train our model and other methods on

these datasets for the same setting. As for testing, the data is chosen from benchmark2019

dataset [29] as the independent test set to make a relatively fair comparison.
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Due to the absence of negative samples, we randomly generate a negative set with the same

size as the positive set. For a particular disease, the positive sample is set as the relationship of

miRNA-disease recorded in benchmark2019 dataset, and the connection of miRNA-disease

not in benchmark2019 dataset is set as the negative sample. Note that some of the negative

associations may actually be positive but unrecorded in the database. For the prediction of

miRNA-phenotype association, the positive set was chosen from miRWalk2.0 [19], and the

negative samples were generated in the similar way. Besides, we set a different ratio of negative

and positive samples to verify the robustness of our method.

We use the 10-fold cross validation (CV) to validate our framework. The setting follows

some principles: firstly, homologous genes would need to be placed into a single fold, so that

they are not mixed between folds. Secondly, all relationships with particular disease should be

put into separate folds. Thirdly, potentially diseases involved with similar relationships would

also need to be stratified into training and testing.

Performance evaluation

The area under the receiver operating characteristic curve (AUROC) and the area under preci-

sion-recall curve (AUPR) were taken as the main evaluation metrics [30]. The prediction

results were divided into four categories [31], including true positive (TP), false negative (FN),

false positive (FP), and true negative (TN). TP refers to a positive group samples that are cor-

rectly predicted, FN indicates a positive group that is incorrectly predicted to be negative, FP

denotes a negative group that is incorrectly predicted to be positive and TN refers to a correctly

predicted negative group. Based on these indexes, the following evaluation criteria were

applied to project the performance of our model for the comparison against other methods.

Precision is defined as the proportion of the correct number of positive samples in the total

number of samples determined by the classifier as positive. Recall is referred to as the propor-

tion of the correct number of positive samples in the actual number of positive samples.

F1-score is the harmonic mean of the precision and recall.

precision ¼
TP

TPþ FP
ð16Þ

recall ¼
TP

TPþ FN
ð17Þ

F1 � score ¼ 2 �
precision � recall
precisionþ recall

ð18Þ

Experimental results and discussion

To demonstrate the effectiveness of each part in our GCSENet framework, the GCSENet

model was compared with four different versions, each of which had a different setting in fea-

ture acquisition, feature weighting, feature component adding and SENet processing. Then,

the prediction results were compared between our model and other state-of-the-art methods.

Finally, GCSENet was applied to the prediction of four specific diseases for validating our

model.

Comparison with different GCSENet components

The prediction result was first compared between the complete GCSENet model and the

model without the feature extraction by GCN (extracted by the regression model), the model
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without weighting the feature, the model without adding the feature component and the

model without using SENet, respectively. The experimental results are presented in Table 1.

To reflect the advantage created by using GCN to extract structural features of heteroge-

neous networks, the features without using GCN and extracted by the regression model [15]

were taken as a comparison for experiments (Fig 5A). It was found out that the AUROC by the

regression feature reached 0.8886 while our result by the feature using GCN can realize 0.9502.

For other evaluation indexes shown in Table 1, the results by the features extraction using

GCN were higher than those by the regression model. Especially on AUPR and Precision, the

increase exceeded about 7% and 6%, respectively, indicating that GCN can produce a better

feature extraction effect for irregular network structures (disease, gene and miRNA).

Since the relationship in disease-gene tends to be affected by the number of diseases linked

to each gene (similarly, the relationship in miRNA-gene is affected by the number of miRNAs

linked to each gene), the weight was assigned to the relationship between disease-gene and

miRNA-gene depending on the number of diseases and miRNAs associated with the gene. A

comparison was performed between the original disease-gene and miRNA-gene features and

the features by assigning these weights. The ROC curve is shown in Fig 5B and the results of

main evaluation indexes are indicated in Table 1. It was found out that there was a close 7%

improvement of AUROC, a 12% improvement of Recall and 9% increase of F1-score by the

weighted features, respectively, suggesting that as the contribution of gene to related diseases

and miRNAs varies, the use of weighting coefficient based on the number of miRNAs and dis-

eases connected to genes is effective in reflecting the level of diversity.

Though the feature of miRNA-disease associations involves two parts (miRNA-gene and

disease-gene), they play different roles in determining miRNA-disease association. Therefore,

a new feature component was introduced for the prediction, namely, an association combina-

tion of miRNA-gene and disease-gene. Fig 5C shows the ROC comparison result. From

Table 1, it can be seen that the result without using new feature component can reach merely

0.8508 on AUROC, which is 10% lower than if our method was applied. For the AUPR index,

it was also 11% lower compared to our method. These results demonstrate that the new feature

component, which is applied to integrate the miRNA-gene and disease-gene association pro-

portions, fits well on determining the relationship between disease and miRNA.

Due to the inspiration derived from the attention mechanism [32], SENet was used to

refine the feature on channels for enhancing the effectiveness of features in the spatial

dimension. In the training process, it can increase the proportion of important feature

channels, while weakening the relatively insignificant channels. Therefore, the features

inputted by our model are more representative and effective in improving the training out-

come in the neural network. It was found out that there was a roughly 2% improvement of

the AUROC compared in Fig 5D. Moreover, there was an increase of major evaluation

indexes, as shown in Table 1. Through the feature recalibration performed by SENet, it

allowed the model to produce a better screening effect on the features, as a result of which

an excellent prediction performance can be made achievable.

Table 1. Prediction performance comparison with different GCSENet components.

Different GCSENet components AUROC AUPR Precision Recall F1-score

Complete GCSENet 0.9502 0.9555 0.8795 0.8494 0.8642

Without GCN (regression model) 0.8886 0.8889 0.8199 0.7925 0.8059

Without weighting 0.8878 0.9050 0.8299 0.7270 0.7751

Without Feature component 0.8508 0.8419 0.8156 0.7883 0.8017

Without SENet 0.9308 0.9162 0.8536 0.8407 0.8471

https://doi.org/10.1371/journal.pcbi.1009048.t001

PLOS COMPUTATIONAL BIOLOGY GCSENet

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009048 June 3, 2021 12 / 22

https://doi.org/10.1371/journal.pcbi.1009048.t001
https://doi.org/10.1371/journal.pcbi.1009048


Performance comparison with different methods

Additionally, the performance of our GCSENet model was compared against that of other popu-

lar methods including WBSMDA [8], PBMDA [9], MDACNN [15], SAEMDA [10] and

NIMCGCN [16] for the prediction of miRNA-disease associations. The results are shown in

Table 2, which reveals that GCSENet achieved the most excellent performance among all meth-

ods in terms of AUROC, AUPR, Precision, Recall and F1-Score, respectively. For example, the

average AUROC achieved by GCSENet across the 10-fold cross validation was 0.9502, which is

evidently higher compared to other five methods (average AUROC values of WBSMDA,

PBMDA, MDACNN, SAEMDA, NIMCGCN are 0.8095, 0.7990, 0.8843, 0.8997 and 0.9208,

Fig 5. Comparison of ROC curves with different GCSENet components.

https://doi.org/10.1371/journal.pcbi.1009048.g005

Table 2. Performance comparison with typical methods for miRNA-disease association prediction.

methods AUROC AUPR Precision Recall F1-score

WBSMDA 0.8095 0.7882 0.6667 0.7671 0.7134

PBMDA 0.7990 0.8361 0.7778 0.7925 0.7850

MDACNN 0.8843 0.8823 0.8298 0.8060 0.8177

SAEMDA 0.8997 0.9046 0.8500 0.7577 0.8012

NIMCGCN 0.9208 0.9287 0.8112 0.8256 0.8183

GCSENet 0.9502 0.9555 0.8795 0.8494 0.8642

https://doi.org/10.1371/journal.pcbi.1009048.t002
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respectively). Fig 6A shows the comparison of different ROC curves. As for the AUPR score, our

GCSENet model reached 0.9555, which is about 0.03 higher than the second best NIMCGCN

method. Fig 6B shows the comparison of different AUPR curves. For the Precision and Recall

scores, our method showed an increase of 5% and 4% compared to MDACNN, and had an

increase of 6% and 2% compared to NIMCGCN. For the F1-score, GCSENet also achieved the

highest goal of 0.8642 among these methods. In summary, our method achieved an improve-

ment to the indicators of miRNA-disease prediction tasks compared to these latest methods.

In order to confirm the advantages of our method on AUROC, a chart was presented in Fig

7A to show the AUROC value of the 10-fold cross-validation of various methods. It can be

seen from this figure that the AUROC of our method on average was 0.9502+/-0.00016, which

is superior to the best NIMCGCN reaching 0.9208+/-0.00032 among existing methods

(WBSMDA, PBMDA, MDACNN, SAEMDA with average AUROC value of 0.8095+/-0.00027,

0.7990+/-0.00026, 0.8843+/-0.00042, 0.8997+/- 0.00026 respectively), and the minimum value

of ours in miRNA-disease task was also higher compared to the mean value of the second-

ranked method, which indicates that our method can lead to a more significant improvement

to the value of AUROC than others.

Performance comparison with different positive/negative ratios

In above training datasets, negative class examples are selected in equal proportion to positive

examples. In reality, there may be hundreds negative miRNA-disease interactions for each

Fig 6. Comparison of different ROC and AUPR curves in miRNA-disease association prediction.

https://doi.org/10.1371/journal.pcbi.1009048.g006

Fig 7. AUROC comparison of miRNA-disease in 10-fold cross-validation. (A) With different methods. (B) With

different pos/neg ratios.

https://doi.org/10.1371/journal.pcbi.1009048.g007
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positive one. So we set a different proportion of positive and negative examples (10:1, 20:1,

50:1, 100:1) to test the performance of our GCSENet model. The results in Fig 7B show that

our association prediction is stable for the cases with different pos/neg ratios.

Performance evaluation on predicting miRNA-phenotype associations

In addition to evaluating our GCSENet model on miRNA-disease association prediction, a fur-

ther test was conducted to establish whether GCSENet can be applied to predict miRNA-phe-

notype associations. The study on the relationship between miRNA and disease phenotype can

also reveal how miRNA affects human diseases.

Similar to the evaluation on miRNA-disease dataset, GCSENet was compared with five

methods (WBSMDA [8], PBMDA [9], MDACNN [15], SAEMDA [10] and NIMCGCN [16]),

with the results shown in Table 3. It was found out that GCSENet performed better than other

methods in all metrics. For example, the average AUROC score of GCSENet was 0.9473,

which is higher relative to the second best method NIMCGCN (the value is 0.9455). Similarly,

GCSENet achieved the highest score in terms of AUPR, Precision, Recall and F1-score.

With regard to the prediction of miRNA-phenotype, a comparison was performed in

AUROC between GCSENet and other methods, as shown in Fig 8A. Under the 10-fold cross-

validation, the highest AUROC of GCSENet reached 0.96, the lowest was 0.92, and the average

AUROC value was 0.9473+/-0.00028 (the average AUROC value of WBSMDA, PBMDA,

MDACNN, SAEMDA, NIMCGCN are 0.7023+/-0.000267, 0.7453+/-0.001843, 0.9429

+/-0.000348, 0.9212+/-0.000281 and 0.9455+/-0.00016, respectively). The lower quartile of

GCSENet was higher compared to the median value of second-ranked NIMCGCN, while the

upper quartile of GCSENet was also higher than the maximum value of NIMCGCN. From

Table 3. Performance comparison with various methods for miRNA-phenotype association prediction.

methods AUROC AUPR Precision Recall F1-score

WBSMDA 0.7023 0.7156 0.6834 0.7489 0.7147

PBMDA 0.7453 0.7197 0.6725 0.7614 0.7141

MDACNN 0.9429 0.9344 0.8667 0.8748 0.8704

SAEMDA 0.9212 0.9333 0.8864 0.8524 0.8691

NIMCGCN 0.9455 0.9367 0.8672 0.8501 0.8585

GCSENet 0.9473 0.9553 0.8721 0.8867 0.8793

https://doi.org/10.1371/journal.pcbi.1009048.t003

Fig 8. AUROC of miRNA-phenotype in 10-fold cross-validation (A), and Precision-Recall curve of lung neoplasms,

heart failure, breast cancer and glioblastoma (B).

https://doi.org/10.1371/journal.pcbi.1009048.g008
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these metrics, it can be seen that GCSENet could produce a consistent performance in

miRNA-phenotype prediction.

Case study

Our prediction method was also applied for four specific examples (lung neoplasms, heart fail-

ure, breast cancer and glioblastoma). First of all, the relationship between these diseases and

their related miRNAs in the heterogeneous network was removed during the training process.

Fig 9. The number of predicted miRNAs verified in HMDD v3.0 by our model, including different top intervals.

https://doi.org/10.1371/journal.pcbi.1009048.g009

Table 4. Validation results of predicted associations for lung neoplasms as an unknown disease.

Rank miRNAs Evidence Score Rank miRNAs Evidence Score

1 hsa-let-7a HMDD v3.0 0.5249 26 hsa-let-7i HMDD v3.0 0.5060

2 hsa-let-7b HMDD v3.0 0.5245 27 hsa-mir-29c HMDD v3.0 0.5053

3 hsa-mir-15a HMDD v3.0 0.5242 28 hsa-mir-218 HMDD v3.0 0.5049

4 hsa-mir-29b HMDD v3.0 0.5241 29 hsa-let-7f HMDD v3.0 0.5031

5 hsa-mir-30e HMDD v3.0 0.5239 30 hsa-mir-9 HMDD v3.0 0.5020

6 hsa-mir-155 HMDD v3.0 0.5238 31 hsa-mir-143 HMDD v3.0 0.4996

7 hsa-mir-29a HMDD v3.0 0.5231 32 hsa-mir-106a HMDD v3.0 0.4976

8 hsa-mir-16 unconfirmed 0.5224 33 hsa-mir-34c HMDD v3.0 0.4972

9 hsa-mir-17 HMDD v3.0 0.5221 34 hsa-mir-17 HMDD v3.0 0.4966

10 hsa-mir-142 HMDD v3.0 0.5216 35 hsa-mir-1 HMDD v3.0 0.4963

11 hsa-mir-222 HMDD v3.0 0.5213 36 hsa-let-7g HMDD v3.0 0.4959

12 hsa-mir-34a HMDD v3.0 0.5209 37 hsa-mir-146b HMDD v3.0 0.4953

13 hsa-mir-142 HMDD v3.0 0.5208 38 hsa-mir-214 HMDD v3.0 0.4947

14 hsa-mir-29c HMDD v3.0 0.5207 39 hsa-mir-141 HMDD v3.0 0.4940

15 hsa-let-7e HMDD v3.0 0.5205 40 hsa-mir-21 HMDD v3.0 0.4928

16 hsa-mir-34c HMDD v3.0 0.5198 41 hsa-mir-181b HMDD v3.0 0.4905

17 hsa-mir-146b HMDD v3.0 0.5188 42 hsa-mir-101 HMDD v3.0 0.4883

18 hsa-let-7c HMDD v3.0 0.5187 43 hsa-mir-125a HMDD v3.0 0.4843

19 hsa-mir-146a HMDD v3.0 0.5185 44 hsa-mir-34b HMDD v3.0 0.4810

20 hsa-mir-30c HMDD v3.0 0.5184 45 hsa-mir-133a HMDD v3.0 0.4788

21 hsa-mir-100 HMDD v3.0 0.5175 46 hsa-mir-200b HMDD v3.0 0.4763

22 hsa-let-7d HMDD v3.0 0.5151 47 hsa-mir-200c HMDD v3.0 0.4743

23 hsa-mir-15b unconfirmed 0.5130 48 hsa-mir-182 HMDD v3.0 0.4727

24 hsa-mir-22 HMDD v3.0 0.5094 49 hsa-mir-191 HMDD v3.0 0.4712

25 hsa-mir-223 HMDD v3.0 0.5074 50 hsa-mir-126 HMDD v3.0 0.4703

https://doi.org/10.1371/journal.pcbi.1009048.t004
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Then, GCSENet was used to predict the miRNAs associated with these diseases in the testing

process. Finally, the result was compared with the existing relationship in HMDD v3.0. The

AUPR curves of four diseases were shown in Fig 8B, the number of miRNA predicted by our

method in different top intervals was listed in Fig 9.

There are 110 miRNAs directly related to lung neoplasms in HMDD v3.0. We know that 52

of 110 miRNAs, named ‘easy set’, have at least one known target gene in the protein network.

58 of 110 miRNAs, named ‘hard set’, have no known target gene in the protein network. It was

found out that 106 miRNAs in the prediction results were obtained by our model, which are

recorded in HMDD v3.0. It is no surprise that all miRNAs (52 of 52) in the ‘easy set’ are identi-

fied by GCSENet. In addition, 54 of 58 miRNAs in the ‘hard set’ are identified. When remov-

ing GCN, the feature weighting, the new feature component or SENet respectively in our

model, 41 of 52 miRNAs (‘easy set’) are identified at most. In the ‘hard set’, only 15 of 58 miR-

NAs are identified. Consequently, there were only 56 miRNAs detected at most, which evi-

dences the effectiveness of our complete GCSENet model.

For lung neoplasms, heart failure, breast cancer and glioblastoma, the precisions of our

model are computed as 0.9209, 0.9230, 0.9243 and 0.9380, respectively. To determine whether

GCSENet can effectively predict the miRNA-disease associations, the predicted miRNAs

based on their prediction probabilities were ranked, which are shown in Tables 4–7. As for

lung neoplasms, it can be found 9 out of the top 10, 19 out of the top 20, and 48 out of the top

50 predictions were manually confirmed in database HMDD v3.0. Also, 9 out of the top 10, 19

Table 5. Validation results of predicted associations for heart failure as an unknown disease.

Rank miRNAs Evidence Score Rank miRNAs Evidence Score

1 hsa-mir-29b HMDD v3.0 0.5433 26 hsa-mir-132 HMDD v3.0 0.4960

2 hsa-mir-29a HMDD v3.0 0.5402 27 hsa-mir-19a HMDD v3.0 0.4956

3 hsa-mir-221 HMDD v3.0 0.5400 28 hsa-mir-15b HMDD v3.0 0.4949

4 hsa-mir-21 HMDD v3.0 0.5362 29 hsa-mir-297 HMDD v3.0 0.4946

5 hsa-mir-195 HMDD v3.0 0.5349 30 hsa-let-7d HMDD v3.0 0.4930

6 hsa-mir-19b HMDD v3.0 0.5313 31 hsa-mir-212 HMDD v3.0 0.4911

7 hsa-mir-34a HMDD v3.0 0.5299 32 hsa-mir-211 HMDD v3.0 0.4891

8 hsa-mir-29c unconfirmed 0.5297 33 hsa-mir-210 HMDD v3.0 0.4880

9 hsa-mir-142 HMDD v3.0 0.5287 34 hsa-mir-30b HMDD v3.0 0.4822

10 hsa-mir-155 HMDD v3.0 0.5276 35 hsa-mir-30a HMDD v3.0 0.4803

11 hsa-let-7b HMDD v3.0 0.5270 36 hsa-mir-372 HMDD v3.0 0.4781

12 hsa-mir-222 HMDD v3.0 0.5265 37 hsa-mir-520b HMDD v3.0 0.4754

13 hsa-mir-92b HMDD v3.0 0.5234 38 hsa-mir-526b HMDD v3.0 0.4729

14 hsa-mir-18a HMDD v3.0 0.5233 39 hsa-mir-381 HMDD v3.0 0.4718

15 hsa-let-7e HMDD v3.0 0.5199 40 hsa-mir-382 HMDD v3.0 0.4710

16 hsa-mir-126 HMDD v3.0 0.5190 41 hsa-mir-429 HMDD v3.0 0.4694

17 hsa-mir-30e HMDD v3.0 0.5188 42 hsa-mir-432 HMDD v3.0 0.4673

18 hsa-mir-192 HMDD v3.0 0.5138 43 hsa-mir-204 HMDD v3.0 0.4657

19 hsa-mir-17 HMDD v3.0 0.5088 44 hsa-mir-107 HMDD v3.0 0.4640

20 hsa-let-7c HMDD v3.0 0.5038 45 hsa-mir-130a HMDD v3.0 0.4595

21 hsa-mir-28 HMDD v3.0 0.5020 46 hsa-mir-139 HMDD v3.0 0.4560

22 hsa-mir-377 HMDD v3.0 0.5003 47 hsa-mir-199b HMDD v3.0 0.4527

23 hsa-mir-650 HMDD v3.0 0.5000 48 hsa-mir-223 HMDD v3.0 0.4498

24 hsa-mir-101 unconfirmed 0.4998 49 hsa-mir-24 HMDD v3.0 0.4489

25 hsa-mir-22 HMDD v3.0 0.4996 50 hsa-mir-300 HMDD v3.0 0.4459

https://doi.org/10.1371/journal.pcbi.1009048.t005
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out of top 20, 28 out of top 30 and 48 out of the top 50 predicted miRNAs were verified as asso-

ciated with heart failure in HMDD v3.0.

Similarly, GCSENet was applied to predict miRNAs associated with breast cancer. In the

top 20 miRNAs with the highest prediction probability, it was found out that 19 miRNAs asso-

ciated with breast cancer were included in the existing database. In the top 30 and 50, 29 and

48 miRNAs were verified as associated with breast cancer. For glioblastoma, it was found out

that 20 miRNAs associated with glioblastoma in the top 20. In the top 30 and 50, 30 and 50

miRNAs were verified.

Conclusion

The prediction of miRNA-disease association is of great significance to the study on the causes

of diseases and drug treatment. In this paper, the GCN integrating with CNN and SENet was

applied to identify the relationship between miRNA-disease and miRNA-phenotype. Firstly,

GCN was used to extract the spatial structure feature of heterogeneous network, including dis-

ease, gene and miRNA. Then, a feature weight for each disease-gene association and miRNA-

gene association was set to reflect this difference, and a new feature component was con-

structed by combining the different proportions of miRNA-gene association and disease-gene

association. Subsequently, SENet was applied to determine the importance of each feature

channel by means of the attention mechanism. Finally, the fully connected layer and softmax

in CNN were set to predict the association between miRNA-disease and miRNA-phenotype.

Table 6. Validation results of predicted associations for breast cancer as an unknown disease.

Rank miRNAs Evidence Score Rank miRNAs Evidence Score

1 hsa-mir-429 HMDD v3.0 0.5372 26 hsa-let-7i HMDD v3.0 0.4969

2 hsa-mir-141 HMDD v3.0 0.5367 27 hsa-mir-200a HMDD v3.0 0.4964

3 hsa-mir-200a HMDD v3.0 0.5341 28 hsa-let-7e HMDD v3.0 0.4960

4 hsa-mir-200b HMDD v3.0 0.5331 29 hsa-let-339 HMDD v3.0 0.4953

5 hsa-mir-29c HMDD v3.0 0.5258 30 hsa-mir-9 HMDD v3.0 0.4949

6 hsa-mir-29b HMDD v3.0 0.5255 31 hsa-mir-143 HMDD v3.0 0.4943

7 hsa-mir-196a HMDD v3.0 0.5234 32 hsa-mir-106b HMDD v3.0 0.4929

8 hsa-mir-200c HMDD v3.0 0.5216 33 hsa-mir-34c HMDD v3.0 0.4906

9 hsa-mir-7f HMDD v3.0 0.5198 34 hsa-mir-15a HMDD v3.0 0.4890

10 hsa-mir-335 HMDD v3.0 0.5194 35 hsa-mir-1 unconfirmed 0.4867

11 hsa-mir-125b HMDD v3.0 0.5146 36 hsa-let-7g HMDD v3.0 0.4821

12 hsa-let-98 unconfirmed 0.5144 37 hsa-mir-146b HMDD v3.0 0.4791

13 hsa-mir-31 HMDD v3.0 0.5068 38 hsa-mir-214 HMDD v3.0 0.4777

14 hsa-mir-17 HMDD v3.0 0.5063 39 hsa-mir-488 HMDD v3.0 0.4750

15 hsa-mir-130 HMDD v3.0 0.5062 40 hsa-mir-429 HMDD v3.0 0.4727

16 hsa-let-373 HMDD v3.0 0.5057 41 hsa-mir-181b HMDD v3.0 0.4717

17 hsa-mir-142 HMDD v3.0 0.5056 42 hsa-mir-10a HMDD v3.0 0.4709

18 hsa-mir-192 HMDD v3.0 0.5049 43 hsa-mir-125a HMDD v3.0 0.4688

19 hsa-let-101 HMDD v3.0 0.5046 44 hsa-mir-34b HMDD v3.0 0.4663

20 hsa-mir-7c HMDD v3.0 0.5045 45 hsa-mir-133a HMDD v3.0 0.4656

21 hsa-mir-16 HMDD v3.0 0.5033 46 hsa-mir-181a HMDD v3.0 0.4636

22 hsa-let-7d HMDD v3.0 0.5022 47 hsa-mir-215 HMDD v3.0 0.4587

23 hsa-mir-146a HMDD v3.0 0.4998 48 hsa-mir-24 HMDD v3.0 0.4557

24 hsa-mir-205 HMDD v3.0 0.4981 49 hsa-mir-222 HMDD v3.0 0.4525

25 hsa-mir-223 HMDD v3.0 0.4972 50 hsa-mir-203 HMDD v3.0 0.4491

https://doi.org/10.1371/journal.pcbi.1009048.t006

PLOS COMPUTATIONAL BIOLOGY GCSENet

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009048 June 3, 2021 18 / 22

https://doi.org/10.1371/journal.pcbi.1009048.t006
https://doi.org/10.1371/journal.pcbi.1009048


To demonstrate the advantages of our method, it was compared with other latest prediction

methods. According to the experimental results, our method is superior to the existing meth-

ods. The source code is publicly available at https://github.com/Appleabc123/GCSENet.

At present, our model is also subject to some limitations, which need to be addressed in our

further study. For example, the quality of the features extracted by graph convolution is vitally

important, and it is dependent on the high-quality miRNA disease heterogeneous network.

Thus, how to construct the high-quality heterogeneous network through biological and disease

information is significant to identifying the miRNA-disease association. Besides, the miRNA-

disease associations obtained from HMDD v3.0 database are far from sufficient, which means

the corresponding associations can be explored from other datasets. Furthermore, the disease

semantic similarity and miRNA functional similarity also have a problem with sparsity, which

makes it more difficult to construct the heterogeneous network in an accurate way. By inte-

grating the Gaussian interaction profile kernel similarity [33] inferred from the known

miRNA-disease associations, it can be used to solve this problem to some extent. These are the

issues that are supposed to be addressed in the further research work.
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Table 7. Validation results of predicted associations for glioblastoma as an unknown disease.

Rank miRNAs Evidence Score Rank miRNAs Evidence Score

1 hsa-mir-21 HMDD v3.0 0.5433 26 hsa-mir-19a HMDD v3.0 0.4988

2 hsa-mir-155 HMDD v3.0 0.5392 27 hsa-mir-143 HMDD v3.0 0.4973

3 hsa-mir-222 HMDD v3.0 0.5245 28 hsa-mir-145 HMDD v3.0 0.4971

4 hsa-mir-221 HMDD v3.0 0.5220 29 hsa-mir-16 HMDD v3.0 0.4966

5 hsa-mir-205 HMDD v3.0 0.5219 30 hsa-mir-10a HMDD v3.0 0.4963

6 hsa-mir-451a HMDD v3.0 0.5218 31 hsa-mir-504 HMDD v3.0 0.4958

7 hsa-mir-142 HMDD v3.0 0.5217 32 hsa-mir-99a HMDD v3.0 0.4952

8 hsa-mir-206 HMDD v3.0 0.5215 33 hsa-mir-873 HMDD v3.0 0.4946

9 hsa-mir-34a HMDD v3.0 0.5214 34 hsa-mir-885 HMDD v3.0 0.4938

10 hsa-mir-210 HMDD v3.0 0.5213 35 hsa-mir-425 HMDD v3.0 0.4918

11 hsa-mir-10b HMDD v3.0 0.5212 36 hsa-mir-32 HMDD v3.0 0.4892

12 hsa-mir-23b HMDD v3.0 0.5211 37 hsa-mir-22 HMDD v3.0 0.4882

13 hsa-mir-30b HMDD v3.0 0.5210 38 hsa-mir-30a HMDD v3.0 0.4836

14 hsa-mir-27b HMDD v3.0 0.5207 39 hsa-mir-31 HMDD v3.0 0.4808

15 hsa-mir-193b HMDD v3.0 0.5187 40 hsa-mir-128 HMDD v3.0 0.4785

16 hsa-mir-17 HMDD v3.0 0.5169 41 hsa-let-7d HMDD v3.0 0.4759

17 hsa-mir-29a HMDD v3.0 0.5159 42 hsa-mir-184 HMDD v3.0 0.4731

18 hsa-mir-27a HMDD v3.0 0.5105 43 hsa-mir-218 HMDD v3.0 0.4727

19 hsa-mir-125b HMDD v3.0 0.5088 44 hsa-mir-7 HMDD v3.0 0.4712

20 hsa-mir-25 HMDD v3.0 0.5087 45 hsa-mir-95 HMDD v3.0 0.4702

21 hsa-mir-29c HMDD v3.0 0.5056 46 hsa-mir-200b HMDD v3.0 0.4682

22 hsa-mir-302a HMDD v3.0 0.5052 47 hsa-mir-149 HMDD v3.0 0.4660

23 hsa-mir-302b HMDD v3.0 0.5045 48 hsa-let-7a HMDD v3.0 0.4648

24 hsa-mir-302c HMDD v3.0 0.5030 49 hsa-mir-224 HMDD v3.0 0.4606

25 hsa-mir-302d HMDD v3.0 0.5003 50 hsa-mir-367 HMDD v3.0 0.4573

https://doi.org/10.1371/journal.pcbi.1009048.t007
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