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An epigenetic regulator emerges as microtubule
minus-end binding and stabilizing factor in mitosis
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The evolutionary conserved NSL complex is a prominent epigenetic regulator controlling

expression of thousands of genes. Here we uncover a novel function of the NSL complex

members in mitosis. As the cell enters mitosis, KANSL1 and KANSL3 undergo a marked

relocalisation from the chromatin to the mitotic spindle. By stabilizing microtubule minus

ends in a RanGTP-dependent manner, they are essential for spindle assembly and chromo-

some segregation. Moreover, we identify KANSL3 as a microtubule minus-end-binding pro-

tein, revealing a new class of mitosis-specific microtubule minus-end regulators. By adopting

distinct functions in interphase and mitosis, KANSL proteins provide a link to coordinate the

tasks of faithful expression and inheritance of the genome during different phases of the cell

cycle.
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Estudis Avançats (ICREA), Passeig Lluı́s Companys 23, 08010 Barcelona, Spain. * These authors contributed equally to this work. Correspondence and
requests for materials should be addressed to I.V. (email: isabelle.vernos@crg.eu) or to A.A. (email: akhtar@ie-freiburg.mpg.de).

NATURE COMMUNICATIONS | 6:7889 | DOI: 10.1038/ncomms8889 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:isabelle.vernos@crg.eu
mailto:akhtar@ie-freiburg.mpg.de
http://www.nature.com/naturecommunications


C
hromatin modifiers are responsible for the establishment
of ‘chromatin states’ that determine the accessibility
and activity of nuclear DNA. Different chromatin states

are associated with altered organization and compaction of
chromatin, and determine a given locus’ transcriptional output.

The heptameric KAT8-associated nonspecific lethal (KANSL
(mammals) or NSL (Drosophila); for simplification we will use
‘KANSL’ throughout) complex is an important chromatin
modifier in higher animals. Previous studies have determined
that the KANSL proteins interact robustly both in vitro and
in vivo and show high evolutionary conservation1–3. In
Drosophila cells, the proteins are prominent regulators of
housekeeping genes, with 89.4% of constitutively expressed
genes bound by at least one KANSL protein4–6. In mammalian
embryonic stem cells, these proteins additionally regulate
enhancers and appear to be important for proliferation7,8.

KANSL proteins are essential in all the species in which they
have been studied. Drosophila KANSL null mutants die latest in
larval stages, and likely only survive thus far due to maternal
contribution6. Misregulation of these proteins is additionally
associated with diverse disease states in humans. A heterozygous
mutation of the KANSL1 locus is sufficient to manifest
in the Koolen-de Vries/KANSL1-related intellectual disability
syndrome9–11 and mosaic single-nucleotide variations in
KANSL2 were found to be frequently associated with severe
intellectual disability in patients12. Thus far, the only known
functions of the NSL complex have been described in
interphase5,7.

During mitosis, a global rearrangement of chromatin structure
takes place, leading to a totally unique chromatin state, the highly
condensed ‘mitotic chromatin’. Although some chromatin
modifiers remain associated with chromatin in mitosis, the vast
majority of these factors are evicted, freeing them to perform
functions in other cellular compartments13,14. In parallel, some
nuclear proteins are known to play an essential role in the
assembly of the mitotic spindle, by promoting microtubule
nucleation and stabilization at the vicinity of the chromosomes15.
This process is dependent on the small GTPase Ran, whose active
GTP-bound form is concentrated around the mitotic
chromatin16. A number of RanGTP-regulated spindle assembly
factors have been identified so far17,18, including Imitation Switch
(ISWI), which functions as a nucleosome remodeler in
interphase19. It remains unclear how many other epigenetic
complexes may have functions in mitosis not related to
chromatin states or gene expression.

In this study, we describe the essential and novel contribution
of KANSL1 and KANSL3 to spindle assembly. We found that
KANSL1 and KANSL3 are novel microtubule-associated proteins
that localize to the spindle poles during mitosis. Using Xenopus
egg extracts to study their transcription-independent functions,
we show that they interact with TPX2 in a RanGTP-dependent
manner, promoting microtubule assembly in vitro. Moreover, we
show that KANSL3 is an autonomous microtubule minus-end-
binding protein. Our results suggest that KANSL3 targets other
NSL complex members to K-fibre minus ends regulating their
dynamics and performing an essential role in spindle assembly.

Results
KANSL1 and KANSL3 are required for cell division. To
investigate whether the NSL complex could have additional roles
in mitosis, we decided to focus on two of its core components,
KANSL1 and KANSL3. To ascertain whether expression of
NSL complex proteins is cell cycle regulated, we synchronized
cells in discrete phases of the cell cycle with specific inhibitors
and probed protein levels by western blot. We observed that

KANSL1 and KANSL3 protein levels remained constant
through all cell cycle stages (Fig. 1a; Supplementary Fig. 1a).
Co-immunoprecipitation (co-IP) experiments in nocodazole-
synchronized HeLa cells further showed that KANSL proteins
were able to interact equally efficiently in mitosis as they do in
interphase cells (Supplementary Fig. 1b).

Next, we investigated whether loss of NSL complex proteins
had a consequence for mitotic progression. For this purpose, we
used a cell line expressing mCherry-marked histone 2B and green
fluorescent protein (GFP)-tagged tubulin20. We transfected cells
with short interfering RNA (siRNAs; Supplementary Fig. 1c) and
recorded stacks of images every 3 min over a 24-h period.
Knockdown of KANSL1 or KANSL3 resulted in marked mitotic
defects, the most prevalent of which was a prolonged arrest of
cells in a prometaphase-like state (Fig. 1b; Supplementary Fig. 1d;
Supplementary Movies 1–3). Following KANSL1 knockdown,
61% of cells entering mitosis were not able to complete it during
the 24-h recording period (Fig. 1c). Cells silenced for KANSL3
had a less marked phenotype, possibly because it does not
destabilize other members of the NSL complex such as
KANSL1 silencing does (Fig. 1c; Supplementary Fig. 1c).
A large proportion of KANSL1 and KANSL3 siRNA-treated
cells exhibited misaligned chromosomes and various spindle
organization defects (see Supplementary Movies and
Supplementary Fig. 1e). The similarities of the phenotypes
observed on knockdown of the two NSL complex members
suggested a common function for these proteins during mitosis
(Fig. 1b,c; Supplementary Fig. 1d,e; Supplementary Movies 4–6).

Having observed mitotic defects on their knockdown, we then
used antibodies against KANSL1 and KANSL3 to investigate their
subcellular localizations. In interphase, both the proteins were
concentrated in the nucleus as expected (Fig. 1d, top panel).
Interestingly, KANSL1 and KANSL3 exhibited a marked
relocalisation during mitosis (Fig. 1d). In prometaphase and
metaphase, KANSL1 was concentrated at spindle poles and in the
pericentriolar region. The protein appeared then to remain
associated with spindle poles throughout anaphase (Fig. 1d).
Similarly to KANSL1, KANSL3 was strongly enriched at the
spindle poles throughout mitosis (Fig. 1d). Staining specificity
was verified by knockdowns (Supplementary Fig. 1f).

KANSL1 and KANSL3 promote microtubule assembly in vitro.
The experiments above strongly suggested a role for KANSL1 and
KANSL3 in mitosis. However, since the KANSL proteins regulate
expression of housekeeping genes4,5,7, to separate this interphase
function from a direct role in mitosis, we decided to take
advantage of the Xenopus laevis egg extract system, in which
transcription is totally inhibited21. Moreover, most of the core
components of the NSL complex have been recently identified
in a Xenopus laevis egg proteomic analysis22. We used three
members of the Drosophila NSL complex that could be expressed
and purified as full-length soluble proteins: 3FLAG/HA-tagged
Drosophila KANSL1, KANSL3 and males absent on the first
(MOF) (Fig. 2a). The proteins were individually incubated in egg
extract either with or without exogenous RanGTP, and recovered
by immunoprecipitation on magnetic beads. The beads were then
washed and used for western blot analysis or placed in pure
tubulin to test their microtubule stabilization or nucleation
activities (Fig. 2b).

Interestingly, KANSL1 and KANSL3 beads, but not MOF
beads, pulled down two important spindle assembly factors,
TPX2 and MCAK, in a RanGTP-dependent manner (Fig. 2c).
Moreover, the KANSL1 and KANSL3 beads retrieved from an
extract containing RanGTP, but not from a control extract,
promoted microtubule assembly in pure tubulin (Fig. 2d).
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In contrast, MOF-coated beads were unable to induce
microtubule assembly in the same experimental conditions
(Supplementary Fig. 2a). Since TPX2, a well-characterized mitotic
protein, is known to be required for RanGTP-dependent
microtubule nucleation23, we tested whether it was responsible
for the microtubule assembly observed. We found that KANSL1
or KANSL3 beads retrieved from TPX2-depleted extracts
containing RanGTP did not promote microtubule assembly
in vitro (Fig. 2d). TPX2 is therefore essential for microtubule
nucleation from KANSL1 and KANSL3 beads. However,
incubation of KANSL1 or KANSL3 beads with an excess of
importin-b abolished their microtubule assembly activity in this
assay (Fig. 2d). Since importin-b does not bind directly to TPX2
and therefore does not inhibit its microtubule nucleation-
promoting activity24, this indicates that other RanGTP-
regulated protein(s) present on the beads additionally
participate in the assembly of microtubules from KANSL1 and
KANSL3 beads in vitro. We conclude that KANSL1 and KANSL3,
in complex with spindle assembly factors, promote microtubule
assembly in a RanGTP-dependent manner. This strongly suggests
that both KANSL1 and KANSL3 have additional functions in

mitosis related to microtubules and spindle assembly that
are independent of their interphase role in transcription
regulation.

KANSL1 and KANSL3 regulate K-fibre minus-end dynamics.
The RanGTP-dependent microtubule assembly activity of the
KANSL proteins revealed by the egg extract experiments was
reminiscent of the results described for an interphase KANSL-
interacting protein, MCRS1 (ref. 25). However, MCRS1 also
associates with other chromatin complexes in interphase1 and it is
not known whether any of these interactions are maintained in
mitosis. We therefore investigated this issue using a stable isotope
labelling of amino acids in cell culture (SILAC)-based quantitative
proteomic approach to identify MCRS1 mitotic partners. Five
proteins from the NSL complex scored as specific partners of
MCRS1 (Supplementary Fig. 2b). We confirmed these data by co-
IP experiments from synchronized cells (Supplementary Fig. 2c).
Consistently with our results in egg extract (above and ref. 25),
we found that KANSL1, KANSL3 and MCRS1 also interact with
TPX2 during mitosis in mammalian cells (Supplementary Fig. 2c).
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Figure 1 | KANSL1 and KANSL3 localize to spindle poles in mitosis and their depletion leads to mitotic defects. (a) NSL complex members KANSL1

and KANSL3 are expressed throughout the cell cycle in HeLa cells. Synchronization was confirmed by western blotting of various cell cycle markers,

as indicated. Molecular weight markers are indicated on the right and actin was used as a loading control. (b) Cells exhibit mitotic defects on knockdown

of NSL complex members KANSL1 and KANSL3. Representative still images from the live-cell analysis show dividing control (siSCRAMBLED) and KANSL1-

and KANSL3-silenced H2B-mCherry/a-tubulin-GFP HeLa cells. Typical phenotypes exhibited on knockdown of KANSL1 and KANSL3 include misaligned

chromosomes persistently attached to spindle poles, a prolonged metaphase delay and mitotic catastrophe (note membrane blebbing in the final panel).

Time in minutes is indicated in the upper left corners. Scale bars, 10mm. (c) Left side: quantification of the percentage of cells that complete mitosis over a

24-h time frame. All other cells remained arrested in prometaphase or had died by the end of the observation period. Right side: quantification of the

percentage of mitotic cells exhibiting the defects of misaligned chromosomes, multipolar spindles, lagging chromosomes or mitotic catastrophe. Error bars,

s.e.m. *Po0.05, **Po0.01, NS, non significant, according to unpaired one-tailed t-test. (d) Immunofluorescence of KANSL1 or KANSL3 proteins (green)

through the cell cycle. Tubulin is in red and DNA is in blue. Scale bars, 5 mm. KANSL1 and KANSL3 localize to spindle poles in mitosis.
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In view of the previously described function for MCRS1
(ref. 19), we decided to explore the function of KANSL1 and
KANSL3 in the chromosomal pathway of microtubule assembly
in human cells. For this purpose, we performed a microtubule
regrowth assay, which can distinguish between the chromosomal
and centrosomal pathways of microtubule nucleation in mitotic
cells (see Methods)26. Immunofluorescence analysis on fixed cells
showed that KANSL1 and KANSL3 localized to the centre of
chromosomal microtubule asters similar to MCRS1 (ref. 25). In
addition, KANSL1 and KANSL3 also localized to centrosomal
asters (Fig. 3a; Supplementary Fig. 2d). We then examined
whether KANSL1 and KANSL3 were involved in chromosome-
driven microtubule assembly. Quantification of the number of
microtubule asters in cells depleted of KANSL1, KANSL3 or
MCRS1 during microtubule regrowth showed a statistically lower
number than in control cells in line with our previous results on
MCRS1 (on average 3 for MCRS1 or KANSL1 and 4 for KANSL3
knockdown, versus 5 in the control; Fig. 3b)25. These results
strongly suggested that the KANSL proteins, in complex with

MCRS1 play an important role in chromosomal-dependent
microtubule assembly. Consistently, co-silencing of MCAK
together with KANSL1 or KANSL3 led to a partial rescue in
the number of asters in cells undergoing microtubule regrowth,
again similarly to cells co-silenced for both MCAK and MCRS1
(Supplementary Fig. 2e)25. Taken together, these results suggest
that KANSL1 and KANSL3 together with MCRS1 contribute to
microtubule assembly in mitosis by stabilizing microtubules,
likely by counteracting MT destabilizing activities.

One important property of MCRS1 is its specific localization to
K-fibre microtubule minus ends25. We therefore examined the
localizations of the KANSL proteins on K-fibres. HeLa cells were
incubated on ice to induce the depolymerization of the more
dynamic spindle microtubules, leaving behind only K-fibres27.
Immunofluorescence analysis showed that KANSL1 and KANSL3
accumulated at K-fibre minus ends similarly to MCRS1 (Fig. 3c).
This prompted us to look into the potential role of KANSL1 and
KANSL3 in K-fibre dynamics. We first measured K-fibre length
in KANSL1- and KANSL3-silenced cells and found that K-fibres
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were shorter than in control cells (Supplementary Fig. 2f). We
then measured the interkinetochore distance in KANSL1- and
KANSL3-silenced cells to test whether K-fibre dynamics was
altered (Fig. 3d). We found that the distance was increased
compared with controls. These data (Fig. 3d; Supplementary
Fig. 2f) are consistent with what we described for MCRS1 (ref. 25)
and reinforce the idea that KANSL1 and KANSL3 function in
complex with MCRS1 to control the rate of K-fibre microtubule
depolymerization at the minus end28. Taken together, we
conclude that KANSL1 and KANSL3 interact and act together
with MCRS1 in mitosis, stabilizing chromosomal microtubule
and K-fibre minus ends.

KANSL3 is a microtubule minus-end binding protein. To
better understand the interaction between the KANSL proteins

and the mitotic microtubules, we first investigated their
microtubule-binding properties in vitro. Recombinant KANSL1
and KANSL3 both co-pelleted with taxol-stabilized microtubules
in vitro, while another member of the NSL complex, MOF,
did not (Supplementary Fig. 3a). Since KANSL proteins localize
to microtubule minus ends in mitosis (Fig. 1d and Fig. 3c), we
then examined whether they associated preferentially with the
ends of taxol-stabilized microtubules in vitro. As we showed
previously, MCRS1 did not show any preferential end binding but
associated all along the microtubule lattice (Fig. 4a). By contrast,
41% of microtubule-associated KANSL1 and 62% of microtubule-
associated KANSL3 were indeed located at microtubule
ends (Fig. 4a; Supplementary Fig. 3b–d). Moreover, they were
preferentially associated with only one of the two microtubule
ends (in 86% of the cases for KANSL1 and 81% for KANSL3,
Supplementary Fig. 3e).
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The specific end binding of KANSL proteins was particularly
interesting, as very few proteins are known to bind directly the
microtubule plus29 or minus end30–36. To determine which end
of the microtubule KANSL3 preferentially associated with, we
prepared taxol-stabilized, polarity-marked microtubules. In these
microtubules, the minus end is clearly marked by an intense
Rhodamine tubulin ‘seed’37. Strikingly, we found that KANSL3
preferentially associated with the microtubule minus ends in
481% of the cases (Fig. 4b). Taken together, these data indicate

that KANSL3 is a novel direct microtubule minus-end-binding
protein.

Since KANSL3 is capable of pulling down the entire NSL
complex (Drosophila and mammalian) in in vitro reconstitution
assays (Fig. 4c), we decided to test whether KANSL3 recruits
MCRS1 to the microtubule minus ends in mitotic cells. In the
absence of KANSL3, although MCRS1 levels are unaffected
(Supplementary Fig. 1c), its localization to the spindle poles was
indeed strongly reduced (Fig. 4d; Supplementary Fig. 4a).
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microtubule minus end. Bottom: quantification of the microtubule minus end localization of KANSL3. The percentage of plus-end and minus-end signal for

KANSL3 is shown. KANSL3 binds preferentially to minus ends (81.3%) versus plus ends (18.7%). n¼ 3. More than 250 microtubules were analysed. Error

bars, s.d. (c) KANSL3 nucleates a complete NSL complex in vitro. All seven members of the NSL complex were expressed in SF21 cells as untagged proteins

except KANSL3 that was tagged with 3FLAG. Flag pull-down from the cellular extract retrieved a complete heptameric NSL complex. This indicates that

KANSL3 is a structurally central component of the NSL complex, both in the context of the Drosophila and human proteins. (d) KANSL3 silencing in HeLa

cells results in the loss of MCRS1 localization to spindle poles. Representative immunofluorescence pictures of control or KANSL3-silenced HeLa cells, as

indicated. Tubulin is in red, MCRS1 in green and DNA in blue. Scale bar, 5 mm. (e) Summary. In interphase, KANSL1 and KANSL3 proteins are chromatin

bound and regulate expression of housekeeping genes. During mitosis, these proteins relocate to the mitotic spindle and are important for cell division.

Moreover, KANSL3 binds directly to microtubule minus ends in vitro and localizes to K-fibre microtubule minus ends in the dividing cell. Thus, KANSL

proteins are able to adopt distinct tasks in different phases of cell cycle to ensure cellular homeostasis.
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This was specific for MCRS1 as neither TPX2 nor NuMA
localizations changed on KANSL3 silencing (Supplementary
Fig. 4b,c). These data suggest that KANSL3 directly binds to
the K-fibre microtubule minus ends and recruits MCRS1. Taken
together, our results show that KANSL1, KANSL3 and MCRS1
constitute a mitosis-specific microtubule minus-end-associated
complex essential for chromosomal microtubule assembly and
correct K-fibre dynamics (Fig. 4e).

Discussion
Earlier studies have considered the function of KANSL proteins
exclusively in epigenetic regulation in the nucleus. Here we show
that the NSL complex possesses a novel microtubule-binding
and stabilizing activity in mitosis distinct from its interphase
transcriptional activation activities. These functions are under the
control of the RanGTP pathway, which allows the recycling of
nuclear interphase complexes as microtubule regulators in
mitosis. We describe a novel contribution of KANSL1 and
KANSL3 to spindle assembly. Knockdown of KANSL proteins
leads to marked and terminal mitotic defects, highlighting the
essential nature of the KANSL proteins to cells. We show that
KANSL1 and KANSL3 are able to regulate microtubule stability
both in cells and in vitro. Our data strongly point to the existence
of a functional microtubule-binding subcomplex consisting of at
least KANSL1, KANSL3 and MCRS1 in mitotic cells. Although a
few chromatin-binding factors have been shown to play a role in
spindle assembly18, we show here for the first time that a
chromatin-binding complex maintained in interphase and
mitosis plays two distinct functions in these different cell cycle
stages. Future work will determine whether the full NSL complex
is involved in this mitotic function, or whether there are different
specific subcomplexes. It is interesting to speculate that the cell
may possess a large cytoplasmic pool of the NSL complex, likely
stored in preparation for resumption of transcription in G1.

We also report the discovery of a new autonomous
microtubule minus-end-binding protein, KANSL3. Thus far,
only one protein family has recently been described to possess
this property (namely Patronin/CAMSAPs)30,32,36,38–40. Since
KANSL3 is predominantly nuclear in interphase, it may only
associate with microtubules during mitosis. This makes KANSL3
a new microtubule minus-end-binding protein with a role
in mitosis. Future work should help us to elucidate the
structural elements that enable KANSL3 to recognize
microtubule minus ends.

We propose that KANSL proteins play an important role in
cellular homeostasis during different stages of the cell cycle. On
the one side, they are transcriptional regulators targeting
promoters of essential housekeeping genes during interphase
and on the other side by stabilizing microtubules, KANSL
proteins ensure faithful segregation of the genome during mitosis.
Distinct contribution of these proteins during interphase and
mitosis could also explain why cells as well as organisms (flies and
humans) are sensitive to the dosage of KANSL proteins and their
reduction or loss is not tolerated and is associated with
microdeletion syndrome or cancer.

Methods
Cell culture. HeLa and HEK293 Flp-In Trex (Life Technologies) cells were grown
in DMEM supplemented with Glutamax, 9% heat-inactivated fetal calf serum and
1� penicillin and streptomycin (Life Technologies). The stable HeLa Kyoto cell
line expressing GFP-tubulin and H2B-mCherry20 was maintained in the presence
of 2 mg ml� 1 puromycin (Carl Roth GmbH) and 500 mg ml� 1 G418 (Sigma) until
transfection. The stable HeLa cell line expressing GFP-centrin41 was maintained in
the presence of 500 mg ml� 1 G418 (Sigma).

A stable HEK293 cell line expressing FLAG-MCRS1 was generated by
cotransfection of the pFlag-MCRS1 construct25 and the pBABE-puro vector

(Addgene). Clones were selected using puromycin (2.5 mg ml� 1; Sigma-Aldrich)
and selected for FLAG-MCRS1 expression by western blot.

Stable inducible HEK293 Flp-In Trex (Life Technologies) cell lines carrying
KANSL1-FBH (3XFLAG/biotin acceptor site/6XHis), KANSL3-FBH and
MCRS1-FBH were generated by flippase recognition target (FRT) recombination
according to the product manual. These cell lines were maintained in the presence
of 15mg ml� 1 blasticidin and 150mg ml� 1 hygromycin. The day before
synchronization, cell lines were induced by addition of 100 ng ml� 1 doxycycline.

Cell synchronization. For HeLa cell synchronization, cells were plated at 20%
confluence and incubated with 3 mM thymidine (Sigma-Aldrich). After 16 h, cells
were released into fresh medium for 8 h. Cells were then incubated with 3 mM
thymidine for 14 h. For the ‘S-phase’ sample, these cells were released into fresh
medium for 2 h and then harvested by trypsinization. Part of the sample was
reserved for fluorescence-activated cell sorting (FACS) and the other lysed in RIPA
buffer (phosphate-buffered saline (PBS) with 1% NP-40, 0.5% sodium deox-
ycholate, 0.1% sodium dodecyl sulphate (SDS)), vortexed for 10 s and clarified by
centrifugation at 10,000 r.p.m. for 15 min. For the ‘G2-phase’ and ‘M-phase’
samples, cells were released into fresh medium for 6 h and then incubated with
9 mM RO3306 (Alexis Biochemicals) or 50 ng ml� 1 nocodazole (Calbiochem) for
8 h. G2-phase samples were harvested by trypsinization. M-phase samples were
harvested by shake-off. For the G1 sample, cells were released into fresh medium
for 8 h and subsequently incubated in 20 mM lovastatin (Santa Cruz) for 8 h. The
cells were harvested by trypsinization.

HEK293 Flp-In Trex cells were synchronized in mitosis by incubation for 14 h
with 10mM (þ )-S-trityl-L-cysteine (STLC, Alfa Aesar)42.

FACS. Cells were washed in PBS once and then fixed in cold 75% ethanol with
rotation overnight. Cells were stored at 4 �C until needed. For analysis, cells were
stained with propidium iodide, treated with 0.2 mg ml� 1 RNase A and observed on
a BD LSRII instrument. Around 10,000 to 15,000 cells were measured per
condition.

Antibodies. Immunofluorescence and immunoprecipitations of KANSL1
and KANSL3 were performed using antibodies previously described3.
Immunofluorescence for MCRS1 was performed using an antibody previously
described25.

The following primary antibodies were used for immunofluorescence: a-tubulin
DM1A (Sigma T9026; 1:1,000), a/b-tubulin (Abcam ab44928; 1:1,000), a-tubulin
(Merck Millipore 04-1117; 1:400) and HA (Covance MMS-101P; 1:100). The MCAK
polyclonal antibodies were a gift from E. Karsenti lab; the polyclonal Hec1 (9G3.2
GeneTex) antibody was used at 1:100 for immunofluorescence; CREST antibodies
were used at 1:100 (Antibodies Incorporated 15-235-F); and the polyclonal MBP,
hTPX2, NuMA and xTPX2 antibodies were produced in the Vernos lab.

The following primary antibodies were used for detection
by western blot. All antibodies were used at a 1:1,000 dilution except where
otherwise stated. KANSL1 (Abnova corporation PAB20355), KANSL3 (Sigma-
Aldrich HPA035018), GAPDH (Bethyl Laboratories A300-641A, 1:6,000), Rad21
(Merck Millipore 05-908), Cyclin A (Abcam ab38), CDK1 (Abcam ab18), H3S10
(Abcam ab5176; 1:10,000), beta-actin (CST #4967; 1:3000), DM1A for a-tubulin
(Sigma T9026; 1:10,000) and M2 for FLAG tag (Sigma F3165). The polyclonal
hTPX2 antibody was produced in the Vernos lab.

Secondary antibodies (anti-mouse, anti-rat, anti-rabbit or anti-human)
conjugated to Alexa488, 555, 568, 680 or 647 (Molecular Probes) were used at
1:500–1:1,000 for immunofluorescence and 1:10,000 for western blot.

Co-immunoprecipitation in HeLa and HEK293 cells. Cells were harvested either
by shake-off (for M-phase samples) or trypsinization (for unsynchronized
samples). The contents of a 15-cm tissue culture plate were resuspended in 2 ml of
high Tween20 HKMGT buffer (25 mM HEPES pH 7.6, 150 mM KCl, 12.5 mM
MgCl2, 10% glycerol, 0.4% Tween20) with Complete protease inhibitors (Roche)
added. The sample was sonicated for a total of 50 pulses output 3 duty cycle 30%
on a Branson sonifier 250 with a microtip and subsequently clarified by spinning
at 15,000g for 15 min at 4 �C. The cleared lysate was incubated either with
immunoprecipitating antibody or directly with 30 ml pre-washed FLAG beads
(Sigma) overnight. For endogenous co-IP, cleared lysates were incubated overnight
with 5ul of antibody (see above) and then 1 h with pre-washed mixed ProtA and G
beads. Endogenous co-IPs were washed three times in the lysis buffer. HEK FLAG
IPs were washed twice in a low Tween, low stringency buffer (25 mM HEPES pH
7.6, 75 mM KCl, 12.5 mM MgCl2, 10% glycerol, 0.1% Tween20).

Western blot analysis. Western blots in Fig. 1 and Supplementary Figs 1 and 2
were performed as follows. Following transfer, the 0.45 mm polyvinylidene
difluoride membrane (Roche) was blocked for 1 h at room temperature in 5%
bovine serum albumin (BSA) in PBS with 0.05% Tween20 (Sigma). Primary
antibodies were incubated in 2% BSA, 0.05% Tween20 in PBS at 4 �C overnight.
Secondary antibodies conjugated with horseradish peroxidase (GE Healthcare)
were incubated in the same buffer at room temperature for 1 h.
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Western blots in Fig. 2 and Supplementary Fig. 3 were performed using 0.45 mm
nitrocellulose membrane (Whatman). Blocking and antibody incubations were
performed using PBS with 3% milk and 0.1% Tween20 (Serva). Primary and
secondary antibodies were incubated 1 h at room temperature. Secondary
antibodies conjugated with AlexaFluors (see above) were used.

Uncropped western blots are presented in Supplementary Fig. 5.

RNA interference. Cells were seeded at 15,000 cells per six well the day before
transfection. Three-hundred picomoles of siRNA and 15 ml of XtremeGene siRNA
transfection reagent (Roche) were used per six well (and scaled appropriately for
smaller volumes). Transfection was performed as per supplier protocol. siRNA
duplexes were ordered from MWG Operon using the following sequences (a mix of
sequences 1þ 2 was prepared for transfection):

KANSL1 (1): 50-CGGCAACGCCAACAUCCUU-30

KANSL1 (2): 50-GAAGCGGAGGCUUGUUCGA-30

KANSL3 (1): 50-GGCACGCAGCGTGATGAAT-30

KANSL3 (2): 50-GGAUGCUUGUGUCAUCCAA-30

MCRS1: 50-GGCAUGAGCUCUCCGGAC-30

MCAK: 50-GAUCCAACGCAGUAAUGGU-30

MCRS1 and MCAK siRNAs were previously validated25.

Immunofluorescence. For KANSL1 and KANSL3 immunofluorescence in Fig. 1d,
Supplementary Figs 1f and 3d and KANSL3 immunofluorescence in Fig. 3, cells
were grown on precision no. 1.5 coverslips (Carl Roth LH24.1) in six-well plates.
Cells were pre-lysed for 20 s in PHEM (60 mM PIPES, 25 mM HEPES, 10 mM
EGTA and 2 mM MgCl2) buffer with 0.5% Triton X100, washed once in PHEM
buffer and fixed in 3.7% formaldehyde (Sigma F8775) in PHEM buffer with 0.1%
Triton X100 at room temperature for 8 min. Cells were blocked in 2% BSA in
PHEM þ 0.1% Triton X100 for 30 min at room temperature. Primary antibodies
were incubated in blocking buffer overnight at 4 �C. Secondary antibodies con-
jugated with AlexaFluors (see ‘Antibodies’ above) were diluted 1:500 in blocking
buffer and incubated at room temperature for 1 h. Where appropriate, Hoechst
33342 (Life technologies) was added in the secondary antibody mix to stain DNA.
Coverslips were mounted using Fluoromount G (Southern Biotech).

These samples were visualized with a 63� objective on a Zeiss Observer.Z1
with the Yokogawa CSU-X1 spinning disk head and the Zeiss Axiocam MRm
camera, with the exception of Fig. 1d KANSL3 immunofluorescence, which was
visualized on the Zeiss LSM780 confocal microscope.

For KANSL1 immunofluorescence in Fig. 3 and all other immunofluorescences
in Figs 3 and 4 and Supplementary Figs 2 and 4, cells were grown on coverslips in
six-well plates and fixed in � 20 �C methanol for 10 min. Blocking and antibody
dilution buffer were 0.5% BSA (Sigma) and 0.1% Triton X100 (Sigma) in PBS.
Primary and secondary antibodies were incubated for 1 h at room temperature.
Coverslips were mounted in 10% Mowiol (Calbiochem) in 0.1 M Tris-HCl at pH
8.2, 25% glycerol (Merck).

For immunofluorescences in Figs 2 and 4a/b, samples were spun down at 1,000g
for 10 min on coverslips before fixation in � 20 �C methanol for 10 min.

These samples were visualized with a 63� objective on an inverted DM1-6000
Leica widefield fluorescence microscope. Pictures were acquired with the Leica
Application Suite software. Images were processed with ImageJ and Photoshop
(Adobe) and assembled as figures using Illustrator (Adobe). Line scans for
fluorescence intensity quantification along the spindles were performed using
ImageJ.

Live-cell imaging. Cells were seeded and treated in eight-well coverslip-bottomed
dishes (ibidi GmbH cat. no 80826). Two days following transfection, dishes were
transferred to a temperature- and CO2-controlled Tokai Hit stage incubation unit.
Samples were visualized using a Zeiss Observer.Z1 with the CSU-X1 spinning disk
head (Yokogawa) and the QuantEM:512SC camera (Photometrics). Z-stacks of
cells were taken at 3-min intervals using a water immersion 63� objective. For
quantifications additional videos were taken at 8-min intervals using a 40� long
working distance objective. Time lapse was performed for a 24-h duration. Laser
power and exposure times were kept to an absolute minimum.

Recombinant proteins. Recombinant proteins were purified either from
Escherichia coli or SF21 cells.

RanQ69L and x-importin-b were tagged with His-tag, produced in E. coli and
purified using Ni-NTA agarose beads (Qiagen). RanQ69L was then loaded with
1 mM GTP in PBS 2 h at 4 �C. MBP-tagged x-MCRS1 was produced in E. coli and
purified25 using amylose resin (NEB) according to the manufacturer’s
recommendations.

Recombinant full-length Drosophila melanogaster KANSL1, KANSL3 and
MOF were expressed with an N-terminal 3FLAG/HA tag using the Bac-to-Bac
(Invitrogen) system in SF21 cells. Fifty millilitres of infected cells were harvested by
centrifugation, washed in PBS and resuspended in high Tween20 HKMGT buffer
(25 mM HEPES pH 7.6, 150 mM KCl, 12.5 mM MgCl2, 10% glycerol, 0.4%
Tween20) with Complete protease inhibitors (Roche) added. Following three freeze
thaw cycles between liquid nitrogen and a 20 �C water bath, the lysate was
ultracentrifuged at 100,000g for 30 min at 4 �C. The cleared lysate was incubated

with 80 ml pre-washed FLAG beads (Sigma) overnight. Following one wash in the
above HKMGT buffer and three in a low Tween20 (0.1%) HKMGT buffer, the
samples were eluted using 250mg ml� 1 of 3XFLAG peptide (Sigma) in low
Tween20 HKMGT with protease inhibitors added. Proteins were quantified by
Coomassie blue staining and snap frozen in aliquots.

Beads experiments in Xenopus egg extracts. Fresh cytosolic factor (CSF)-
arrested Xenopus EE was prepared as previously described43. xTPX2 depletion
from Xenopus egg extracts was performed by two 30-min rounds of depletion using
homemade anti-xTPX2 antibodies coupled with Protein A dynabeads (Life
Technologies). Recombinant KANSL1, KANSL3, MOF and xMCRS1 were
incubated in CSF-egg extract at 100 nM final concentration for 30 min at 20 �C
with or without addition of 10 mM RanGTPQ69L. Protein A-coated Dynabeads
(Invitrogen) were washed three times in PBS 0.1% Triton X100 (Sigma) and
incubated with the indicated antibodies (anti-HA for KANSL1, KANSL3 and MOF;
anti-MBP for xMCRS1) diluted in the same buffer for 1 h at room temperature,
following the manufacturer’s indications. Beads were retrieved on a magnet and
washed twice in PBS 0.1% Triton X100 and twice in CSF-XB (10 mM HEPES;
100 mM KCl; 0,1 mM CaCl2, 2 mM MgCl2; 50 mM sucrose; 5 mM EGTA). Beads
were then incubated in CSF-egg extract (at 1:3) for 1 h at 4 �C. Beads were
recovered on a magnet, washed twice in CSF-XB and twice in BRB80 (80 mM
PIPES; 1 mM MgCl2; 5 mM EGTA; pH 6.8) and resuspended in BRB80. They were
eventually incubated in the presence of 5 mM importin-b. Two microlitres of beads
was added to 30 ml of pure tubulin (20 mM tubulin purified from calf brain, BRB80,
1 mM GTP) and incubated at 37 �C for 10 min. The sample was fixed in 500 ml 1%
glutaraldehyde in BRB80, and centrifuged onto a coverslip through a 10% glycerol
cushion (vol/vol in BRB80) at 1,500g for 10 min. Coverslips were postfixed for
10 min in � 20 �C methanol before processing for immunofluorescence44.

To evaluate microtubule efficiency around the beads, the number of beads
associated with a microtubule was quantified. At least 300 beads were counted in
each condition. For the western blot analysis in Fig. 2c, all IPs were performed at
least three times.

Stable isotope labelling of amino acids in cell culture. HEK293 cells stably
expressing FLAG-MCRS1 were grown in SILAC DMEM R6K8 medium (Dundee
cell products); control HEK293 cells were grown in SILAC DMEM R0K0 medium
(Dundee cell products), both media were supplemented with 2 mM L-glutamine
(Invitrogen), 10% fetal bovine serum (Dundee cell products) and 1� penicillin
and streptomycin (Invitrogen). Cells were grown for 10 days with 5% CO2 in a
humid atmosphere on a poly-D-lysine layer (Sigma) with media changed every
48 h. Cells were synchronized over a 48-h period using first a 16-h incubation with
2 mM thymidine (Sigma), release into fresh medium for 8 h, arrest with 2 mM
nocodazole (Sigma) for 16 h, followed by a 30-min release. Cells were collected by
shake-off. Cell pellets were resuspended in extraction buffer (20 mM HEPES pH
7.8; 175 mM NaCl; 2,5 mM MgCl2; 10% glycerol; 1 mM dithiothreitol (DTT;
Sigma); 1 mM phenylmethylsulphonyl fluoride (Sigma); protease inhibitor cocktail
(Roche); 2 mM okadaic acid (Sigma); 1 mM orthovanadate (Sigma); 40 mM
glycerophosphate (Sigma); and 50 mM NaF (Sigma)). Cells were lysed using a
nitrogen bomb at 1,500 p.s.i. for 15 min.

An equal amount of protein (51.15 mg) of control and tagged protein was
mixed and a FLAG pull-down was carried out using an ANTI-FLAG M2 affinity
gel (Sigma).

The protein extract was incubated with the ANTI-FLAG M2 affinity gel for 2 h
at 4 �C and washed four times with 50 mM Tris pH 7.4; 150 mM NaCl; 1 mM
EDTA and 1% IGEPAL CA-630 (Sigma). FLAG proteins were eluted from the
resin by competition with 400mg ml� 1 of FLAG peptide (Sigma). FLAG proteins
were concentrated in a speedVac, separated by SDS–polyacrylamide gel
electrophoresis and visualized using the NOVEX colloidal blue staining kit
(Invitrogen). Bands were cut out and analysed by mass spectrometry at the
Centre for Genomic Regulation proteomics facility.

Microtubule regrowth and cold-stable assays. For microtubule regrowth assays,
3 mM nocodazole (Sigma) was added to the cell medium for 3 h, and washed out
three times in PBS and once in medium at 37 �C. Cells were fixed at 5 min after
nocodazole washout, and processed for immunofluorescence as described. Results
were quantified counting the number of microtubule asters in at least 100 cells to
obtain the average per cell.

For K-fibre length assays, cells were incubated on ice for 10 min in L15 medium
(Sigma) supplemented with 20 mM HEPES (Sigma) at pH 7.3 and washed once
with cold PBS before fixation. To measure K-fibre length, cells were treated with
2 mM STLC (Sigma) for 3 h and then subjected to the cold treatment in the
presence of STLC. K-fibres of at least 40 monopolar spindles in each condition
were measured using ImageJ.

Microtubule co-pelleting experiment. Taxol microtubules were prepared
incubating 20mM of bovine tubulin at 37 �C in BRB80þ 1 mM GTP. After
5-min incubation, taxol was then progressively added at the following final
concentrations: 0.2, 2 and 20 mM.
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Three-micromolar taxol-stabilized microtubules were incubated with 250 nM of
recombinant KANSL1, KANSL3 or Drosophila MOF, as indicated, for 30 min at
4 �C. Microtubules were then pelleted through a 30% glycerol cushion in 5 mM
taxol in BRB80 at 100,000g in a TLA-100 rotor (Beckman-Coulter) for 24 min at
22 �C. Supernatant and pellet fractions were separated by SDS–polyacrylamide gel
electrophoresis and subjected to western blot analysis.

In vitro experiments with taxol-stabilized microtubules. For localization
studies, microtubules stabilized with 1.5 mM taxol were incubated for 10 min at
room temperature with 100 nM MBP-xMCRS1, KANSL1 or KANSL3, as indicated,
in BRB80. Samples were then fixed with 1% glutaraldehyde, 5 mM taxol in BRB80
and pelleted on coverslips through a 25% glycerol, BRB80 cushion at 4,000g for
10 min at room temperature. Coverslips were then recovered and fixed for 10 min
in � 20 �C methanol and processed for immunofluorescence.

In vitro experiments with polarity-marked microtubules. Polarity-marked
microtubules were prepared from microtubule bright seeds. The seeds were
prepared by mixing 1:1 Rhodamine–tubulin, unlabelled tubulin in BRB80, 1 mM
GMPCPP (Jena Biosciences), 1 mM DTT and incubated 10 min on ice before
centrifugation at 100,000g for 10 min at 4 �C. Polymerization was performed by
incubation 25 min at 37 �C. Polymerized seeds were then diluted five times with
20mM unlabelled tubulin, 1 mM GTP, 1 mM DTT in BRB80 and incubated at
37 �C for 20 min. The polarity-marked microtubules were then stabilized adding
10mM taxol and used for in vitro visualization experiments.

KANSL complex reconstitution in vitro. Two baculovirus constructs were created
in which all seven members of the KANSL complex were overexpressed under
alternating viral p10 and pH promoters. KANSL1, KANSL2, MOF, MCRS1/2,
PHF20/MBD-R2 and WDR5/WDS were in their native state (untagged). KANSL3
was tagged with 3FLAG to enable it to function as the bait. SF21 cells co-infected
with the two viruses produce high levels of all the protein members simultaneously.
After incubating the extract (see ‘Recombinant proteins’ for preparation) from cells
infected with these viruses with FLAG beads, a complete KANSL complex was
purified. This was performed individually for both human and Drosophila
complexes.

References
1. Cai, Y. et al. Subunit composition and substrate specificity of a

MOF-containing histone acetyltransferase distinct from the male-specific lethal
(MSL) complex. J. Biol. Chem. 285, 4268–4272 (2010).

2. Dias, J. et al. Structural analysis of the KANSL1/WDR5/KANSL2 complex
reveals that WDR5 is required for efficient assembly and chromatin targeting of
the NSL complex. Genes Dev. 28, 929–942 (2014).

3. Mendjan, S. et al. Nuclear pore components are involved in the transcriptional
regulation of dosage compensation in Drosophila. Mol. Cell 21, 811–823
(2006).

4. Feller, C. et al. The MOF-containing NSL complex associates globally with
housekeeping genes, but activates only a defined subset. Nucleic Acids Res. 40,
1509–1522 (2012).

5. Lam, K. C. et al. The NSL complex regulates housekeeping genes in Drosophila.
PLoS Genet. 8, e1002736 (2012).

6. Raja, S. J. et al. The nonspecific lethal complex is a transcriptional regulator in
Drosophila. Mol. Cell 38, 827–841 (2010).

7. Chelmicki, T. et al. MOF-associated complexes ensure stem cell identity and
Xist repression. Elife 3, e02024 (2014).

8. Ravens, S. et al. MOF-associated complexes have overlapping and unique roles
in regulating pluripotency in embryonic stem cells and during differentiation.
Elife, e02104 (2014).

9. Koolen, D. A. & de Vries, B. B. A. KANSL1-Related Intellectual Disability
Syndrome. (eds Pagon, R. A. et al.) (GeneReviews, 1993).

10. Koolen, D. A. et al. Mutations in the chromatin modifier gene KANSL1 cause
the 17q21.31 microdeletion syndrome. Nat. Genet. 44, 639–641 (2012).

11. Zollino, M. et al. Mutations in KANSL1 cause the 17q21.31 microdeletion
syndrome phenotype. Nat. Genet. 44, 636–638 (2012).

12. Gilissen, C. et al. Genome sequencing identifies major causes of severe
intellectual disability. Nature 511, 344–347 (2014).

13. Gottesfeld, J. M. & Forbes, D. J. Mitotic repression of the transcriptional
machinery. Trends Biochem. Sci. 22, 197–202 (1997).

14. Kruhlak, M. J. et al. Regulation of global acetylation in mitosis through loss of
histone acetyltransferases and deacetylases from chromatin. J. Biol. Chem. 276,
38307–38319 (2001).

15. Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science 294,
543–547 (2001).

16. Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in
interphase and mitotic Xenopus egg extracts. Science 295, 2452–2456 (2002).

17. Meunier, S. & Vernos, I. Microtubule assembly during mitosis - from distinct
origins to distinct functions? J. Cell Sci. 125, 2805–2814 (2012).

18. Yokoyama, H & Gruss, O. J. New mitotic regulators released from chromatin.
Front. Oncol. 3, 308 (2013).

19. Yokoyama, H., Rybina, S., Santarella-Mellwig, R., Mattaj, I. W. & Karsenti, E.
ISWI is a RanGTP-dependent MAP required for chromosome segregation.
J. Cell Biol. 187, 813–829 (2009).

20. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse
microscopy reveals cell division genes. Nature 464, 721–727 (2010).

21. Masui, Y. & Clarke, H. J. Oocyte maturation. Int. Rev. Cytol. 57, 185–282
(1979).

22. Wuhr, M. et al. Deep proteomics of the Xenopus laevis egg using an
mRNA-derived reference database. Curr. Biol. 24, 1467–1475 (2014).

23. Scrofani, J., Sardon, T., Meunier, S. & Vernos, I. Microtubule nucleation in
mitosis by a RanGTP-dependent protein complex. Curr. Biol. 25, 131–140
(2015).

24. Schatz, C. A. et al. Importin alpha-regulated nucleation of microtubules by
TPX2. EMBO J. 22, 2060–2070 (2003).

25. Meunier, S. & Vernos, I. K-fibre minus ends are stabilized by a RanGTP-
dependent mechanism essential for functional spindle assembly. Nat. Cell Biol.
13, 1406–1414 (2011).

26. Tulu, U. S., Fagerstrom, C., Ferenz, N. P. & Wadsworth, P. Molecular
requirements for kinetochore-associated microtubule formation in mammalian
cells. Curr. Biol. 16, 536–541 (2006).

27. Rieder, C. L. & Borisy, G. G. The attachment of kinetochores to the pro-
metaphase spindle in ptk1 cells - recovery from low-temperature treatment.
Chromosoma 82, 693–716 (1981).

28. Maresca, T. J. & Salmon, E. D. Intrakinetochore stretch is associated with
changes in kinetochore phosphorylation and spindle assembly checkpoint
activity. J. Cell Biol. 184, 373–381 (2009).

29. Galjart, N. Plus-end-tracking proteins and their interactions at microtubule
ends. Curr. Biol. 20, R528–R537 (2010).

30. Tanaka, N., Meng, W., Nagae, S. & Takeichi, M. Nezha/CAMSAP3 and
CAMSAP2 cooperate in epithelial-specific organization of noncentrosomal
microtubules. Proc. Natl Acad. Sci. USA 109, 20029–20034 (2012).

31. Richardson, C. E. et al. PTRN-1, a microtubule minus end-binding CAMSAP
homolog, promotes microtubule function in Caenorhabditis elegans neurons.
Elife 3, e01498 (2014).

32. Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule
minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell
135, 948–959 (2008).

33. Marcette, J. D., Chen, J. J. & Nonet, M. L. The Caenorhabditis elegans
microtubule minus-end binding homolog PTRN-1 stabilizes synapses and
neurites. Elife 3, e01637 (2014).

34. Goshima, G. et al. Genes required for mitotic spindle assembly in Drosophila
S2 cells. Science 316, 417–421 (2007).

35. Nagae, S., Meng, W. & Takeichi, M. Non-centrosomal microtubules regulate
F-actin organization through the suppression of GEF-H1 activity. Genes Cells
18, 387–396 (2013).

36. Goodwin, S. S. & Vale, R. D. Patronin regulates the microtubule network by
protecting microtubule minus ends. Cell 143, 263–274 (2010).

37. Hyman, A. A. Preparation of marked microtubules for the assay of the polarity
of microtubule-based motors by fluorescence. J. Cell Sci. Suppl. 14, 125–127
(1991).

38. Hendershott, M. C. & Vale, R. D. Regulation of microtubule minus-end
dynamics by CAMSAPs and Patronin. Proc. Natl Acad. Sci. USA 111,
5860–5865 (2014).

39. Wang, H., Brust-Mascher, I., Civelekoglu-Scholey, G. & Scholey, J. M. Patronin
mediates a switch from kinesin-13-dependent poleward flux to anaphase B
spindle elongation. J. Cell Biol. 203, 35–46 (2013).

40. Jiang, K. et al. Microtubule minus-end stabilization by polymerization-driven
CAMSAP deposition. Dev. Cell 28, 295–309 (2014).

41. Piel, M., Meyer, P., Khodjakov, A., Rieder, C. L. & Bornens, M. The
respective contributions of the mother and daughter centrioles to
centrosome activity and behavior in vertebrate cells. J. Cell Biol. 149, 317–330
(2000).

42. Dunsch, A. K., Linnane, E., Barr, F. A. & Gruneberg, U. The astrin-kinastrin/
SKAP complex localizes to microtubule plus ends and facilitates chromosome
alignment. J. Cell Biol. 192, 959–968 (2011).

43. Sardon, T., Peset, I., Petrova, B. & Vernos, I. Dissecting the role of Aurora A
during spindle assembly. EMBO J. 27, 2567–2579 (2008).

44. Peset, I. et al. Function and regulation of Maskin, a TACC family
protein, in microtubule growth during mitosis. J. Cell Biol. 170, 1057–1066
(2005).

Acknowledgements
We are grateful to Dr Jan Ellenberg (EMBL Heidelberg) for his gift of GFP-tubulin /
H2B-mCherry HeLa Kyoto line, Dr Alexey Khodjakov (Wadsworth Center) for his gift of
the GFP-centrin HeLa line and Dr Hüseyin Besir (EMBL Heidelberg) for SF21 cells.
We would like to thank Andreas Würch and Petra Kindle from the MPIIE FACS and

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8889 ARTICLE

NATURE COMMUNICATIONS | 6:7889 | DOI: 10.1038/ncomms8889 | www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Imaging Facilities, respectively, for their advice and practical assistance. We thank the
Centre for Genomic Regulation proteomics facility and Nuria Mallol and Jacobo Cela for
excellent technical assistance. M.S. and A.A. would like to thank Tomacz Chelmicki for
pioneering work in this project. This work was supported by DFG funded CRC746,
CRC992 and CRC 1140 awarded to A.A. A.A. is part of the EU funded Network of
Excellence (EpiGeneSys). IV lab was supported by the Spanish Ministry of Economy and
Competitiveness grants BFU2012-37163.

Author contributions
S.M. performed all the experiments in Xenopus egg extracts and the in vitro assays in the
presence of microtubules. M.S. performed live-cell imaging and analysis. S.M. and
M.S. performed the immunofluorescence-based assays and quantifications. Cloning
and virus generation for recombinant proteins was performed by N.V.N. Single
recombinant proteins were expressed and purified by M.S. The in vitro reconstitution of
the KANSL complexes was performed by N.V.N. L.A. performed the SILAC experiment.
A.A., I.V., S.M. and M.S. designed the experiments, analysed the data and prepared the
manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Meunier, S. et al. An epigenetic regulator emerges as
microtubule minus-end binding and stabilizing factor in mitosis. Nat. Commun. 6:7889
doi: 10.1038/ncomms8889 (2015).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8889

10 NATURE COMMUNICATIONS | 6:7889 | DOI: 10.1038/ncomms8889 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	KANSL1 and KANSL3 are required for cell division
	KANSL1 and KANSL3 promote microtubule assembly in™vitro
	KANSL1 and KANSL3 regulate K-fibre minus-end dynamics

	Figure™1KANSL1 and KANSL3 localize to spindle poles in mitosis and their depletion leads to mitotic defects.(a) NSL complex members KANSL1 and KANSL3 are expressed throughout the cell cycle in HeLa cells. Synchronization was confirmed by western blotting 
	Figure™2KANSL1 and KANSL3 promote microtubule assembly in a RanGTP-dependent manner in Xenopus egg extracts.(a) Coomassie blue-stained gel of purified recombinant Drosophila KANSL1, KANSL3 and MOF tagged with 3FLAGsolHA. (b) Schematic representation of th
	KANSL3 is a microtubule minus-end binding protein

	Figure™3KANSL1 and KANSL3 are required for chromosomal microtubule assembly and K-—fibre stabilization.(a) KANSL1 and KANSL3 localization to chromosomal microtubule asters. Immunofluorescence images of mitotic HeLa cells fixed 5thinspmin after nocodazole 
	Figure™4KANSL3 is a microtubule minus-end-binding protein.(a) KANSL1 and KANSL3 localization to microtubule ends in™vitro. Taxol-stabilized microtubules were incubated with recombinant KANSL1, KANSL3, xMCRS1 or buffer (control), as indicated. Microtubules
	Discussion
	Methods
	Cell culture
	Cell synchronization
	FACS
	Antibodies
	Co-immunoprecipitation in HeLa and HEK293 cells
	Western blot analysis
	RNA interference
	Immunofluorescence
	Live-cell imaging
	Recombinant proteins
	Beads experiments in Xenopus egg extracts
	Stable isotope labelling of amino acids in cell culture
	Microtubule regrowth and cold-stable assays
	Microtubule co-pelleting experiment
	In vitro experiments with taxol-stabilized microtubules
	In vitro experiments with polarity-marked microtubules
	KANSL complex reconstitution in™vitro

	CaiY.Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complexJ. Biol. Chem.285426842722010DiasJ.Structural analysis of the KANSL1solWDR5solKANSL2 complex reveals that 
	We are grateful to Dr Jan Ellenberg (EMBL Heidelberg) for his gift of GFP-tubulin sol H2B-mCherry HeLa Kyoto line, Dr Alexey Khodjakov (Wadsworth Center) for his gift of the GFP-centrin HeLa line and Dr Hüseyin Besir (EMBL Heidelberg) for SF21 cells. We w
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




