
Journal of Visualized Experiments www.jove.com

Copyright © 2015  Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

November 2015 |  105  | e53183 | Page 1 of 6

Video Article

Analysis of Zebrafish Larvae Skeletal Muscle Integrity with Evans Blue Dye
Sarah J. Smith*1,2, Eric J. Horstick*3,4, Ann E. Davidson1,2, James Dowling1,2,4

1Program in Genetics & Genome Biology, The Hospital for Sick Children
2Department of Molecular Genetics, The University of Toronto
3Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development
4Departments of Pediatrics and Neurology, University of Michigan
*These authors contributed equally

Correspondence to: James Dowling at james.dowling@sickkids.ca

URL: http://www.jove.com/video/53183
DOI: doi:10.3791/53183

Keywords: Developmental Biology, Issue 105, congenital muscular dystrophies, Evans Blue Dye, zebrafish, sarcolemma integrity, myopathy,
Duchenne muscular dystrophy, dystroglycanopathies

Date Published: 11/30/2015

Citation: Smith, S.J., Horstick, E.J., Davidson, A.E., Dowling, J. Analysis of Zebrafish Larvae Skeletal Muscle Integrity with Evans Blue Dye. J. Vis.
Exp. (105), e53183, doi:10.3791/53183 (2015).

Abstract

The zebrafish model is an emerging system for the study of neuromuscular disorders. In the study of neuromuscular diseases, the integrity of
the muscle membrane is a critical disease determinant. To date, numerous neuromuscular conditions display degenerating muscle fibers with
abnormal membrane integrity; this is most commonly observed in muscular dystrophies. Evans Blue Dye (EBD) is a vital, cell permeable dye that
is rapidly taken into degenerating, damaged, or apoptotic cells; in contrast, it is not taken up by cells with an intact membrane. EBD injection is
commonly employed to ascertain muscle integrity in mouse models of neuromuscular diseases. However, such EBD experiments require muscle
dissection and/or sectioning prior to analysis. In contrast, EBD uptake in zebrafish is visualized in live, intact preparations. Here, we demonstrate
a simple and straightforward methodology for performing EBD injections and analysis in live zebrafish. In addition, we demonstrate a co-injection
strategy to increase efficacy of EBD analysis. Overall, this video article provides an outline to perform EBD injection and characterization in
zebrafish models of neuromuscular disease.

Video Link

The video component of this article can be found at http://www.jove.com/video/53183/

Introduction

Muscular dystrophies constitute a group of prevalent and heterogeneous human muscle diseases with specific histopathological features1,2.
Symptoms typically associated with this devastating group of diseases include muscle weakness, muscle degeneration, loss of motility,
and early mortality1,3. The primary pathomechanisms of muscular dystrophies are the loss of proteins that stabilize the sarcolemma, anchor
transmembrane complexes, and mediate cell signaling across the membrane4-6. For example, complete loss of the protein dystrophin, a primary
scaffold protein of the dystrophin-glycoprotein complex, results in destabilization of the muscle membrane in Duchenne muscular dystrophy7.
Due to the fact that most muscular dystrophies result from mutations in proteins that participate in the link between the extracellular matrix
and the sarcolemmal cytoskeleton, a common observation at the cellular level is the loss of sacrolemmal integrity8,9. This understanding of
the primary pathomechanism(s) associated with muscular dystrophies is the product of numerous years of research employing animal model
systems2,10-15. However, despite advances in the field, there are still limited therapeutic options for treatment or management of the range
of dystrophy subtypes. This limitation of viable therapies is due to several key factors: 1) the difficulty of gene therapy strategies, 2) a high
frequency of de-novo disease cases and the corresponding lack of translatable animal models, and 3) the lack of rigorous strategies to test the
physiological consequences of putative therapeutic agents with clear and reproducible outcome measures.

To overcome some of these limitations, numerous labs including our own are employing zebrafish as a system to model and study human
neuromuscular diseases2. To date, zebrafish have proven a valuable tool in disease research. The zebrafish model has been used to identify and
validate novel human disease causing mutations16,17, elucidate uncharacterized disease causing mechanisms17,18, and identify novel therapeutic
strategies12,19. These advances were made, in part, by the canonical strengths of the zebrafish system such as their optical clarity, ease of
genetic manipulation, and ability to breed in large numbers20. Zebrafish have additionally proven amendable to large-scale drug screens21, a
valuable method for the identification of novel therapeutics22-24. Regarding muscle disease research, these strengths are complemented by the
ability to isolate single zebrafish skeletal muscle fibers via dissociation25 and by the ability to examine myofiber organization in vivo using the
optical phenomenon called birefringence26, which collectively allows for rapid determination of macroscopic muscle integrity. Regardless of these
available utilities, further tool development is continuously required to advance investigation.

We, and others, have adapted a protocol for EBD injection and analysis in the zebrafish model. EBD is a vital, cell permeable dye that is taken
up by damaged, degenerating, or apoptotic cells and then visualized under fluorescence27. To date, EBD analysis has extensively been used
to analyze muscle membrane integrity in mouse models of skeletal muscle and heart diseases8,9,27. However, in mammalian preparations,
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harvested muscle typically requires laborious sectioning or dissection prior to analysis. In zebrafish, direct analysis is possible in high numbers
using live and intact animals. In this video article, we will demonstrate the methodology to perform EBD injection and analysis in live zebrafish
larvae, with representative images of EBD uptake in the zebrafish dystrophy mutant line sapje15,28. Furthermore, we present a co-injection
strategy that allows for increased quantification of EBD preparations.

Protocol

1. Preparation of Agar Injection Plates (Time: 45 min)

1. Boil 2% to 3% agarose in E3 media and allow solution to cool slightly on bench. Note: The number of injection plates being prepared dictates
the amount of agarose required. Each injection plate needs approximately 35 ml of the agarose solution.

2. After boiling, allow the agarose to cool until desired temperature is reached (e.g., 45 °C) as per the injection mold manufacturer’s instructions.
3. Pour approximately 35 ml of the cooled agarose into a 100 mm dish.
4. Place one end of preferred injection mold into solution, then lay remainder of mold onto agarose solution (this will help reduce the occurrence

of air bubbles).
5. Allow the agarose solution to solidify either at RT or 4 °C for approximately 30 min.
6. Use a spatula to separate one end of the mold from the solid agarose. Slowly remove the remainder of the mold.

2. Preparation of Evans Blue Dye (EBD) Injection Mix (Time: 30 min)

1. Make a 1% stock of EBD in 1X Ringer’s solution (155 mM NaCl; 5 mM KCl; 2 mM CaCl2; 1 mM MgCl2; 2 mM Na2HPO4; 10 mM HEPES; 10
mM glucose; pH to 7.2), which can be stored at RT.

2. Make a stock solution of fluorescein isothiocyanate (FITC)-dextran MW 10,000 kDa at 25 mg/mL in 1X Ringer’s solution and store at -20 °C.
3. Prepare injection mix by diluting EBD to 0.1% directly in stock solution of FITC-dextran stock (i.e., for a final working volume of 100 µl: Mix 10

µl of 1% EBD in 90 µl of FITC dextran stock).
4. Thoroughly vortex injection mix (it should turn green) and keep out of direct light by wrapping injection mix tube in aluminum foil.

3. EBD Injection Preparation (Time: Approximately 30 min)

Note: Protocol works best with larvae from 3-7 days post fertilization (dpf).

1. Pre-warm injection plate to RT.
2. Set up injection apparatus by arranging micromanipulator on metal plate and stand next to the microscope being used for injection. Turn on

air driven microinjection controller. Note: The preferred injection system will vary by lab and should not change outcome of analysis.
3. Back fill injection needle with approximately 2-4 µl of EBD mix.
4. Calibrate injection volume to approximately 5 nl of EBD mix. Note: Injection volume calibration will depend on calibration method. A piston

driven injection can be directly set to a given injection volume whereas gas pressure injectors will need the injection volume calibrated via
volume bolus with the use of a micrometer.

5. Wet injection plate with 1X Ringer’s solution and remove excess from wells.
6. Pre-treat larvae with 0.04% ethyl 3-aminobenzoate methanesulfonate salt (tricaine) diluted in 1X Ringer’s solution to immobilize larvae prior

to the start of injection. Note: Ensuring larvae are completely immotile is important as proper injection is difficult with any residual movement.
7. Place anaesthetized larvae into wells of the agar injection plates using a glass pipette. Ensure that the larvae are completely within the well

and lying on their side. Note: The number of larvae per well is up to the experimenter.
8. After larvae are put in the wells, remove excess Ringer’s solution to minimize larvae movement within the well. Leave a residual amount of

solution so that larvae do not dehydrate.

4. Pericardial Injection of Zebrafish Larvae with EBD (Time: Dependent on number of larvae
injecting, estimated 1-3 hr)

1. Place the injection plate containing the larvae on a dissecting scope where the injections will be performed.
2. Position the injection pipette needle containing the EBD mix over a zebrafish larvae.
3. Re-position the injection plate by rotating it so the injection needle is near the larvae’s heart and approximately 45° ventrally from the anterior-

posterior axis.
4. Insert the injection needle into the common cardinal vein (CCV) in the region of the vein at the anterior portion of the yolk where the vein is

initially turning in the dorsal direction (Figure 1). Note: A magnification of up to 40x may be useful to clearly see the CCV.
5. Inject 5 nl of EBD mix and keep injection needle in position for 5-8 sec to minimize immediate leakage of EBD mix. Note: A good injection will

have dye coloration seen in the heart chambers (Figure 1). If EBD mix is not observed in the heart, then injecting an additional 5 nl of EBD
mix may be sufficient to induce dye uptake. Alternatively, the embryo can be discarded.
 

Note: In some situations, the heart may stop beating. If this occurs, continue to monitor the larvae for 20-40 sec. Typically, the heart resumes
beating as the dye moves through the circulatory system.

6. Move onto the next larvae and repeat.
7. Identify successfully injected embryos by observing the presence of FITC-dextran in the vasculature immediately after injection (Figure 2).
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5. Incubation and EBD Uptake (Time: 4-6 hr)

1. After the desired number of larvae are injected, return injected larvae to 1X Ringer’s solution without tricaine in 100 mm dishes.
2. Keep dishes wrapped in aluminum foil. Note: Keeping injected larvae in the dark significantly increases survival rates and ensures the

greatest consistency in signal strength. Wrapping in aluminum foil is especially important for the period of time that the larvae are outside of
the incubator.

3. Allow larvae to incubate at 28.5 °C for 4-6 hr to ensure sufficient EBD uptake.

6. Visualization of EBD in the Muscle (Time: Dependent on number of larvae injecting and
type of microscopy, estimated 0.5-3 hr)

1. Prior to imaging, anesthetize the larvae with 0.04% tricaine to prevent movement.
2. View larvae under red fluorescence to determine if EBD uptake is occurring in the skeletal muscle (Figure 3).

Representative Results

The EBD injection mix was injected into the CCV of sapje homozygous mutants and wild-type siblings at 3 dpf. Injections that filled the heart
chambers (Figure 1B) were then analyzed for successful injection by visualizing FITC-dextran in the vasculature under green fluorescence
(Figure 2).

After a 4 hr incubation period, EBD uptake was examined at the somite level using fluorescence microscopy. Wild type siblings exhibited no EBD
fluorescence within any visible muscle fibers (Figure 3A), whereas the sapje homozygous mutants showed EBD uptake, indicating damage to
the muscle membrane15 (Figure 3B).

 

Figure 1. Injecting EBD injection mix into the common cardinal vein (CCV) of a zebrafish embryo. (A) Uninjected embryo. Arrow denotes
ideal location for CCV injection. (B) Successful injection into the CCV. The dye enters the heart chambers (arrow) and begins to be pumped
through the vasculature. (C) An unsuccessful CCV injection will result in some or all of the dye entering the yolk sac of the embryo (arrow).
Please click here to view a larger version of this figure.
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Figure 2. Embryos can be sorted for successful injection by observing FITC-dextran distribution under green fluorescence throughout
the vasculature immediately following injection and prior to EBD uptake. Please click here to view a larger version of this figure.

 

Figure 3: EBD will be taken up by fibers with damaged membranes. (A) Wildtype siblings showing no EBD fluorescence in muscle fibers. (B)
Sapje homozygous mutant with EBD fluorescence within multiple muscle fibers (arrows). All larvae were injected with the EBD injection mix and
analyzed after a 4 hr incubation period at 3 dpf. Siblings and mutants were sorted by muscle fiber detachment prior to CCV injection. Please click
here to view a larger version of this figure.

Discussion

Zebrafish are emerging as a powerful tool for the study of neuromuscular disease2,29. To date, the zebrafish system has been used to validate
new muscle disease-causing mutations16,17,30, elucidate novel pathomechanisms18, and identify potentially new therapeutic drugs12,24. These
collective efforts have established the utility of the zebrafish to model human neuromuscular diseases. However, despite the advances made
with zebrafish and mammalian models, there are limited treatment options for patients within the wide spectrum of neuromuscular conditions.
Therefore, a high demand exists for therapy development for this group of devastating diseases. Paralleling this demand for therapeutics is
the corresponding need for ongoing experimental innovation, as well as rigorous analysis to verify new animal models and putative therapeutic
strategies.
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EBD analysis is commonly used in mouse models to study tissue and cellular damage in brain, heart, and skeletal muscle27,31. Most notably,
EBD is used extensively in mouse models of various muscular dystrophy subtypes to show the severity of muscle membrane instability and
damage8. The use of EBD to reveal muscle membrane damage is a supportive parameter establishing similarities of the animal model to the
human disease state9. The power of EBD in mouse has led several labs, including our own, to develop and apply EBD to zebrafish models of
neuromuscular disease. Due to the applicability of EBD analysis, this technique is actively being implemented to corroborate zebrafish models
to the human disease state11,15,22,24,32. Larvae with damaged muscle membranes will have EBD uptake and therefore red fluorescence within
muscle fibers. Fluorescence observed in the inter-fiber space, but not within individual muscle fibers may also be informative of fibers detaching
from the basement membrane in the absence of membrane damage, providing useful diagnostic detail. EBD analysis has potential application
beyond animal model validation. Efforts from our lab have recently demonstrated that EBD analysis is beneficial in validating potentially novel
therapeutic drugs24. Determining if potential therapeutic treatments reduce or abolish EBD uptake in neuromuscular disease models can signify
relevant therapeutic action8. This type of analysis can help establish the mechanism(s) of therapeutics and expands the application of EBD
analysis.

As with many techniques, EBD analysis does have several caveats to be observed during experimental design and practice. For example,
it can be challenging to identify the CCV due to the thickening of the tissue with age. Additionally, it is easy to damage larvae in preparation
before and during the pericardial injection, reducing experimental counts and increasing the need to prep large numbers of larvae. Furthermore,
physical damage done to the larvae during handling and injection could result in false positives as damaged muscle can take up EBD. In order
to overcome some of these obstacles, we have described a co-injection strategy in this video article that allows easy and reliable identification of
larvae with successful dye infusion immediately following injection and prior to subsequent analysis. The FITC-dextran co-injection controls for
successful injection by allowing confirmation of EBD in the vasculature prior to its uptake by the muscle fibers. This can be particularly useful as
EBD fluorescence becomes highly diffuse in larvae after several hours if not collected in the muscle fibers; as such, it can be difficult to detect.
In addition, missing the CCV and injecting EBD into the yolk or body cavity can, after incubation, result in diffuse red fluorescence similar to
control embryos, yet with the reduced likelihood of uptake by damaged muscle fibers. Collectively, these caveats suggest EBD injection requires
patience and practice in order to achieve consistent and reliable results.

In all, we describe a practical and straightforward method to perform EBD analysis on zebrafish larvae. To date, the use of zebrafish as a model
system, especially as a human disease model, has been rapidly expanding. This expansion is partially due to the continued development
and modification of experimental techniques that improve upon the current advantages of the zebrafish system. The EBD injection technique
provides an additional and powerful tool to a researcher’s arsenal for the validation and study of zebrafish muscle disease models. The ongoing
implementation and modification of this technique has the potential to help uncover novel therapeutic strategies as well as disease causing
mechanisms.
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