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Abstract: Geodetic measurements are commonly used in displacement analysis to determine the
absolute values of displacements of points of interest. In order to properly determine the displacement
values, it is necessary to correctly identify a subgroup of mutually stable points constituting a
reference system. The complexity of this task depends on the spatial size of the network, the timespan
of measurements and geological conditions affecting the type of changes in the location of points. As a
consequence of the abovementioned factors, the task of stable identification in a longer timespan for a
subgroup of points may produce equivocal results. In particular, it is likely that alternative subgroups
of reference points meeting the mutual stability criteria will be selected, sometimes without common
reference points. The proposed method of reference system identification utilises optimisation
algorithms. Two such algorithms were tested, i.e., simulated annealing (SA) and Hooke-Jeeves (HJ)
method. Two numerical examples were used to test the proposed method. Although in the first
example both methods delivered a positive result, the second example showed the superiority of
the SA method over the HJ. The proposed method can be considered a tool supporting the person
analysing and making calculations in reaching the ultimate decision on reference points.

Keywords: stability analysis; reference system identification; simulated annealing; metaheuristic
method; Monte Carlo method; Hooke-Jeeves algorithm

1. Introduction

Determination of point displacements or object deformation can be found in a lot
of fields of study, including both engineering (e.g., dam deformations [1–3] and natural
sciences (deformations related with geological processes [4,5]). Because the effect of these
changes may potentially pose a threat to the infrastructure connected with human activity
and human life itself, it is often necessary to monitor these changes in order to evaluate the
safety levels and predict potential dangers.

Methods of displacement determination can be divided into geodetic and structural [6–8].
Structural methods [9,10] utilise specific equipment such as accelerometers, extensometers,
inclinometers and strainmeters [11] and values determined with these devices are relative.
Structural methods are often a fundamental feature of automated monitoring systems
working in real time.

Geodetic methods utilise a displacement measurement network and provide global
information about geometrical features of an object. Geodetic measurements conducted in
cycles on the points of the network (in individual epochs) are the source of this information.
Displacement networks can be divided into reference or absolute and relative [12]. In
absolute networks, it is assumed that at least a part of points is located outside the range
of deformations related to the tested object. In that way geodetic methods can provide
information about displacements of selected points in the object with reference to an
external system.

Although absolute networks contain measurement points located in a way minimising
the probability of displacements, with limited knowledge on the actual range of the object’s
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impact, it cannot be assumed a priori that the points are stable. In absolute networks one
of the basic tasks performed during the analysis of measurement results is the verification
of reference points stability. It is expected that the procedure will identify a subgroup
of mutually nondisplaced reference points, which will be further assumed as stable. On
account of the limited accuracy of the measurement, the possibility of gross errors and
potentially small values of point displacements, it should be born in mind that an error can
occur during the identification of reference points stability. According to Prószyński and
Kwaśniak [13], these errors can be classified as follows:

• a type I error (the identified reference base includes only a part of actually stable
reference points);

• a type II error (apart from a group of actually stable points, the identified reference
base includes the displaced points as well, erroneously identified as stable);

• a combination of type I and type II errors (the identified reference base includes a
part of actually stable points only, but with significantly displaced points qualified
as stable)

The correct identification of a reference system is key from the point of view of further
determination of displacements of the tested object. Qualifying the displaced points to the
reference system (a type II error) lead to determining a false displacement of the object,
which in turn might result in erroneous conclusions about the safety of the object [14].

Numerous identification methods of a reference system are known. Identification
can be conducted as part of a process of determining the displacements or as a separate
process preceding the calculations of displacements [13]. In the first case, it is usually an
iteration procedure leading to the identification of an ultimate group of stable points. The
completion of this process is simultaneously the identification of both the reference system
and the determination of ultimate displacement values of stable points. It is exemplified in
the procedures described in [15–17].

In the second case, the coordinates of potential reference points determined inde-
pendently for two (or more) epochs and their accuracy characteristics are available. The
data usually come from an independent preliminary adjustment of individual epochs.
In this case, the identification of a reference system involves an analysis of geometrical
features of a group of points of a potential reference system and can have the form of a
searching transformation method, for instance. Algorithm of numerical control of object
adherence [18], Global Congruency Test [19–22] or Iterative Weighted Similarity Trans-
formation (IWST) [23] are all examples of this method. The paper by Mrówczyńska [24]
includes an example of identification of a reference system for a levelling network.

Independently of the method employed, the identification of a group of stable refer-
ence points can be a difficult task and its results can be equivocal. This may occur with
vast objects, particularly in geologically differentiated area in which the reference network
is stabilised [25,26]. Additionally, the variable direction of causes of displacements may
increase the risk of difficulties. All of the above may lead to a situation in which more than
one group of mutually stable reference points is identified, but the group is mutually unsta-
ble towards other groups [13]. It can be easily shown (see [28]) that the Global Congruency
Test does not perform well in such case. In the best case it finds one of the groups of stable
reference points. It is of utmost importance to be aware of the fact that different groups
of mutually stable reference points exist. As the problem has significant practical impli-
cations, several stability identification methods were developed. Apart from the above
quoted article of Wujanz et al. [26], which describes the identification of stable areas in a
laser scanning point cloud, works of Neitzel [27,28] and the publication of Lehmann and
Lösler [29] should also be mentioned. The methods described in those works are based on
stability testing of the selected subgroup of reference points. In both cases a combinatorial
procedure is used to select individual subgroups. Such an approach guarantees that even
small subgroups can be detected but it has also some flaws. At first, complete analysis
of the large network implies computational costs which grow exponentially according
to the number of points. It should also be noted, that Neitzel’s method uses a subset of
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observations for the analysis of the point congruency, which fastens the whole procedure
but weakens the accuracy of point positions.

The identified groups of reference points facilitate the determination of parameters
of transformation between the systems of coordinates for both epochs. The number of
these parameters depends on the size of the network and, if the scale is stable for both
systems, amounts to 1—for a vertical network, 3—for a flat network and 6—for a spatial
network. Transformation parameters create a certain one-, three- or six-dimensional space
of solutions. Each point of this space corresponds to a set of transformation parameters
and consequently to the set of residuals on all reference points.

A new alternative method of constant point identification is based on such an approach.
The main idea of this method stems from the fact that the identification of the reference
system may be seen as the search for a point in the space of transformation parameters.
The key for the search is the properly defined objective function utilizing transformation
residuals on reference points and assessing the analysed point of the transformation
parameters space. This approach is somehow analogous to the Hough transform [30]
utilised to identify geometrical objects in a point cloud data in computer vision.

The proposed method utilises optimisation algorithms. The computational cost is
usually high in the case of such algorithms but contrary to the combinatorial methods,
it doesn’t grow so rapidly with the number of points. The computational cost in the
proposed method is proportional to the number of network points while in case of com-
binatorial methods it grows exponentially. For example, assuming a minimal number of
2 stable points, we obtain the following number of combinations to be tested: 16,365 for
14 points [29], 1,048,551 for 20 points and 1,073,741,786 for 30 points.

On the other hand, the coordinates of the reference points are the result of preliminary
adjustments of the whole set of observations for each epoch, which improves the internal
accuracy of the network.

Due to the unique nature of the task, two algorithms were selected from among
numerous others: the metaheuristic algorithm of simulated annealing (SA) and the Hooke-
Jeeves algorithm (HJ). The first of those algorithms comes from thermodynamics and
reflects the process of solidification of a liquid metal into a crystalline solid. It is con-
sidered as calculation cost consuming. It was chosen due to its ability to get the global
minimum of the objective function avoiding the existing local minima. Section 2.1 contains
a detailed description of the SA algorithm. The second algorithm has a totally different—
deterministic—character. For the same starting point in the search space we always obtain
the same final result—the local or global minimum of the objective function. The HJ algo-
rithm is relatively fast but it is prone to local minima which will be found as the solutions.
Detailed description of the HJ algorithm is presented in Section 2.2. If more than one group
of constant reference points exists, we can expect more than one minimum in the search
space. To identify all of them a hybrid solution must be used in which the starting point
for the HJ procedure is selected randomly. The use of both algorithms is described in detail
in Section 2.4.

For each of these algorithms an objective function had to be formulated, which re-
flected the quality of coordinates fitting into both analysed epochs. An original procedure
was suggested for this purpose.

The proposed method can be applied for levelling (1D), horizontal (2D) or spatial (3D)
networks. In case of 1D network the problem is quite simple and is limited to the search
of optimal height shift between the epoch height systems to reach desirable fitting on the
selected reference points. Except for LIDAR method, 3D monitoring networks are rarely
used due to problems with integration of various measuring techniques. The identification
of stable regions in LIDAR point clouds needs special approach considering a large number
of points and the fact that different points are registered in particular epochs [26].

For that reason 2D test objects are selected to illustrate the performance of the proposed
procedure. Two simulated two-epoch tests of an object consisting of many subgroups of
stable points were used. The results of the tests are presented in Section 3. The obtained
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results are discussed in Section 4.

2. Materials and Methods
2.1. Simulated Annealing

Common use of computer calculation methods and the related decrease in the cost
of computational operations caused reconsideration of the way we look at estimation
tasks and algorithms used for these purposes. This new approach resulted in new meth-
ods from the Monte Carlo or Metaheuristics Family, in which numerous repetitions of a
computational sequence are required to obtain the results.

Simulated annealing, also known as Monte Carlo annealing, probabilistic hill climbing,
or stochastic relaxation belongs to metaheuristic methods. The idea behind SA comes from
thermodynamics and reflects the process of solidification of a liquid metal into a crystalline
solid. In this process the molecule mobility decreases with the decrease in temperature,
and if the cooling rate is sufficiently slow, the molecules can achieve the state of mutual
order corresponding to the lowest energy state (e.g., create crystal lattice).

Since the SA algorithm was first published by Metropolis et al. [31] and developed by
Kirkpatrick et al. [32], it was used to solve a wide variety of problems. The most useful
characteristic of annealing process reflected in the algorithm structure appeared to be
the ability to avoid local minima corresponding to the pseudo-crystalline state with the
energy level higher than minimal. Figure 1 illustrates the idea of a search for solution for
one-dimensional objective function. More information on the SA algorithm can be found
in [33].
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Figure 1. Idea of solution seeking for one-dimensional objective function [34].

The properties of the SA algorithm, especially its ability to solve complex optimization
problems with local minima, facilitated its use in areas sometimes really far from thermo-
dynamics. Solving the well-known travelling salesman problem is frequently used as an
example [35,36].

Some metaheuristic methods have also been used to solve some optimization prob-
lems in geodesy and surveying techniques, e.g., [37–39], but applications of SA in this
field are rather limited. They include research on geodetic network design [40,41], the
adjustment of geodetic measurements [42,43], LIDAR survey design [44] or coordinate
transformation [34]. Deformation measurements which are the subject of this work can be
included in the same area.

SA is an iterative algorithm, in which the continuous change in the temperature of a
cooling liquid is replaced by incremented changes introduced in subsequent iterations. Its
use for solving estimation tasks requires a definition of several essential elements:

1. An objective function corresponding to the molecular energy level during the anneal-
ing process that will be minimised;

2. A cooling scheme, comprised of an assumed initial temperature and dependency
defining temperature drop after each iteration;
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3. A molecule movement model corresponding to the actual temperature;
4. Termination criteria for the iterative process. The condition can be formulated

based on:

• the final temperature (minimal)
• the acceptable value of the objective function
• the range of the molecule movement, which usually corresponds to the estimated

model parameter changes defining the objective function

A detailed flowchart of the algorithm is shown in Figure 2. By defining: xi—vector
of the current model parameters in the ith iteration of the estimation task, f (xi)—objective
function defined for the current parameters, ∆xi—change in parameter vector in the ith

iteration, the elements of the simulated annealing algorithm can be presented as follows:
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2.1.1. Objective Function

The objective of the algorithm is to find the global minimum. Therefore, the objective
function f (xi) must provide an answer whether the current solution (xi vector) is better
than the previous one and, thereby, if it is closer to the final solution which corresponds
to the minimum of the objective function. The definition of the objective function will be
discussed in a separate section.

2.1.2. Cooling Scheme

The temperature as a parameter of the SA algorithm stems from physical analogies.
In optimization tasks, the value which allows to easily control the solution-seeking process
is assumed as the temperature equivalent.
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The core of the cooling scheme lies in the function of the temperature change. In such
a situation, it is more important to define the function of the temperature change. Various
schemata are used in the SA algorithms, but they always take the following form:

T = f (T0, i), (1)

where T0 is the initial temperature and i is the iteration number. As the temperature is
tightly connected with the iteration number, in some cases it is possible to replace the
temperature parameter with the iteration number.

2.1.3. Molecule Movement Model

The movement model determines the way the new solution is obtained. It is generally
defined by two elements. The first of them is the way the next (subsequent) solution is
generated. It is described by the Equation (2).

Xi + 1 = xi + ∆xi, (2)

∆xi vector is randomly generated and usually a normal distribution N(0, σ) is used.
The current standard deviation of this distribution σi is the function of the initial value σ0
and temperature (3):

σ(t) = σ0βt (3)

or
σi = σ0βi (4)

β coefficient corresponds to the cooling speed and assumes values in the range (0,1) and t
defines the time which—in practical solutions—can be replaced by the iteration number i.

The second key element of the molecule movement model is the criterion for accept-
ing a new solution. The decision-making process of accepting the new solution as the
current one (potentially the best) consists of three phases. Firstly, it is checked whether the
obtained solution (xi + ∆xi) belongs to the task field—in other words, whether it fulfils the
formal requirements of the task being solved. Secondly, the value of the objective function
is analysed:

xi+1 =


xi + ∆xi i f f (xi + ∆xi) < f (xi)
xi + ∆xi i f f (xi + ∆xi) ≥ f (xi) with probability p

xi otherwaise
(5)

If the obtained value of the objective function is lower than the current value, the new
solution (xi = xi + ∆xi) is accepted unconditionally. Otherwise, even though it corresponds
to a worse solution from the objective function’s perspective, the obtained vector is accepted
with a determined probability p. The most advanced method—based in the thermodynamic
origins of the procedure—is the application of Boltzman distribution. The value of p is then
defined by the Equation (6).

p = e−
f (xi+1)− f (xi)

Ti (6)

This method gives relatively high p values, and, on the one hand, it provides a higher
guarantee of finding the global minimum. On the other hand, frequent acceptance of a
worse solution considerably slows down the iteration process. A simpler solution would
be to assume a constant value for p—most commonly ranging from 0.001 to 0.2 (like in [41]).
In the simplest tasks with uncomplicated spatial distribution of the objective function
this element of the algorithm can be omitted, which corresponds to the original version
proposed by Metropolis team [31].
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2.1.4. Termination Criteria for the Iterative Process

Termination of the solution seeking process may be linked to acquiring a specific
temperature value, which corresponds to a certain number of conducted iterations. Another
option may be reaching a satisfactory value for the objective function. In both cases, it is
essential to determine the critical value. It depends on the required accuracy of the solution.
In special cases, the SA method may be used to determine an approximate solution that
will subsequently allow for the application of other methods utilising, e.g., linearization of
the functional dependencies describing the given task. In this case a significantly lower
number of iterations is required in order to obtain a satisfactory result.

2.2. The Hooke-Jeeves Method

The Hooke-Jeeves (HJ) local search algorithm method was proposed by Hooke and
Jeeves in 1961 [45]. Because it is a pattern search method, it can be used when the objective
function is irregular.

The point of departure for the Hooke-Jeeves method is to define the following parameters:

d—the orthogonal n base for linearly independent orthogonal vectors,
τ—the initial length of the searching step dependent on the area of searching and the
distribution of the objective function,
γ—the ratio of decreasing the searching step,
τend—the minimal length of the step which is the criterion of the end of the searching process,
x0—the starting point of the procedure.

Each iteration in the HJ method consists of two moves:

• the exploratory move, in which the distribution of value of the objective function
is tested within a small selected area of the base point, utilising trial steps along all
directions of the orthogonal base d;

• the pattern move involves moving in a strictly determined manner to the next base
point in which another exploratory move is considered, but only on condition that at
least one of the trial steps taken was successful.

A step is successful if it leads to the decrease in the value of the objective function. If
none of the steps were successful, you return to the previous base point and the search
cycle starts again with a decreased length of step τ.

The algorithm ends its work as soon as the ratio of the step τ achieves the assumed final
value τend. The HJ algorithm is shown in detail in Figure 3. f (x) stands for objective function.

Unlike the SA method, the HJ method is totally deterministic. The same solution will
always be obtained for a given starting point and the same search parameters.

The HJ method is simple and relatively fast-converging, which, in combination with
no need to calculate the gradient of the objective function, makes it attractive if the objective
function has no analytical form and is obtained based on the empirical data. The practical
applications of the HJ method include different fields of widely understood engineer-
ing [46–50]. The method is not very popular in geodesy and measurement data processing.
Work [51] is the exception in this area.

2.3. The Objective Function for Identifying the Reference Base

The objective function plays a key part in optimisation tasks. It has to be formulated
in such a way that one numerical value determines the level of the achieved objective,
i.e., a set of parameters corresponding with the searched optimum. It is usually assumed
that the objective function amounts to a minimal value in a point being a solution to the
optimisation task. Moreover, it is desirable that the distribution of the objective function in
the space of parameters facilitates the choice of an optimal route to the objective.
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In accordance with the assumptions made in this work, the search space for the
solutions is the space of transformation parameters. As it was mentioned before, the
space can be one-, three- or six-dimensional. The following Equation (7) describes the
transformation of coordinates:

bi = Rai + t. (7)

In the case of horizontal network its elements can be defined as follows:
ai = [xi, yi]T—position vector for the point in the starting system of coordinates,

bi = [Xi, Yi]—position vector for the point in the final system, t = [∆X, ∆Y]T—translation
vector. R is a rotation matrix with dimensions 2 × 2. Its four elements are the functions of
one rotation angle α (8)

R =

[
cos(α) −sin(α)
sin(α) cos(α)

]
. (8)
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Assuming that vector ai in Equation (7) corresponds with the coordinates of point i
for the first epoch, and vector ci with coordinates for the same point for the second epoch,
residuum ri (9) can be determined for each point

ri = ci − bi. (9)

Modules of residual vectors |ri| will provide the basis for defining the objective function.
As far as the identification of the reference system is concerned, formulating the

objective function is quite a complex issue. This is because in this case the aim is to find
a certain and sufficiently numerous subgroup of reference points which will be mutually
consistent with the internal geometric features in both measurement epochs.

The term constancy must be considered in relation to the set of transformation pa-
rameters (∆X, ∆Y, α) which also determine a point in search space. Each such set allows
us to make coordinate transformation (7) and calculate a set of residuals for individual
points (9).

Consistency occurs when the inequality (10) is satisfied for the current point or, in
other words, when the module of its residual does not exceed the assumed critical value.
In the simplest variant, this critical value εi is a constant value. However, if covariance
matrices of coordinates of points for individual epochs are used, this parameter will take
into account positional accuracies of the considered point in both epochs (11)

|ri| < εi, (10)

εi = 2
√

σ2
Pi(1) + σ2

Pi(2) . (11)

where σPi(1) and σPi(2) are point position errors in epochs 1 and 2, respectively.

σPi(1) =
√

Qix(1) + Qiy(1) σPi(2) =
√

Qix(2) + Qiy(2) (12)

Qix(n), Qiy(n)—the element of covariance matrix for epoch n corresponding with x and
y coordinates of point i.

To simplify things, a group of points meeting the condition (10) will be called consistent
points. If all the points meet condition (10), they can be considered stable points of the
displacements monitoring network in two epochs. It is the most desirable case but in
real life we have to assume that only some of the points can maintain constant positions.
In such a case obtaining consistency for a satisfactory numerous subset of points means
that the current coordinate transformation parameters describe the transformation of the
network reference system.

Considering the way the optimization methods find a solution, the following postu-
lates can be formulated:

• The objective function should generate considerably stronger signal (value decrease)
for those points in the space of transformation parameters for which the group of
consistent points is obtained.

• It should be insensitive to the points not belonging to the identified group of consistent
points.

• It should “promote” a larger size of the group of consistent points (the value of the
objective function should be lower for a larger subgroup of consistent points than for
a smaller one).

The special algorithm for calculating the objective function was proposed to fulfil the
abovementioned requirements. Its flowchart is depicted in Figure 4. The algorithm is based
on the sum of absolute values of residual vectors calculated for all (n) potential reference
points. If a certain k-point subgroup is consistent, the points with the largest residues
are rejected from the sum. The number of rejected points is equivalent to the number of
points with residual vectors fulfilling the consistence criterion. 2 is the minimum group of
consistent points. Consistency for a single point does not mean reinforcement (the point



Sensors 2021, 21, 1739 10 of 22

with the largest residues is not rejected). It is worth noting that if all reference points (k = n)
are consistent, the objective function will equal 0.
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The finally calculated F value is the objective function value for transformation pa-
rameters set used to calculate residuals according to the Equation (9). This value is then
used in both optimization algorithms as f (x) function.

2.4. Numerical Implementation of Identification Algorithms for Reference Basis

The transformation of spatial coordinates is described by Equation (7). If vector ai is a
position vector of a point (referring from the origin of the coordinates system), a translation
vector t means the translation of the origin of the system of initial coordinates and therefore
the position of this point in the final system. This situation is unfavourable since the
values of the components of the translation vector t may significantly deviate from the
real movements of the points in the object. This might happen especially if these points
are located considerably far from the origin of the system of coordinates, and the rotation
angle α has significant values. Therefore, the concept of the base point of transformation is
often utilised during the practical implementation

bi = R(ai − a0) + b0 + u. (13)

Here, vectors a0 and b0 are position vectors of the base point for epochs 1 and 2,
respectively. Vector u = [ dx, dy ] is the residual translation vector. It would be most
beneficial to adopt the centre of mass of the group of potential reference points as the
base point.

Utilising the optimisation algorithms described in previous sections to identify the
reference points requires specifying the key parameters for their operations and connecting
these parameters with the parameters of the practically implemented task.

As mentioned before, the area of search will be a three-dimensional space determined
by transformation parameters—in this case, components of vector u and rotation angle α.

The other parameters will be defined depending on the used algorithm.
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2.4.1. The Simulated Annealing Method

The search range in this method should be specified as referring to component search
ranges—δx, δy, δα. The range facilitates the limitation of the number of analysed solutions
(points of search area). What is more, it is strictly connected with the controlling parameter—
an equivalent of temperature. Owing to the transformation model with a base point (13),
the range of the first two parameters can be determined based on the maximum possible
displacements of reference points δx0 = δy0 = δpmax. In the torsion angle, the following
dependency can be assumed:

δα0 = arctan(2δpmax/dmax), (14)

where dmax is the maximum distance between the potential reference points. The controlling
parameter is an independent coefficient t. Its initial value amounts to t0 = 1. The value of t
in w the—ith iteration amounts to:

ti = ti − 1 β = βi − 1, (15)

where β is the cooling coefficient.
The range of search in the ith iteration amounts to:

δxi = δx0 ti, δyi = δy0 ti and δαi = δα0 ti (16)

respectively.
Values δxi and δyi will be used to formulate the criterion of the end of the iteration process.
In the task described, adopting an appropriate value of the cooling coefficient β is

of crucial importance. Adopting a value too close to unity will result in the procedure
returning a global minimum mainly, omitting local minima. In the case discussed, the
dominant subgroup of reference points with the lowest value of the objective function is
equivalent to the global minimum. As the objective set at the beginning is the identification
of all possible subgroups, it is advisable to apply a bit faster pace of cooling, which will
enable us to detect the local minima as well. The value of the cooling coefficient is best
determined with an empirical method.

Inequality δxi (δyi) ≤ 0.001 m was adopted as the final criterion of the iteration process.
It should be estimated that the value adopted in the final criterion does not translate directly
into the accuracy of the final result.

2.4.2. The Hooke-Jeeves Method

As it was mentioned before, the HJ method algorithm is of totally deterministic nature,
which means there is a strong connection between the origin and the obtained solution. To
meet the initial assumption, i.e., to identify various local minima of the objective function
in the search space, random selection of the starting point was used. The components of
the position vector of this point in the search space are as follows:

dx0 = rnd(δx0), dy0 = rnd(δx0), α0 = rnd(δα0), (17)

where rnd() is a random function with a uniform distribution.
Considering the above assumptions, one may expect that there is a nonzero group of

starting points for each local minimum, leading to the minimum in question.
As the HJ algorithm approaches equally all components of the search space, it is

indispensable to coordinate units for these components. While the first two components
refer to the flat coordinates and are equal by nature, the third coordinate corresponding
to the rotation angle is completely different. In particular, it is necessary to specify the
working unit for the rotation angle corresponding with the coordinate unit. The value of
this unit is not constant and depends on the size of the network. Its value will be calculated
using the Equation (18).

1uα = 1 m/dmax (18)
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Thanks to the harmonisation of units, it is possible to search the solutions space using
the same value of τ jump for all the components.

Moreover, the following parameters should be adopted for the HJ method:

τ0—initial length of the search step
γ—coefficient of the search step decrease
τend—criterion of the end of the search process (minimum step size)

The following values were adopted for the task in question:

γ = 0.8
τend = 0.0001 m(uα)

where uα is a working unit of the angle adopted for the coordination of units in all three
components (18).

The described algorithms were implemented in author-created software. Borland
Delphi programming environment and Object Pascal programming language were used.
Such an approach made it possible to control all the important parameters and have an
insight into the details of the identification process.

3. Results

To test the validity of assumptions, a series of analyses was conducted on two sim-
ulated testing examples. To check the effectiveness of the identification of subgroups of
mutually stable reference points in all points of each object, subgroups were isolated for
which different displacements were simulated.

3.1. Test Example 1

The first test network consists of ten points constituting a reference network to test
displacements of the imaginary object. The placement of the points in the network is
depicted in Figure 5.
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Figure 5. Test network 1 points placement.

Two subgroups of mutually stable points were simulated for this network. The first
one includes points 1, 2, 4, 5 and 10, the second—6, 7, 8, 9 and 10. Point 10 is a common point
for both groups, whereas point 3 is a nonstable reference point for each of the mentioned
subgroups. The resulting coordinates for epoch 2 were disturbed by simulated errors with
a normal distribution and standard deviation σp = ±2 mm. Such a value is an equivalent
of disturbance in both epochs with errors of ±1.4mm standard deviation.

The coordinates of points of the test object for both epochs are presented in Table 1.
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Table 1. Coordinates of points of the test object 1 for both epochs.

Nr
Epoch 1 Epoch 2

X [m] Y [m] X [m] Y [m]

1 1600.0000 130.0000 1599.9841 129.9902

2 1200.0000 270.0000 1199.9846 269.9924

3 1360.0000 625.0000 1359.9609 624.9915

4 820.0000 570.0000 819.9836 569.9919

5 823.0000 1100.0000 822.9865 1099.9931

6 1150.0000 2140.0000 1149.9862 2140.0074

7 1520.0000 2175.0000 1519.9856 2175.0127

8 1750.0000 2820.0000 1749.9768 2820.0143

9 1170.0000 2820.0000 1169.9799 2820.0024

10 460.0000 2890.0000 459.9760 2889.9932

Before the test of optimization algorithms a commonly known congruency test will
be conducted. It consists of a series of three-parameter 2D transformations. The standard
deviation of the standardized residuals is compared with its critical value and used as the
congruency index of the current subset of points. If the test fails (standard deviation is
larger than its critical value), one point with maximal residuals is excluded from the current
subset. The critical value is calculated using chi-square test assuming a significance level
α = 0.05 and a degree of freedom f = 2n − 3 (n—number of points in the current subgroup).
Table 2 shows the course of the procedure.

Table 2. The identification of the stability of reference system by congruency test for the test object 1.

Iteration no. Group of Points σxy σxy max Point Rejected

1 1 2 3 4 5 6 7 8 9 10 4.41 1.27 3
2 1 2 4 5 6 7 8 9 10 3.47 1.29 7
3 1 2 4 5 6 8 9 10 3.23 1.31 8
4 1 2 4 5 6 9 10 2.60 1.34 6
5 1 2 4 5 9 10 1.84 1.37 9
6 1 2 4 5 10 1.20 1.42 -

For omitted subgroup of points (6, 7, 8, 9, 10) the corresponding values are: σxy = 1.06
with σxy max = 1.42.

The same data were used in testing the effectiveness of the two optimization methods
described in Section 2. The test involved n = 1000 trials. The identification results are
juxtaposed in the tables. The following values of simulated annealing parameters were
adopted for the test object 1:

δx0 = δy0 = 0.05 m
δα0 = 0.002 gon
β = 0.997

To determine δα0, formula (14) was used, assuming dmax = 3000 m.
The results obtained with the SA method are presented in Table 3. Apart from

the identified groups of stable points and the frequency of their identification, the Table
includes the evaluation of the mutual consistency of points placement as standard deviation
(σo) of coordinates residuals obtained in a classic, three-parameter 2D transformation for
the points of a given group.
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Table 3. Results of identification of the stability of reference system by the simulated annealing
method for the test object 1.

Group of Points Number of Hits % Hits σo [mm]

1 2 4 5 10 446 44.6 2.39
6 7 8 9 10 554 55.4 2.12

The approximate computation time of 9 s was necessary for all 1000 trials. Repeating
the test shows that the percentage of hits is quite stable. The instability does not exceed 1%.

1uα = 0.00033 rad ≈ 0.02 gon and τ0 = 0.05 m(uα) was taken for the Hooke-Jeeves
method. Test results for the HJ method are presented in Table 4.

Table 4. Results of identification of the stability of reference system by the Hooke-Jeeves method for
the test object 1.

Group of Points Number of Hits % Hits σo [mm]

1 2 4 5 10 623 62.3 2.39
6 7 8 9 10 367 36.5 2.12
3 10 4 0.4 2.83
5 9 10 3 0.3 3.45
3 9 2 0.2 6.52
2 4 5 9 10 1 0.1 3.51

The approximate computation time for n = 1000 trials is about 12 s. The stability of
hits for multiple call of the procedure is about 2% for two main solutions, while the minor
solutions are unstable and change as far as the subgroup and the number of hits.

3.2. Test Example 2

The second test object is slightly more complex. It consists of 17 points which create
three subgroups of mutually stable points. Four points were simulated as unstable and do
not belong to any subgroup. The placement of the test object points with their belonging to
the individual subgroups is shown in Figure 6.
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Figure 6. Test network 2 points placement.

Three subgroups of mutually stable points were simulated for this network. They are
shown in Figure 6 and consist of points 1 to 5 (subgroup 1), points 6 to 9 (subgroup 2) and
points 13 to 16 (subgroup 3). The rest of the points are nonstable. The coordinates for epoch
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2 were disturbed by simulated errors with a normal distribution and standard deviation
±5 mm.

The coordinates of points of the test object 2 for both epochs are presented in Table 5.

Table 5. Coordinates of points of the test object 2 for both epochs.

Nr
Epoch 1 Epoch 2

X [m] Y [m] X [m] Y [m]

1 832.011 1627.014 831.940 1626.952
2 682.656 1701.691 682.588 1701.638
3 890.686 1771.035 890.629 1770.962
4 687.990 1829.710 687.939 1829.665
5 821.343 1893.719 821.309 1893.653
6 922.691 1952.394 922.598 1952.398
7 746.665 1995.067 746.568 1995.095
8 890.686 2112.417 890.605 2112.437
9 778.670 2149.756 778.585 2149.781
10 832.011 2229.767 831.957 2229.776
11 1002.702 2149.756 1002.754 2149.755
12 997.368 2251.104 997.410 2251.057
13 1082.714 2288.442 1082.662 2288.483
14 928.025 2331.115 927.973 2331.149
15 1040.041 2379.122 1039.982 2379.156
16 992.034 2491.138 991.975 2491.168
17 1184.062 2491.138 1184.121 2491.136

The following values of simulated annealing parameters were adopted for the test:

δx0 = δy0 = 0.1 m
δα0 = 0.01 gon
β = 0.999

To determine δα0, dependency (14) was used, assuming dmax = 1000 m.
1uα = 0.001 rad ≈ 0.06 gon and τ0 = 0.1 m(uα) was taken for the Hooke-Jeeves method.
Similar to the test example 1, the test involved n = 1000 trials.
The results obtained with both methods are presented in Table 6 (SA) and Table 7 (HJ).

Table 6. Results of identification of the stability of reference system by the simulated annealing
method—test object 2.

Group of Points Number of Hits % Hits σo [mm]

13 14 15 16 751 75.1 3.26
6 7 8 9 208 20.8 5.48
1 2 3 4 5 41 4.1 4.28

The approximate computation time for n = 1000 trials is about 100 s. The multiple call of
the procedure shows that the stability of hits is about 2% for each of the identified subgroups.

The computation time for n = 1000 trials is about 15 s. The multiple call of the proce-
dure shows that the stability of hits is about 3–4% for most of the solutions. That means
that there is quite a large group of solutions which appears randomly in particular trials.
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Table 7. Results of identification of the stability of reference system by the Hooke-Jeeves method for
the test object 2.

Group of Points Number of Hits % Hits σo [mm]

13 14 15 16 589 58.9 3.26
14 15 16 95 9.5 3.29
7 8 9 90 9.0 3.62
6 8 9 45 4.5 6.61
8 9 32 3.2 3.80
6 7 8 9 30 3.0 5.48
1 2 3 4 18 1.8 3.50
10 13 15 16 15 1.5 6.35
1 2 15 1.5 0.95
1 2 3 4 5 14 1.4 4.28
6 10 13 1.3 5.21
15 16 10 1.0 2.60
2 4 9 0.9 6.15
6 7 10 6 0.6 5.71
1 2 4 3 0.3 4.09
13 15 16 3 0.3 3.57
10 13 15 3 0.3 5.12
8 16 2 0.2 10.85
1 2 3 2 0.2 3.19
4 2 0.2 -
7 9 10 1 0.1 8.08
10 15 16 1 0.1 7.17
1 3 4 5 1 0.1 3.59
6 1 0.1 -

4. Discussion

The test objects shown in the previous section differ in total number of points and
number of subgroups of constant points. As formulated in Section 2.3, the main purpose of
the objective function definition was to detect points in the search space which correspond
to the possibly numerous subgroups of consistent points. Such a situation can be found in
the test object 1. In the test object 2 constant point subgroups consist of a smaller number
of points, while the whole number of points is larger. The difference affects significantly
the identification procedure performance.

4.1. Test Object 1

This test object consisted of two, equally numerous subgroups of constant points.
Each subgroup accounted for a half of all points with one point which is common for
both groups.

An experiment with a classical approach when the following points are excluded from
the reference base until standard deviation test is passed proved that only one subgroup of
stable points can be detected at the end of the process. The choice of the group which will
be finally chosen depends of various factors and is random to a large extent.

As can be seen in the Table 3, the simulated annealing method only provided solutions
corresponding with the assumed groups of stable points. Both groups were indicated
almost equally frequently. It is also worth noting that the dominant subgroup has a better
index of internal consistency. However, it should be borne in mind that the objective
function constituting the basis for the identification of solutions does not use the sum of
squares of adjustment residuals used for calculating σ0.

The HJ method (Table 4) also led to the identification of both assumed groups of stable
points. However, unlike the SA method, it resulted in erroneous solutions in ten cases. The
likely reason behind this behaviour of the algorithm is additional, subtle local minima of
objective functions. The minima do not pose a problem in the SA method dedicated exactly
to solving such tasks.
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It is worth noting that erroneous solutions constitute merely 1% of cases and can be
easily eliminated in the course of statistical analysis of the identification results. The HJ
method, unlike the SA method, identified more frequently the first group of points. It must
be noted that in the HJ method the difference is quite significant—62.3% as compared with
36.5%. For the SA method, those values amounted to 55.4% and 44.6%, in favour of the
second group.

To better understand the obtained results an analysis of the objective function will be
helpful. The objective function distribution for the test object 1 data is three-dimensional
and per se it is difficult to depict it in a 2D figure. Figure 7a–c depict the value distribution
for three cross-sections of the search space. These are δα = 0.0 gon (a), δα = 0.00035 gon (b)
and δα = 0.0007 gon (c), respectively.

In the figures one can notice distinct, irregular concavities in the regular objective
function distribution. These concavities correspond with groups of fixed points and result
from rejecting the outlying points, which leads to a step decrease of the objective function.

The places in the objective function distribution corresponding to the constant points
subgroups are clearly visible (especially in Figure 7a,c). Such a situation allowed both meth-
ods to achieve success. The most important circumstance was the fact that both subgroups
included nearly half of the total number of points, and as a consequence the objective
function was in a very small part affected by the points outside the considered group.

4.2. Test Object 2

The second test object consists of three subgroups of constant points and a group of
points which do not belong to any group. The most important difference arises from the fact
that even in the case of the most numerous subgroup the objective function will be strongly
affected by the rest of the points. Such a situation had an influence on the identification
results. Because of the larger displacements assumed, the δx0 and δy0 parameters needed
to be enlarged to 0.1 m. Due to more complex objective function distribution (Figure 8) the
cooling factor of the SA algorithm was set to 0.999.

As can be seen in Table 6, the SA method delivered only three different combinations
of points. All of them are assumed constant point subgroups. Unlike in the Test object 1 the
probability of detection is considerably diverse. It appeared that the subgroup consisting
of points 13–16 was most frequently detected (75.1%). The subgroup created by points 6–9
is detected with probability 20.8% and the most numerous group made by points 1–5 was
detected with least probability (4.1%).

Analysing the results of the HJ method we can see that it failed in a large number
of trials. Although the largest assumed subgroup (or the majority of its subsets) are a
dominating part of the solutions, a large number of erroneous results leads to the conclusion
that the HJ method is not a proper solution for the considered task with this kind of the
objective function. This is mainly due to the irregular objective function distribution.

The result of the SA method can be considered as a success but it also showed some
limitations of the proposed method using the objective function described in Section 2.3.
As it was assumed, the objective function is oriented at finding rather large subgroups of
points. It is common in the real objects monitoring when reference network is properly
designed and such groups ensure that the deformation of the object will be accurate and
reliable. The situation where only a minor subgroup of potential reference points keeps its
stability can appear in the case of a catastrophe which causes a large extent of changes. In
such a case combinatorial methods described in [27–29] will be a better solution.

The existence of many subgroups of constant points in the HJ procedure results
suggests that the second step analysis is necessary. Its main task is to unite the detected
subgroups. The subgroup being the subset of the more numerous subgroup should be
included in the larger subgroup. This will reduce the number of subgroups and make the
results overview clearer.
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Another aspect that must be explained is the computational cost reflected by the
computation time. For the test object 1 both methods needed similar time for the solution.
(9 s—SA, 12 s—HJ). A completely different situation appeared in the case of test object 2.
While HJ obtained the solution in a slightly longer time than for the object 1 (15 s.) The
time necessary for SA was over 10 times longer (100 s). The differences arise from three
elements: number of points, the extent of the search space fragment being examined and
the internal parameters of the particular algorithms.

The moderate growth of the HJ algorithm operating time allows us to conclude that
the number of points as well as the search space extent did not have the significant influence
on the large growth of the SA algorithm operating time. The cooling factor appeared to
be crucial. The seemingly small difference in the value of the cooling factor translated
into large growth of iteration number (1303 for the test object 1 and 4603 for the test
object 2). Such increase in the computational cost appeared to be necessary to obtain the
exact solution for the test object 2.

Although numerical tests showed that the proposed method based on optimization
algorithms and using the proposed objective function can be applied for the identification of
constant points in a monitoring network, further research seems to be necessary. The most
promising direction of the research is to formulate a more efficient objective function which
will be less sensitive to the movements of the unstable points and which will not generate
the local minima corresponding to the subsets of the larger constant points subgroups.

5. Conclusions

The proposed procedure of identification of the reference system based on the search
of the space of transformation parameters was intended not only to identify the group
of mutually stable reference points, but also to detect the potential alternative solutions.
The procedure was based on the special form of objective function and two selected
optimisation methods.

The conducted analyses and two numerical experiments proved the usefulness of
the optimisation procedure. The experiments showed that the Hooke-Jeeves algorithm
can be used only in relatively simple cases, when a great part of reference points keep the
stability. The simulated annealing algorithm performs well in a wider range of situations.
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It is able to detect even minority subgroups of reference points and is less likely to produce
erroneous result. Another advantage of the SA algorithm is the possibility to control its
performance by changing the key parameters—mainly the cooling rate. The HJ algorithm
due to its deterministic nature is much less controllable.

In the case of detecting more than one subgroup of stable points, it is necessary to
choose one of them for further calculation of displacements. Deciding which group to
select should be preceded by a separate analysis based on a broader range of information,
not only of geometrical character.
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24. Mrówczyńska, M. Identyfikacja układu odniesienia sieci niwelacyjnej obszaru Legnicko-Głogowskiego Okręgu Miedziowego.
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