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Abstract: In this review a brief description of the invasive phenomena associated with algae and its
consequences on the ecosystem are presented. Three examples of invasive algae of Southern Europe,
belonging to Rodophyta, Chlorophyta, and Phaeophyta, were selected, and a brief description of each
genus is presented. A full description of their secondary metabolites and biological activity is given
and a summary of the biological activity of extracts is also included. In Asparagopsis we encounter
mainly halogenated compounds. From Caulerpa, several terpenoids and alkaloids were isolated,
while in Sargassum, meroterpenoids prevail.
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1. Introduction

Alien species are plants, animals, or microbes that have been introduced and spread into new host
regions, establishing populations that can become invasive if they interfere with the host ecosystem.
These invasive species become established in natural or seminatural ecosystems, increasing in
abundance and distribution and threatening biological diversity. They compete with native species, and
usually have high reproductive rates assisted either by the lack of predators in the new environment or
by the tolerance of a different range of environmental conditions. As a consequence, they are difficult
to contain, harm biodiversity, and change the new host ecosystem [1].

Alien macroalgae are particularly likely to become invasive: their high reproductive rates, their
production of toxic metabolites, and/or their perennial status make them more competitive than the
native species, increasing the probability that they will become invasive. Several of these species
periodically become a major problem, clogging waterways, fouling nets, and changing nutrient regimes
in areas around fisheries, desalination facilities, and aquaculture systems [1]. They impact on local
economies, such as fishery [2] and tourism.

The mechanism of invasion by macroalgae thus begins with transport (by means of fouling, ballast
waters, or aquaculture), proceeds by establishment of the species (through biotic and abiotic factors),
and ends with its spread and impact [3–7]. Management of this update problem requires adequate
measures [8] and control procedures, such as mechanical means, biological control, and/or chemical
remedies [9].

With global warming there is a general increase of the tendency of invasive episodes, this being
a situation of concern especially for Southern Europe. The Mediterranean coast and Atlantic areas
near Gibraltar are key points in the dynamics and spread of these phenomena. As an example, in
2016, several beaches in Gibraltar were interdicted by Dictyota invasions with direct impact on local
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tourism, and remediation and management costs. However, macroalgae have underlying potential.
Their commercial use as a source of nutraceuticals, food additives, biofuel, antifouling agents, or
pharmaceuticals could be a way to exploit these phenomena in a more profitable way [4,10].

Thus, knowledge of the chemistry of these macroalgae is by no means out of date, as recent papers
on the activity of algal extracts well document. Knowledge of their secondary metabolites and this
review are also a starting point to the understanding of the chemistry of these species. There is a need,
however, to fully characterize these invasive species in their new environment in order to make the
most of their existence, and perform a strict correlation between metabolite and activity.

In this review we chose three genera of invasive species of the Mediterranean—Asparagopsis,
Caulerpa, and Sargassum—as examples of the chemistry of red, green, and brown algae, respectively.
Two of them—Asparagopsis and Caulerpa—are already signaled by the International Union for
Conservation of Nature (IUCN) Centre for Mediterranean Cooperation [1].

The secondary metabolites of the chosen genus are presented and, when possible, the studied
biological activities are given. Reference to their study as invasive specimens is also provided. A list of
reports on the biological activity of extracts is also given. This review covers the literature up to 2017.

2. Structural Characterization and Biological Activity

In this paper a chemical and biological activity summary of three different genera of invasive
species of Southern Europe is presented. The structural identification of the mentioned metabolites
relies on the usual techniques such as NMR, IR, MS, and chemical transformations for the less recent
publications. Although some of the studies include biological activities of the isolated metabolites,
most of the papers only mention isolation and characterization.

2.1. Asparagopsis

Asparagopsis is a red seaweed genus of the family Bonnemaisoniaceae that has a diplohaplontic life
cycle and a heteromorphic tetrasporophyte known as the “Falkenbergia” stage [11] Currently, only two
species of this genus are accepted, A. armata and A. taxiformis, the former being endemic to the southern
hemisphere and the latter being widely distributed in the tropics and subtropics [12]. Recently, a study
of the lineages of this genus by DNA sequence was published [13].

Both species of this genus are native to Western Australia. A. armata is nowadays distributed
throughout Europe in both the Atlantic and the Mediterranean basin, where it is highly invasive.
A. taxiformis is invasive around the Indo-Pacific region, including Japan and Hawaii, and is currently
widespread throughout the Mediterranean and along the Atlantic coast of Europe. While A. armata
was probably introduced by maritime transport, A. taxiformis was probably introduced by oyster
aquaculture [1].

Asparagopsis has been known to produce halogenated low-molecular-weight compounds [14–21].
We can also find reports on the presence of sterols in A. armata including 22-dehydrocholesterol,

cholesterol, desmosterol, brassicasterol, 25-hydroxycholesterol, 25-hydroxy-24-methylcholesterol,
fucosterol, β-sitosterol, liagosterol, and the hydroxylated sterols 1–4 represented in Figure 1 [22–24].
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A more recent study consists of the identification of the two brominated cyclopentenones 5 and 6
from A. taxiformis (Figure 2) [25].
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Figure 2. Brominated cyclopentenones from A. taxiformis.

Ecotoxicological activities of 5 and 6 against a marine bioluminescent bacterium (Vibrio fischeri)
were used as an assessment of their role in the environment, revealing high toxicities for both
compounds (EC50 effective concentration, 0.16 µM for 5 and 6). Additionally, both compounds
were evaluated in antibacterial, antifungal, and cytotoxicity assays. Compounds 5 and 6 exhibited
mild antibacterial activities against the human pathogen Acinetobacter baumannii.

2.2. Caulerpa

Green algae of the genus Caulerpa Lamouroux represent the single genus in the family
Caulerpaceae, which consists of approximately 60 species worldwide, generally distributed in
shallow-water tropical and subtropical marine habitats. One of its species, Caulerpa racemosa, also
known as “sea grapes”, is an edible marine green seaweed widely distributed throughout the South
China Sea.

C. racemosa var. cylindrica is native to SouthWestern Australia, and is invasive in the
Mediterranean [26–28] where its introduction is still speculative. Maritime traffic and aquarium
trade are the most likely vectors. It can still be found in aquarium stores and is sold by internet retailers.
C. taxifolia was accidentally introduced into the Mediterranean from a public aquarium in Monaco.
Since then, it has spread rapidly due to its natural vegetative dispersal mechanism, its lack of natural
grazers, and the ease of dispersion by boats, anchors, fishing nets, and aquaria [1].

We can find several reports on the chemistry of Caulerpa sp. These include the isolation of
three squalene derivatives from C. prolifera [29] and fatty acids and sterols from C. chemnitzia,
C. faridii, C. manorensis, C. racemosa, and C. taxifolia, including cholesterol, 24-methylcholesterol,
24-methyl-cholesta-7,22-diene-3β-ol, 4,24-dimethyl-cholesta-5,22-diene-3β-ol, and β-sitosterol [30].

From C. racemosa, fucosterol and the oxygenated sterols 7–10 in Figure 3 were isolated, together
with both C-24 epimers of saringosterol 2 [30,31].
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Figure 3. Oxygenated sterols from C. racemosa.

From C. racemosa, several varied metabolites were obtained by Yang et al. [31]. These include
trans-phytol, trans-phytylacetate, α-tocopherolquinone, and the metabolites 11–17 in Figure 4.
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The enzyme inhibitory activities of all the compounds were evaluated in vitro against PTP1B
(protein tyrosine phosphatase 1B) and related PTPs (protein phosphatases) (TCPTP (T-cell PTP),
CDC25B (cell division cycle 25 homolog B), LAR (leukocyte antigen-related phosphatase), SHP-1 (src
homology phosphatase-1), and SHP-2 (src homology phosphatase-2)). Compounds 14, trans-phytol,
trans-phytylacetate, α-tocopherolquinone, 16, and 17 and the sterols 7, 8, and 24R saringosterol 2 and
10 exhibited different levels of PTP1B inhibitory activity with IC50 (inhibitory concentration) values
ranging from 2.30 to 50.02 µM. Of these compounds, 14, α-tocopherolquinone, and 7 showed the most
potent inhibitory activities towards PTP1B with IC50 values of 2.30, 3.85, and 3.80 µM, respectively.
More importantly, the potent PTP1B inhibitors 14, α-tocopherolquinone, and 7 also displayed high
selectivity over the highly homologous TCPTP and other PTPs. The neuroprotective effects of the
compounds against Aβ25–35 (amyloid β-peptide fragment 25–35)-induced cell damage in SH-SY5Y
(neuroblastoma cell line) cells, a widely used neuroblastoma cell line for study of neurodegenerative
disease, were also investigated. Compounds 17, 7, and 8 exhibited significant neuroprotective effects
against Aβ25–35-induced SH-SY5Y cell damage with 11.31–15.98% increases in cell viability at 10 µM.
In addition, the cytotoxic activities of the isolated compounds were tested against the human cancer
cell lines A-549 (human lung carcinoma) and HL-60 (promyelocytic leukemia cells). Only the mixture
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of 11 and 12, 16, and α-tocopherolquinone exhibited moderate cytotoxicity against HL-60, and
α-tocopherolquinone exhibited weak cytotoxicity against A-549 [31].

From C. racemosa we can also find two prenylated p-xylenes [32] 18 and 19 and racemosins A 20
and B 21 [33] (Figure 5).
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In in vitro bioassays, the compounds 18 and 19 exhibited a broad spectrum of antifungal activity
against Candida glabrata, Trichophyton rubrum, and Cryptococcus neoformans with MIC80 (minimum
inhibitory concentration) values between 4 and 64 µg/mL when compared to amphotericin B (MIC80

values of 2.0, 1.0, and 4.0 µg/mL, respectively) as a positive control and showed no growth inhibition
activity against the tumor cells HL60 and A549 [32].

The biological activity of compounds 20–22 was tested in a neuroprotective bioassay using
Aβ25–35-induced neurotoxicity in SH-SY5Y cells. Compound 22 showed significant neuroprotection
(14.6% increase in cell viability) at the concentration of 10 µM, while compounds 20 and 21 showed
moderate/weak neuroprotective activity with 5.5% and 8.1% increase in cell viability (10 µM),
respectively, when compared to EGCG (epigallocatechin gallate), 16.57% increase at 10 µM) as the
positive control [33].

On the terpenoid constituents of this genus we can find reports on monoterpenes [35,36]; the
sesquiterpenes 23–39 (Figure 7, Table 1), isolated from several species [35–39]; the diterpene 40 from
C. trifaria [40]; and the diterpenes 41–54 from C. brownii [41,42] (Figure 8).
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Table 1. Sesquiterpenes from Caulerpa sp.

Species Compounds Biological Activity

C. ashmeadii [39] 34–39 Feeding preference, antimicrobial, ichthyotoxicity
C. bikinensis [38] 30–32 Feeding deterrents

C. flexilis var. muelleri [35] 29, 33 -
C. prolifera [37] 25 -
C. taxifolia [36] 26–28 -
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A study [39] on the feeding preference by herbivorous fishes on several species of caulerpa
led to isolation of 34–39 from C. ashmeadii. Compounds 34 and 36–39, along with the alkaloid
caulerpin 22, were tested for field feeding preference, antimicrobial activity (against the marine fungus
Lagenidium callinectes, and the bacteria Vibrio leignathi, V. phosphoreum, and SK13 (Gram-positive
spore-forming bacteria requiring Mn for growth)), and ichthyotoxicity. All compounds except
compounds 38 and 39 showed antimicrobial activity toward at least one marine bacterium. Compounds
36 and 37 also showed activity toward all three bacteria. All metabolites, except the fatty esters 38 and
39 and caulerpin 22, were toxic to damselfish within 1.5 h. Compounds 36 and 37 again showed the
highest degree of biological activity in this assay.

From C. bikinensis, compounds 30–32 were isolated and tested as feeding deterrents [38].
The diacetate 30 and the dialdehyde 31 were found to be toxic to the Pacific damselfish
Pomacentrus phillipinus at the 10 and 5 µg/mL levels. Feeding deterrence effects were reliably produced
from 30 and 31 when tested at 1000 ppm levels against similar herbivorous fishes. The cytotoxicities
of these compounds against the fertilized egg of the Pacific sea urchin Lytechinus pinctus were also
measured. Again, 30 and 31 showed ED50 (effective dose) values of 2 and 1 µg/mL. The activities
noted for these metabolites reinforce their likely roles in nature as agents of chemical defense.

From C. flexilis var. muelleri, compounds 29 and 33 were isolated. No absolute configuration was
determined for 33 [35].

From C. prolifera, 25 was isolated and its absolute configuration determined as S [37].
A study of C. taxifolia from Cap Martin, Côte d’Azur, at the time considered an invasive species,

allowed the isolation of compounds 24–28, for which no absolute configurations were determined.
The proposed configurations were based on biosynthetic considerations [36].

From a larger study on algae of the order Caulerpales, diterpene 43 was isolated from
C. brownii. [41]. Compound 43 had already been tested for biological activities. It showed antibacterial
activity towards the pathogenic bacteria Staphylococcus aureus and Bacilus subtilis. It was also tested
against marine bacteria and was found to be inhibitory towards Vibrio harveyi and V. leiognathi. It is
also active against E. coli and V. anguillarum [41]. Handley reported the isolation of diterpenes 41–54
from branched and unbranched specimens of C. brownii and compound 50 was reported for the first
time as a natural product [42].

From C. trifaria, diterpene 40 was isolated and the depicted configuration is proposed [40].

2.3. Sargassum

Sargassum is a genus of brown seaweeds with tropical and subtropical distribution, existing in all
oceans. It is a large genus, comprising over 350 species. Some of its species are used in food in Japan
and Korea, such as S. fusiforme and S. muticum. Due to air vesicles, S. natans and S. fluitans form large
floating masses. S. muticum is invasive in the Mediterranean [43,44] and in Western Europe [45], and
seems to have been introduced by the business of oyster culture [46].

A recent review on the therapeutic potential and health benefits of these species has been
published [47].

We can find several reports on the isolation of sterols (Figure 9) from Sargassum sp.
From S. asperifolium [48], saringosterol 2 and 60 were isolated.
From S. carpophyllum [49], 61 and 62 were isolated, together with fucosterol, 24-ethylcholesta-4,

24(28)-dien-3,6-dione, 56, 57, 9, and 10. All compounds were tested for bioactivity of inducing
morphological deformation of P. oryzae mycelia, and cytotoxic activity against several cultured cancer
cell lines (P388 (mouse lymphocytic leukemia), HL-60, MCF-7 (breast adenocarcinoma), HCT-8 (human
ilececal cancer), 1A9 (human ovarian cancer), HOS (human bone tumor), PC3 (human prostate cancer)).

The data showed that all the steroids exhibited activities causing morphological abnormality
of P. oryzae mycelia. Fucosterol and 24-ethylcholesta-4,24(28)-dien-3,6-dione exhibited significant
cytotoxicity toward P388 cancer cells, whereas 61 and 56 showed mild activity against the growth of
HL-60 cancer cells. In the antitumor screen using a panel of human cell lines only the epoxy sterol
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10 showed some cytotoxicity against several human cell lines. Compounds 62, 9, and 10 were also
evaluated for HIV (Human immunodeficiency virus) growth inhibition activity in H9 lymphocytes.
The EC50 and IC50 values for 9 were 0.500 and 0.975 mg/mL, whereas 62 and 10 were inactive.
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From S. fusiforme, fucosterol [50,51], both C-24 epimers of saringosterol 2 [51] and 55–59 were
isolated [51]. Fucosterol was shown to possess antidepressant and anticonvulsional effects [50].
Compounds 55–59, fucosterol, and both C-24 epimers of saringosterol 2 were tested as LXR (liver
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X receptor) agonists: 24S-saringosterol 2 acted as a selective LXRβ agonist and was found to be
potentially useful as a natural cholesterol lowering agent [51].

From S. oligoscystum [52], cholesterol, 22-dehydrocholesterol, fucosterol, both C-24 epimers of
saringosterol 2, and 55, 56 and 58 were isolated.

From S. thunbergii [53], 63 was isolated, together with 3, and 64–66. Compound 63 exhibited
significant inhibitory activity against human PTP1B with an IC50 value of 2.24 µg/mL.

From the genus Sargassum we can also find reports on the isolation of quinones and
hydroquinones, chromenes, and varied structures.

Quinones and hydroquinones
We can find several reports on the isolation of quinones and hydroquinones from Sargassum sp. [54–65].

Their structures are in Figure 10 and occurrences are in Table 2.
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From S. elegans, 68, 69, and 72 were isolated by electrochemistry-guided fractioning and their
antioxidant potential was evaluated [54].

From S. fallax [55], 67–71 were isolated. Sargaquinone 67 was isolated as a mixture with
sargaquinoic acid 68. Both 68 and 69 were found to display moderate antitumor activity when
tested against P388 cells. They displayed only weak activity against Bacillus subtilis.
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From S. herophyllum [56], 67, 69, and 72 were isolated. They displayed moderate antiplasmodial
activity against P. falciparum.

Table 2. Quinones and hydroquinones from Sargassum sp.

Species Compounds Biological Activity

S. elegans [54] 68,69,72 Antioxidants

S. fallax [55] 67–71 Antitumour against P388

S. herophyllum [56] 67,69,72 Antiplasmodial activity

S. michranthum [57] 73–76 Antioxidants, radical scaveging, inhibitory effect on lipid
peroxidation, antiproliferative against 26-L5, cytotoxicity

S. paradoxum [58] 67–71,77–83 Antibacterial

S. sagamium var. yezoense [59] 68,69,80,84 -

S. sagamium [64,65] 68 Anticholinesterase activity, proapoptotic, and
anti-inflammatory

S. serratifolium [60] 68,80 -

S. siliquastrum [61] 96,97 Radical scavenging

S. thunbergii [62,63] 68,69 Osteoblastogenesis-enhancing abilities

S. tortile [66] 67,89–95 -

S. yezoense [67,68] 68,69,85–88 Transcriptional activity of PPARs (Peroxisome
proliferator-activated receptors), antidiabetic potential

From S. michranthum [57], 73–76 were isolated. Compounds 74–76 displayed strong antioxidant
activity, such as an inhibitory effect on NADPH-dependent lipid peroxidation in rat liver microsomes
and radical-scavenging effect on DPPH (1,1-diphenyl-2-picrylhydrazyl). The inhibitory effect on lipid
peroxidation was shown to be the same or stronger than that of the positive control, α-tocopherol.
The authors identify the absence or presence of an unsaturated cis carbon–carbon double bond in
the long-chain fatty acid ester moiety of 75 and 76 as responsible for the large difference in the
inhibitory activity. Both compounds were found to have moderate radical-reducing effect on DPPH at
a dose of each sample of 100 mg/mL. Based on these preliminary results, the author suggest that the
hydroquinone moiety of 74 must participate in antioxidant activity, while in compounds 75 and 76,
hydrolysis of their ester group occurs first, and the resulting 74 may owe this activity. Antiproliferative
activity of 74–76 against Colon 26-L5 cell was also evaluated. Compounds 74 and 76 showed relatively
strong cytotoxic activity while moderate activity in the case of 75 was observed.

From S. paradoxum [58], 67–71 together with 77–83 were identified by HPLC-NMR and HPLC-MS.
Some of the compounds were isolated by bioguided fractioning and tested for their biological activity.
Compared to the antibiotic ampicillin, the isolated compounds were far less potent against S. aureus
and S. pyogenes. However, compounds 69, 71, 80, and 260 were more potent against P. aeruginosa
than ampicillin. There was no difference in activity between compounds with the hydroquinone
or the p-benzoquinone moieties. The activity observed for sargaquinone 67, the simplest of the
meroditerpenoids isolated, suggests that the unsubstituted meroditerpenoid skeleton is responsible
for the activity against P. aeruginosa. The addition of an alcohol group at position 12′ or 20′ (70, 77,
78, 82, and 83) appears to reduce the activity against P. aeruginosa, but increases the activity against
S. pyogenes. Finally, incorporation of a carboxylic acid at position C-20′ (69 and 68) gives rise to activity
against S. aureus and S. aureus MRSA Methicillin-resistant Staphylococcus aureus).

From S. sagamium var. yezoense [59], 68, 69, 80, and 84 were isolated and from S. sagamium, 68 was
isolated [64]. Its anticholinesterase activity and potential in Alzheimer’s disease is described [64].
The proapoptotic [65] and anti-inflammatory activities [69] of 68 are also documented.



Mar. Drugs 2018, 16, 265 13 of 28

From S. serratifolium [60], 68 and 80 were isolated and from S. siliquastrum [61], 96 and 97 were
isolated. Compound 96 showed radical-scavenging activity in DPPH assays.

From S. thunbergii [62,63], sargaquinoic acid 68 and sargahydroquinoic acid 69 were isolated.
Since S. thunbergii was shown to inhibit adipogenesis in pre-adipocytes while enhancing osteoblast
differentiation of pre-osteoblasts, and 68 and 69 were isolated in a bioguided study, the authors suggest
that these two compounds possess osteoblastogenesis-enhancing abilities [63].

From S. tortile [66], 67 and 89–95 were isolated.
Compounds 68 and 69 were also isolated from S. yezoense [67]. Their effect on the transcriptional

activity of PPARs (Peroxisome proliferator-activated receptors) was studied. The authors suggest that
both compounds could be possible candidates for the treatment of type-2 diabetes and dyslipidemia.
From S. yezoense [68], 85–88 were also isolated. Their antidiabetic potential was also evaluated.

2.4. Chromenes

We can also find reports on the isolation of chromenes [58,60,62,64,65,70–77]. Their structures are
in Figure 11 and occurrences are in Table 3.
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Table 3. Chromenes from Sargassum sp.

Species Compounds Biological Activity

S. paradoxum [58] 98 -

S. serratifolium [60] 99 -

S. siliquastrum Yoon
[70–73,77] 100–120,127 Anti-inflammatory, antioxidant, radical-scavenging

activity, inhibition of butylcholine esterase

S. sagamianum [64,65] 125 Proapoptotic activity, anticholinesterase activity

S. thunbergii [62] 121,122,125 Radical scavenging

S. tortile [74–76] 123,124,126 Larval attractants

From S. paradoxum [58], 98 was isolated and from S. serratifolium [60], 99 was isolated. This compound
was obtained from sargaquinoic acid 68 upon standing in methanol; it is therefore suggested to be
an artifact.

From S. sagamianum, the isolation of 125 and its proapoptotic activity is described [65].
Its anticholinesterase activity and potential use in Alzheimer’s disease is also described [64].

From S. siliquastrum, Yoon [70] reported the isolation of 100, and its potential as a novel
anti-inflammatory agent was investigated. Lee [71] reported the isolation of 101–106. The antioxidant
activity of these compounds was evaluated by various antioxidant tests, such as scavenging effects on
generation of intracellular ROS (reactive oxygen species), increments of GSH (glutathione) level, and
inhibitory effects on lipid peroxidation in human fibrosarcoma HT 1080 cells. Compounds 101–106
significantly decreased generation of intracellular ROS and inhibited lipid peroxidation while they
increased levels of intracellular GSH at a concentration of 5 µg/mL. Compound 101 was also isolated
by Heo [72] and its anti-inflammatory activity against lipopolysaccharide-exposed RAW 264.7 cells
was evaluated. Jang [73] reported the isolation of 101 and 102, together with 107–120. Although the
configurations of 101, 102, and 120 are relative, for 109–115 the absolute configurations of the hydroxyl
groups were determined by a Mosher’s method. Using DPPA (1,1-diphenyl-2-picrylhydrazyl), all
of the compounds exhibited significant radical-scavenging activity in the range of 87–91% at the
concentration of 100 µg/mL. In addition, compounds 111 and 117 displayed 82.7 and 80.0% inhibition,
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respectively, toward butylcholine esterase at the same concentration, while the other sargachromanols
showed weaker or negligible activity. Cho reported the isolation of 127 and its antioxidant activity [77].

From S. thunbergii [62], 125, 121, and 122 were isolated. They were evaluated as to their capacity to
scavenge DPPH radicals, and they exhibited EC50 values of 30 and 31 µg/mL, respectively, compared
with BHT (butylated hydroxytoluene) (EC50, 32 µg/mL) and α-tocopherol (EC50, 18 µg/mL). On their
scavenging activity on authentic ONOO−/induced ONOO- from morpholinosydnonimine (SIN-1),
their scavenging ratios on authentic ONOO− were 60.0 and 57.1% at 5 µg/mL, respectively, while
their inhibition ratios against the generation of ONOO− from SIN-1 were 98.6 and 90.6% at the
same concentration, respectively. Scavenging activities of L-ascorbic acid and penicillamine, positive
controls, on authentic/induced ONOO− were 98.1 and 90.4%, and 93.5 and 88.2%, respectively.

From S. tortile, Kato [74] reported the isolation of 123 and 124, together with their activity as
attractants of the swimming larvae of Coryne uchidai. Kikuchi [75,76] reported the isolation and
identification of 126. Absolute configurations were determined by ECD (electronic circular dichroism).

2.5. Other Compounds

Within the constitution of Sargassum sp. we can also find various compounds [48,54,56,61,78–82].
Their structures are in Figure 12 and occurrences are in Table 4.
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Table 4. Other structures from Sargassum sp.

Species Compounds Biological Activity

S. asperifolium [48] 128,129 -
S. autumnale [78] 130–139 Endothelin antagonists

S. elegans [54] 140 Antioxidant
S. fusiformis [79] 140 -

S. heterophyllum [56] 140 Antiplasmodial, cytotoxicity
S. Kjellmanium [80,81] 141,142 -

S. siliquastrum [61] 143–159 Radical scaveging, active against isocitrate lyase
S. thunbergii [82] 160,161 -
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From S. asperifolium [48], two hydroazulenoids, 128 and 129, were isolated.
From S. autumnale [78], compounds 130–139 were isolated and were tested as endothelin

antagonists; they were not always potent and selective.
From S. fusiformis [79], fucoxanthine 140 was isolated by microwave-assisted extraction coupled

with high-speed countercurrent chromatography. This compound was also isolated from S. elegans [54]
and S. heterophyllum [56]. The antioxidant potential of 140 was evaluated [54] and it also showed
a moderate antiplasmodial activity (IC50 = 1.5 µm) [56]. In order to assess the selectivity of
fucoxanthin 140 for P. falciparum, the toxicity against a Chinese hamster ovarian cell line was evaluated.
The relatively low cytotoxicity of fucoxanthin (IC50 = 83.7 µm) translated into a promising selectivity
index (SI = antiplasmodial IC50/cytotoxicity IC50) of 54 [56]. From S. Kjellmanium, 141 [80] and 142 [81]
were isolated. For both compounds, the structure was confirmed by single-crystal X-ray analysis.

From S. siliquastrum [61], compounds 143–159 were isolated. They showed moderate to significant
radical-scavenging activity in DPPH assays. The 100-fold increase in radical-scavenging activity of
the diphenolic isonahocols relative to the monophenolic nahocols indicated the role of the phenolic
group in this activity. None of these compounds exhibited antimicrobial activity against Gram-positive
or -negative bacteria or against pathogenic fungi. Conversely, the isonahocols 154–159 showed slight
activity against sortase A derived from Staphylococcus aureus. The nahocols 143–153 showed no
inhibitory activity against sortase A. These compounds were, however, weakly active against isocitrate
lyase derived from Candida albicans.

From S. thunbergii [82], two resorcinols were isolated, 160 and 161.
Finally, we can also find reports on the antifouling activity of fats and phthalic acid derivatives

from S. confusum [83] and the isolation of farnesylacetones from S.micracanthum [84,85], from
S. sagamianum with moderate anticholinesterase activity [86], and from S. siliquastrum with a moderate
vasodilatation effect on the basilar arteries of rabbits [87]. Three linear bisnorditerpenes were also
isolated from unidentified Sargassum sp. [88].

3. Biological Activity of Extracts

Macroalgae continue to attract the attention of researchers, as several reports on the activity of
extracts in the literature testify. From the chosen genera here mentioned the following reports can
be found.

3.1. Asparagopsis sp.

On the bioactivity of extracts from Asparagopsis sp. we can find reports on marine and biomedical
antibacterial and antifungal activities of in both species of this genus [89–97]; nematicidal activity of
A. taxiformis against the larvae of Meloidogyne javanica [98]; antifouling, anticyanobacterial, piscicidal,
and crustacean toxicity of A.taxiformis [99]; and antioxidant and cytotoxic activities of A. armata [100].

3.2. Caulerpa sp.

For Caulerpa sp., studies on the bioactivity of extracts include antimicrobial activity of
C. occidentalis [101], C. cupressoides [102], and Caulerpa sp. [103]; nematicidal activity of C. racemosa
against the larvae of Meloidogyne javanica [98]; antioxidant activity of C. lentilifera and C. racemosa [104];
antinociceptive activity of C. racemosa [105], C. mexicana, and C. sertularioides [106]; anti-inflammatory
activity of C.mexicana and C. sertularioides [106] and C. peltata [107]; antileishmania of C. cupressoides [102];
and antiviral activity against Dengue of C. racemosa [108] and HSV-1 (herpes simplex virus 1) of
C. cupressoides [102]. Aqueous and methanolic extracts of C. mexicana were also found to suppress
cell migration and ear edema induced by inflammatory agents [109].

3.3. Sargassum sp.

Reports on the bioactivity of extracts of Sargassum sp. include antifouling activity of S. muticum [110];
anticoagulant [111], antioxidant [112], and anti-inflammatory [113] activity of S. horneri; antioxidant
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activity of S. siliquastrum [114,115], S. polycystum [116], and Sargassum sp. [117]; antioxidant
and anti-cholinesterase activity of S. wightii [118]; inhibitory effect on lipid peroxidation of
S. micracanthum [119]; antimicrobial activity of S. siliquastrum [120]; antipyretic, analgesic, and
anti-inflammatory S. fulvellum and S. thunbergii [121]; anti-inflammatory activity of S. Serratifolium [122];
antiallergenic activity of S. tennerimum [123]; anti-diabetic and hypolipidemic activity of
S. yezoense [124]; larvicidal activity against malaria vector Anopheles stephensi of S. swartzii [125];
antigenotoxic activity of S. dentifolium [126]; antitumour activity of S. wightii against Dalton’s ascites
lymphoma [127] and of S. tenerrimum against Ehrlich ascites carcinoma [128]; and antimelanogenesis
activity of S. polycystum [129]. The action of S. fulvellum on skin dermatitis [130] and on neuronal
maturation and synaptogenesis [131] is also documented, as well as the chemical genetic effects of
S. wightii during embryonic development in zebrafish [132].

4. Conclusions

It is interesting to find the differences between the chemical compositions of all three genera.
Asparagopsis is mainly rich in halogenated compounds, Caulerpa shows metabolites from varied
biosynthetic routes, and Sargassum is rich in meroterpenoids. While biological activity of Asparagopsis
metabolites is scarce, Caulerpa metabolites were shown to have inhibitory activity of PTPs, and to be
neuroprotective, deterrents, and antibacterial. Sargassum metabolites are cytotoxic to cancer cells, and
are antiplasmodial and antioxidants. Of course, only the more recent literature mentions biological
activity results for the isolated metabolites. Extracts from all three genera show varied biological
activities that make this a promising area of research. There is, however, a need to reinvestigate these
genera as particular invasive species in their new host habitat since almost no reports are found on their
chemistry. Their success in new environments can surely be correlated to their secondary metabolism
and could provide new uses for otherwise noxious species.
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Abbreviations

1A9 human ovarian cancer
A549 human lung carcinoma
Aβ25–35 amyloid-peptide fragment 25–35
CDC25B cell division cycle 25 homolog B
DPPA 1,1-diphenyl-2-picrylhydrazyl
DPPH 1,1-diphenyl-2-picrylhydrazyl
ECD electronic circular dichroism
EC Effective concentration
ED effective dose
EGCG epigallocatechin gallate
GSH glutathione
HCT8 human ilececal cancer
HIV- human immunodeficiency virus
HL60 promyelocytic leukemia cells
HOS human bone tumor
HSV-1 herpes simplex virus 1
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IC inhibitory concentration
LAR leukocyte antigen-related phosphatase
LXR liver X receptor
MCF-7 breast adenocarcinoma
MIC minimum inhibitory concentration
MRSA Methicillin-resistant Staphylococcus aureus
P388 mouse lymphocytic leukemia
PC3 human prostate cancer
PPARs Peroxisome proliferator-activated receptors
PTP1B protein tyrosine phosphatase 1B
PTPs protein phosphatases
ROS reactive oxygen species
SHP-1 src homology phosphatase-1
SHP-2 src homology phosphatase-2
SH-SY5Y neuroblastoma cell line
SK13 Gram-positive spore-forming bacteria requiring Mn for growth
TCPTP T-cell PTP
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