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Language acquisition in humans and song learning in songbirds naturally

happen as a social learning experience, providing an excellent opportunity

to reveal social motivation and reward mechanisms that boost sensorimotor

learning. Our knowledge about the molecules and circuits that control these

social mechanisms for vocal learning and language is limited. Here we pro-

pose a hypothesis of a role for oxytocin (OT) in the social motivation and

evolution of vocal learning and language. Building upon existing evidence,

we suggest specific neural pathways and mechanisms through which OT

might modulate vocal learning circuits in specific developmental stages.
1. Vocal learning (speech and song) and social experience
requirements

Vocal learning is the ability to imitate sounds, found to date in only a few inde-

pendently evolved species of mammals (humans, bats, cetaceans, sea lions and

elephants) and birds (songbirds, parrots and hummingbirds) [1,2]. It is distinct

from both auditory and vocal usage learning, which are more ubiquitous

among species, and are necessary but not sufficient for vocal learning [3,4].

Early language acquisition is very strongly shaped by social interactions [5].

These social interactions include social motivation for speech learning, empha-

sized since the dawn of developmental psychology [6]. More recently, social

motivation for speech learning has been viewed as a type of social learning

[5,7]. Even other forms of sensory–motor learning can involve social feedback

[8], and plausibly speech learning could be using a similar mechanism. Several

laboratories have experimentally begun to test this hypothesis in humans, and

determine to what extent social interactions that modulate attentional, sensory

and sensorimotor mechanisms promote language learning. For example, phono-

logical features of babbling are shaped developmentally by social feedback [9]

and child speech-related vocalizations (non-cry, non-laugh and non-vegetative)

are more likely to receive adults’ responses, and in turn, a child’s vocalization

tends to be speech-related, if the previous speech-related vocalization received

an immediate adult feedback [10]. That is, babbling both regulates and is regu-

lated by social interactions, where an infant is socially motivated to learn how

to speak, because this learning process is socially rewarding.

This hypothesis, though, needs to be tested with experimental manipulations

in non-human animals. The few examples we have from children reared under

conditions of social isolation can just partially inform us on the importance of

social feedback in language acquisition, both in the auditory and speech domains

(as in the famous case of Genie [11]). Kuhl et al. [12] managed to tease apart inter-

personal interactions from sensory information, by exposing infants to either
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audiovisual stimuli or just audio recordings, showing that

successful language learning is impossible without social

cues. Nonetheless, this experiment was made for second-

language learning, leaving unanswered the question of

whether the primary speech learning mechanisms can be

dissociated from the relevant motivational and rewarding

mechanisms provided by social interactions. Further, these

experiments tested mainly auditory learning/perception,

which is thought to have a different mechanism and brain

pathway than speech production learning [4].

Building on the extensive comparative literature on the role

of motivation and social decision making in sensory–motor

networks [13,14], we think that animal models could shed

more light on this issue, and specifically, vocal learning species.

Of the non-human vocal learners, songbirds have been

studied the most. Songbirds’ vocal-learning ability displays

parallels to human speech learning, having undergone conver-

gent evolution, at the level of behaviour, neural connectivity

and gene expression specializations in song and speech brain

regions [2,15,16]. Thus, by dissecting the social mechanisms

of vocal learning in songbirds, we could illuminate how

social interactions shape vocal learning in humans.

Like human infants, juvenile songbirds learn their songs

from social tutors. In laboratory tests, juvenile zebra finches

learn best from a live tutor [17]; learning from purely tape

recorded songs is less effective, and for some species, often not

effective at all [18]. This strong social requirement makes the

zebra finch a good candidate for modelling the impact social

factors have on human vocal learning. Under conditions

between live tutor versus speakers producing song, there are

intermediate levels of vocal learning. For example, blindfolded

zebra finches interacting with their tutors via grooming or peck-

ing do learn some song, probably in a similar way that blind

humans acquire a fully fledged language [17]. Tchernichovski

et al. [19] have been able to get young zebra finches motivated

to learn how to sing without a live tutor, by having them perform

an operant conditioning task for the song playback from a fake

bird model. When the juveniles have to peck on a key to

induce song playbacks from the model, they eagerly keep peck-

ing, and within days to weeks begin to start copying the song

from the model [20]. However, if the key is not present and

song is played from the model only or the speaker is removed

from the model with song played in another location, the juven-

iles learn very little if at all [21]. These findings indicate that live

tutors or fake model birds emit more robust singing social

stimuli giving rise to enhanced vocal development, compared

to when juvenile songbirds are reared with speakers. This

suggests that there could possibly be a social reward mechanism

enhancing sensorimotor imitation, a hypothesis that remains to

be tested, particularly at the neural and molecular level.

Even though this live versus tape-tutor paradigm could

have functioned as the best springboard to study the social

mechanisms of vocal learning, researchers have mostly used it

to control the auditory parameters the birds get exposed to

(e.g. [21]). In addition, since the discovery that male zebra

finches alter the structure of their song, gene expression and

physiology in song nuclei depending on whether they sing to

no one in particular (undirected singing) or to attract a female

(directed-singing) [22,23], many studies have focused on adult

social interactions after vocal learning is complete. There is a

paucity of studies dealing with how social interactions mechan-

istically affect vocal learning in juvenile songbirds. Among

these, Chen et al. [24] show that social influences on attention
to song enhance vocal learning: tutors altered the structure of

their song when directing it to juveniles, reminiscent of the

special ‘motherese’ way humans speak when addressing their

speech to infants.

Deciphering the mechanisms of the social motivation of

vocal learning, and determining whether the mechanism of

social motivation to learn vocalizations can be dissociated

from the act of vocal learning, we believe requires figuring

out the circuit and molecular mechanisms. Towards this end,

we propose that the neuropeptide oxytocin (OT) and its social

reward circuitry make a very good candidate that could control

the social reward mechanisms for vocal learning.
2. Oxytocin as a good candidate to control social
motivation of vocal learning

Oxytocin, depending on the brain region and release site, acts as

a hormone, neuromodulator or neurotransmitter that functions

through its receptor (OTR) to regulate a diverse set of biological

processes: pregnancy and uterine contractions, milk ejection,

attachment between mothers and their young, bond formation,

copulation and orgasm, suppression of stress, thermoregula-

tion, olfactory processing, eye contact and recognition of

familiar individuals [25], with the caveat that some functions

are specific to one lineage, such as mammals. OT is thought

to have its effect on many systems because it is most promi-

nently expressed in hypothalamic OT neurons that project to

many brain regions where the receptor is located [26,27].

Recent studies attest that OT enhances socially reinforced learn-

ing in humans and rhesus macaques [28,29], while other studies

show its involvement in vocal and auditory behaviours (see

references herein). As a result, Theofanopoulou [30] put forth

the hypothesis that OT might be implicated in cognitive aspects

of language processing in humans. Here we adduce more

evidence also for a role in the social motivation of language

learning. We further sketch out possible mechanisms for

social motivation for vocal learning in vocal-learning species.

With regard to gene terminology, we have adopted a universal

nomenclature based on sequence identity and gene synteny,

using the same gene name OT and OTR across vertebrates [31].

(a) Vocal non-learners
We first note that OT appears to have a role in auditory–vocal

communication even before vocal learning evolved, as such

a role can be found in vocal non-learning species that span

the vertebrate phylogeny, from fish to mammals. Goodson &

Bass [32] found that OT in midshipman fish modulates

the burst duration in the innate vocalizations that sneaker

males and females produce in non-reproductive contexts. OT

immunoreactive cell groups are distributed throughout their

vocal–acoustic circuit, from the midbrain to the forebrain

[33]. In rats, OT enhances both inhibitory and excitatory synap-

tic currents in the hypoglossal motor nucleus which innervates

the tongue muscles, thus potentially controlling rat vocaliza-

tions [34]. In mice, Winslow et al. [35] found that infant

OT-KO (knock-out) animals were less vocal than wild-type

(WT) controls during separations from the mother and peers.

Likewise, Takayanagi et al. [36] observed fewer ultrasonic

vocalizations emitted by infant OTR-KO compared with

wild-type mice in a social isolation paradigm. Marlin et al.
[37] demonstrated that when inexperienced virgin females
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are given OT intraperitoneally or through optogenetic stimu-

lation of hypothalamic OT neuronal axons that project into

the auditory cortex, and then co-housed with a mother and

her litter, their retrieval of vocalizing pups was effective as if

they were the mother. Follow-up studies showed that OTR

levels are remarkably lateralized with higher expression in

neurons of the left auditory cortex [26]. These observations in

vocal non-learners strike us as particularly relevant, as auditory

and vocal learning/language circuits in humans are mainly left-

lateralized [38], and are either left- or right-lateralized among

different species of song-learning birds [39].

Based on these findings, we suggest that OT has a role in

social motivation of auditory and vocal communication beha-

viours in vocal non-learners, and that a lateralized function in

the auditory cortex may have been present before vocal learn-

ing and language evolved. Even though less likely, it could

still be possible that OT influences the social motivation for

vocal learning through the OTR receptors in innate brainstem

circuits, including two auditory brainstem nuclei, the nucleus

magnocellularis (NM) and the nucleus laminaris (NL) and in

the vocal motor neurons (nXIIts) in songbirds [40].

(b) Vocal learners
In humans, intranasal OT administration modulates semantic

integration in speech comprehension [41]. In autistic patients,

the oxytocinergic system has been repeatedly indicated to func-

tion aberrantly. Specifically, Rijlaarsdam et al. [42] identified a

significant OXTR rs53576 genotype by OXTR methyla-

tion interaction associated with communication problems in

autistic patients, while Zhang et al. [43] found that autistic chil-

dren with higher plasma OT concentrations tended to have less

impairment of verbal communication. In turn, after OT intra-

nasal administration, autistic patients had a more efficient

and long-lasting performance in a speech comprehension

task [44,45]. Based on findings that intranasal administration

of OT crosses the blood–brain barrier and binds to areas

where the receptors are located [46], we can interpret these

studies as bearing directly on our hypothesis.

In songbirds, experimental manipulation of the oxytoci-

nergic system with OT agonist and antagonist have been

made mostly in the context of pair-bonding and aggression,

with very few and some controversial reports on how these

treatments affected singing, probably due to different treat-

ment sites [47–49]. Nevertheless, OT has been found to

affect the amount of directed singing to females [48]. These

findings in vocal learning species indicate that OT may also

have a social enhancement for aspects of auditory processing

and learned vocal communication.

(c) Neural pathways
In order for our hypothesis to have some validity, OT would

be expected to innervate vocal learning circuits directly, that

in turn would express the OTR, or indirectly via other motiv-

ation/reward circuits that, in turn, innervate vocal learning

circuits [50]. All vocal learning species examined to date

(humans and the song learning birds) have a highly special-

ized forebrain circuit that controls learning and production of

learned sounds (figure 1a) [4,16]. Best studied in songbirds,

the pathway consists of an anterior forebrain circuit that con-

trols vocal imitation and a posterior circuit that controls

production of learned vocalizations. The anterior forebrain

circuit consists of LMAN in the cortical region, Area X in the
striatum and aDLM in the thalamus, which form a pallial-

basal ganglia-thalamo-pallial loop (figure 1a). When Area X

is lesioned in juveniles, the birds are not able to crystallize

onto a learned song, as their vocalizations remain variable.

Conversely, when LMAN is lesioned, the bird instantly crystal-

lizes onto what it had learned up to that moment [51]. These

and other findings lead to one interpretation being that

during the juvenile vocal learning period, Area X injects stereo-

typy, whereas LMAN injects variability into the vocalizations,

and the two opposing functions enable vocal imitation [2,51].

After learning is complete, lesions in adults, such as in Area

X, lead to deficits in song sequencing (or production) similar

to stuttering in humans [52,53]. The posterior pathway in

songbirds consists of the HVC and RA, thought to control

sequencing and acoustic structure of syllables, respectively.

In humans, the analogous anterior pathway has been proposed

to be a cortical-basal ganglia-thalamo-pallial loop involving

Broca’s area (LMAN analogue), part of the anterior striatum

(ASt) and the anterior thalamus; the analogous human pos-

terior pathway has been proposed to include the laryngeal

motor cortex (LMC; figure 1a), with different cortical layers

representing songbird HVC (layer 3) and RA (layer 5) [2,16].

This forebrain vocal pathway is either absent or limited at

best in vocal non-learning species, including non-human

primates and mice [54,55]. But all vocal learning and non-

learning species have a more comparable auditory forebrain

pathway, involved in auditory learning, as described above

for the mouse pup retrieval experiments.

The OTR is expressed broadly across cortical and subcorti-

cal brain regions, in both mammals and birds, including

humans [27,56,57]. However, in different species there are

brain regions with enriched OTR expression relative to all

other brain regions, and they often correlate with differences

in social behaviours between species [58]. We are not aware of

anyone determining if there is enriched specialized expression

(increased or decreased relative to adjacent brain regions) in

speech brain regions in humans. In songbirds, some limited

expression analyses in the posterior pathway revealed differ-

ences between species, with specialized upregulation of OTR

in HVC and downregulation in the RA compared with the

surrounding motor regions in zebra finches, that sing one

simple song and higher expression (although not shown) in

white throated sparrows, a species that sings at least two differ-

ent songs [40]. One prediction from these findings would be

that human LMC layer 5 neurons may have downregulation

of OTR relative to layer 5 neurons of the adjacent non-speech

cortex. We noted from our examination of fig. 1 of [58] that

there is layer-specific expression of OTR in the motor cortex

that is different across rodent species. We also predict some

within-species differences, such as in songbirds where females

lost the vocal learning trait [59] and would not be expected to

have forebrain vocal OT neuron innervation.

In terms of possible indirect interactions through other

reward brain circuits, hypothalamic OT neurons innervate

the ventral tegmental area (VTA), which innervates the vocal

learning systems in humans and songbirds [60,61]. The VTA

releases dopamine (DA) mainly to striatal brain regions and

some cortical brain regions, including vocal learning regions

in songbirds [62]; through its DA receptors it is thought to

reinforce learning and motivated behaviour. There is a plethora

of evidence in the mammalian literature showing that OT

neurons in the hypothalamic paraventricular and supraoptic

nuclei (PVN and SON) send projections to the VTA, and
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Figure 1. Summary diagrams of vocal learning systems in songbirds and humans. (a) Vocal learning circuits. Red arrows, the direct posterior forebrain projection to
vocal motor neurons in the brainstem. White lines, anterior forebrain circuit. Dashed lines, connections between the anterior and posterior vocal motor circuits.
(b) Proposed oxytocinergic and dopaminergic projections into the vocal learning circuits. In songbirds, we propose oxytocinergic neurons from the Hyp project
to the RA, HVC and VTA; VTA makes a strong dopaminergic projection to LAreaX and weaker ones to HVC and RA. In humans, we propose oxytocinergic neurons
from the Hyp project to the LMC, Broca’s area and the VTA; VTA makes dopaminergic projections to the ASt. Black arrows, connectivity of the proposed system with
the brainstem. Abbreviations: HVC, HVC nucleus; LMAN, lateral magnocellular nucleus of anterior nidopallium; RA, robust nucleus of arcopallium; Area X, area X of
the striatum; Hyp, hypothalamus; VTA, ventral tegmental area; DLM, dorsal lateral nucleus of the medial thalamus; Av, nucleus avalanche; LMO, lateral oval nucleus
of the mesopallium; NIf, interfacial nucleus of the nidopallium; DM, dorsal medial nucleus of the midbrain; XII, 12th nucleus, tracheosyringeal part; PFC, prefrontal
cortex; LMC, laryngeal motor cortex; A St, anterior striatum; PAG -periaqueductal grey; aT, anterior thalamus; Am, nucleus ambiguus of the brainstem. Note: The
position of Broca’s area is shown here more medially for simplicity. (Adapted from [4,16].)
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stimulate DA neurons there [63–66]. Consistent with this, in

the last several decades, a number of studies have shown

OT–DA interactions in many social behaviours [67,68].

The VTA expresses OTR [69,70] and injection of OT into the

VTA of rats increases DA release, inducing penile erection

[63,71,72]. Intracerebroventricular injection of an OTR antagon-

ist attenuates DA agonist-stimulated DA release and the

pro-erectile effect [64]. Peris et al. [73] infected mice with a

Cre-inducible adeno-associated virus that drives the expression

of an OTR-fluorescent reporter in the VTA and found that OTR-

expressing neurons in VTA project to the nucleus accumbens,

prefrontal cortex, the extended amygdala and other forebrain

regions; also some of these neurons were identified as DA

neurons. Bromberg-Martin et al. [74] have also shown that

DA neurons within the VTA encode motivationally salient sig-

nals. Thus, OT, by modulating activity within the DA system,

may alter the assignment of motivational salience.

Lastly, since OT can bind to one of the vasopressin/vaso-

tocin receptors (vasopressin/vasotocin receptor 1A; AVPR1A

or V1AR) with equal affinity as it does to the OTR [75], we do
not exclude the possibility that OT may be playing a role in

the social motivation for vocal learning via this receptor

too. It is also the only vasopressin/vasotocin receptor thus

far found to be expressed in vocal learning regions [40] and

to be involved in singing behaviour [76].

Taking the behavioural, circuit and molecular findings

together, we suggest that OT and the circuits it functions in

are good candidates for the long-hypothesized motivation

and reward mechanism of vocal learning. Part of the mechan-

isms may have been present before vocal learning evolved,

but part of it may be specialized in vocal learning circuits

and behaviour. With this information, we propose a testable

mechanism, either via direct influence on vocal learning

pathways or indirect through the VTA DA neuron pathway.
3. Proposed neural and molecular mechanisms
In this section, we consider the when, where and how OT might

modulate socially motivated vocal learning behaviour.
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For the when, we consider the three major stages vocal lear-

ners are known to acquire their ability to imitate vocalizations:

sensory, sensorimotor practice and crystallization. In some

species these stages can be distinctly separate, and in others

they overlap. In the first sensory infant/nestling phase, vocal

learning animals and humans acquire auditory memories of

the vocalizations that they hear through social interactions

[15]. In this phase, it is not necessary that the animal or child imi-

tate or even vocalize. In the second, sensorimotor phase, as in

other cases of sensorimotor learning, vocal learning proceeds

through a reinforcement learning mechanism [50,61], where

juvenile song-learning birds begin to produce semi-imitated

vocalizations, and evaluate their own motor output via sensory

feedback and reinforce it only if it closely matched the predicted

outcome [77]. A mechanism proposed for reinforcement is the

variability observed in juvenile song, suggestive of a motor

exploration [78], with reinforcement (or error) neural signals

guiding song imitation [79]. Likewise, human infants in this

phase appear to experiment with uttering articulate sounds,

but without yet producing recognizable words (i.e. babbling).

Again reward behaviours, e.g. when parents complement

their child with excited words, clapping, smiles and hugs,

after their first speech-related attempts, reinforces speech learn-

ing. In the third crystallization phase, as they become adults

(i.e. puberty phase in humans), song-learning birds and

speech-learning humans complete the development of their

vocal repertoire, and the ability to learn new vocalizations/

languages is either shut down (e.g. zebra finches) or made

more difficult (e.g. canaries and humans). However, if a

song-learning bird is removed from its conspecifics before

this phase is complete, it will take significantly longer for the

animal to crystallize on a repertoire [80]. We propose that OT

will have its effects during the sensory and sensorimotor

phases of vocal learning, and less so during or post crystalliza-

tion, because the first two phases are more dependent on social

experience. It is also likely that the same mechanisms could

apply throughout life, but at a more reduced level.

For the where and how, during the sensory phase, we pro-

pose that OT could enhance the formation of socially driven

auditory memories that impinge on the vocal learning circuit.

This could occur by a direct projection of OT hypothalamic

neurons into the auditory cortex, as seen in adult female

mice for pup retrieval, or by direct projections to the vocal

learning pathway brain regions. For the former possibility,

auditory input into juvenile HVC from a playback has been

found to modulate its neural connectivity and function in

song production [81]. We propose that when a vocal learning

infant/juvenile hears vocalizations generated from a conspeci-

fic, there could be an associated increase in OT release into the

auditory and/or specialized vocal learning brain regions to

strengthen the newly formed synaptic interactions to hold

onto the memories and shape the vocal learning pathway.

Similar to DA circuits (see below), this strengthening and shap-

ing could occur by OT binding to OTR in neurons of the

auditory and vocal pathways that receive excitatory and inhibi-

tory inputs for the auditory–vocal memories. A prediction of

this hypothesis is that if the auditory signals are not from a

social individual, the auditory processing circuits would still

process the sounds and form auditory memories of them, but

the OT circuit would not strengthen the auditory input to the

vocal learning circuit for eventual imitation of the sounds.

During the sensorimotor learning phase, we propose

again that OT input to the auditory and vocal learning
pathways could be activated, but this time by positive social

feedback (auditorily or by other means) from conspecifics

when the juvenile produces more accurate copies of the learned

vocalizations. The positive feedback could help strengthen the

connections that control production of the more accurate copy

of the vocalizations. But could OT also modulate imitation of

vocalizations during sensorimotor practice independent of

immediate social input from others? Although this would

move us away from a direct social role of OT in vocal learning,

we consider the possibility that self-motivation and even

purely vocal learning mechanisms independent of immediate

social mechanisms could also be involved. For this possibility,

we turn to studies on DA.

As described earlier, there is a robust VTA DA-neuron pro-

jection to vocal learning nucleus Area X (figure 1b) [60,62].

An analogous vocal learning region has been found in the

human striatum, with many of same gene expression specializ-

ations as in songbird Area X [16,82]. VTA also makes a weaker,

but still relatively prominent, projection to the vocal pro-

duction nuclei HVC and RA, and receives input from an

auditory area around RA necessary for vocal learning [83].

DA levels in Area X are higher during directed singing (to

females) than undirected singing, due to differential activity

of the re-uptake transporter (a noradrenaline transporter

in birds), in the VTA axons within Area X [84]. When this

transporter is pharmacologically blocked, DA levels during

undirected singing reach the levels of DA release during

directed singing [84]. Unilateral lesions of the VTA dopamin-

ergic projections reduce singing-driven Immediate Early

Gene (IEG) expression in Area X in both contexts [60]. More

recently, Gadagkar et al. [79] showed that the VTA DA neurons

that project to Area X encode performance error-and-reward

during singing, where these neurons are suppressed when

the bird simultaneously hears distorted feedback syllables

and are activated when they hear undistorted syllables. It is

plausible to hypothesize that such performance signals might

subserve vocal learning in juvenile animals, when the songbird

monitors if the vocal output produced matched ‘the desired

tutor outcome, and also the predicted probability of achieving

the desired outcome’ [79]. Recently, Chen et al. [24] found that

in juvenile animals the percentage of DA neurons expressing

EGR-1 (an IEG) in the VTA was significantly higher in socially

tutored juveniles relative to passively tutored juveniles with

playbacks of songs from a speaker or untutored juveniles, indi-

cating that this neural correlate might be responsible for the

differences in vocal-learning performance.

We propose that OT might have a role in both the social

motivation and the sensorimotor mechanisms of vocal learning

via hypothalamic OT action on VTA DA-neurons that project to

Area X and other song nuclei (figure 1b). During sensori-

motor practice, there could be self-induced motivation of the

OT! VTA! song nuclei circuits to help strengthen connec-

tions within the circuit when the tutee’s produced song

matches his auditory memory of the tutor’s song. After vocal

learning is complete, the presumed downregulation of OTR

in several vocal learning nuclei (relative to the surrounding

brain regions) in zebra finches may contribute to crystallization

and shutting off the ability to further imitate from conspecifics.

For the latter part of the hypothesis to be plausible, one would

need to determine if there are higher levels of OTR in these

song nuclei during juvenile development.

It is important to mention that up to now the only well-

studied hypothesis of where the VTA gets its input for vocal
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learning functions has been articulated by Riters [85] and

colleagues based on their studies on European starlings.

According to them, it is the projection from the medial preoptic

nucleus (mPOA) to the VTA that is crucial for social reward-

related functions of vocal learning. Our hypothesis shifts the

focus from the mPOA to the hypothalamus, because of

the OTR expression in song-learning nuclei and suggestive

direct influence of hypothalamic OT on singing. The two

hypotheses could be complementary: OTRs are also expressed

in the mPOA and mPOA neurons (at least in mammals) that

project to the VTA (or to the PVN and from there to VTA)

[86] play a role in social bonding regulation and maintenance

[72]. That is, the OT input to the VTA could be originating

both from the hypothalamus (PVN/SON! VTA) and the

mPOA (mPOA!VTA or mPOA! PVN! VTA).

In humans, building on OTR expression patterns in the

brain [27,56,57], we propose that OT neurons might project

directly from the hypothalamus to the LMC and Broca’s area

or indirectly to them and other speech-regions through the

VTA (figure 1b). Regarding the latter, there is evidence that

OT administration enhances activation in the VTA of humans

[87]. In this manner, OT might affect VTA’s DA output to the

anterior striatum speech region [88] and LMC [54,61], and

from there (LMC) to the vocal motor nucleus ambiguous of

the brainstem. Given these similar findings in humans, we

see no reason to propose a fundamentally different mechanism

for the sensory and sensorimotor learning phases of vocal

learning in humans or other vocal learning species.

An alternative route through which OT could also affect

the social motivation for vocal learning is through its hormo-

nal action via the hypothalamic–pituitary–adrenal axis,

known for attenuating the stress response [89] and thus

making social learning more efficient. However, we deem

this possibility as less likely, given that the OTR is found in

the auditory cortex and in speech/song areas, most likely

directly affecting vocal learning.
4. Proposed experiments to test hypothesis
In this final section, we offer some proposed experiments

that would validate or falsify some of the key tenants of

our hypothesis.

A prediction of our hypothesis that OT controls the social

motivation to imitate vocalizations in vocal learners, is that

blocking OT in the brain, and more specifically its targets

to the OTR in auditory cortex, vocal learning neurons and/

or VTA-DA neurons during the sensory and sensorimotor

phases would prevent vocal learning from live social or

model tutors. Conversely, activating OT in these circuits,

when a young juvenile hears novel vocalizations from a live

tutor or a tape recorder, would potentially cause the juvenile
to imitate the song heard better and also treat that tape recor-

der as more of a social object. This would also mean that OT

neuron activation and release, and activation of OTR in the

target brain regions, would also change in the same direction.

It is not feasible or ethical to conduct such experiments in

humans, but they can be conducted in a non-human vocal

learning species, such as songbirds.

Because our hypothesis is at its infant stage, informing

and testing the hypothesis further will also require a great

amount of more descriptive research. This includes: (i) a detailed

expression analyses of OT, OTR and associated family of

genes (vasopressin/vasotocin and its receptors) in the vocal

communication brain regions throughout development and

adulthood, across multiple vocal learning and non-learning

species; (ii) analyses of coding sequence and regulatory regions

of these genes to determine if there are convergent genetic

changes in vocal learning species that could explain brain func-

tional or expression differences, respectively and (iii) physiology

analyses of OT neurons and OT release during vocal learning

and language acquisition. Some of these more descriptive exper-

iments can be done with humans and non-human primates, and

thus offer a more direct window to inform our hypothesis on OT

function in language.
5. Conclusion
We have sketched out what we consider a plausible hypoth-

esis of a role for OT in the social motivation of vocal learning

and language. This hypothesis, if validated, would fill in a

gap in our knowledge of the main molecule(s) that control

the social motivation for vocal learning. With this hypothesis,

we are able to assemble disparate pieces of knowledge into a

greater whole, with OT as a nexus. As in all hypotheses, there

are parts that have weaknesses in ours, such as whether

OT modulation of vocal learning circuits and thus language

are direct or indirect. For these, we propose plausible alterna-

tive mechanisms that can be tested and modified with new

knowledge. Overall, though, we find it hard to come up

with a better viable alternative hypothesis, given the current

state of knowledge. Thus, we believe the hypothesis we

propose at this time is the most attractive one worth testing.
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