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We report a machine-learning strategy for design of organic structure
directing agents (OSDAs) for zeolite beta. We use machine learning to
replace a computationally expensive molecular dynamics evaluation
of the stabilization energy of the OSDA inside zeolite beta with a
neural network prediction. We train the neural network on 4,781
candidate OSDAs, spanning a range of stabilization energies. We find
that the stabilization energies predicted by the neural network are
highly correlated with the molecular dynamics computations. We
further find that the evolutionary design algorithm samples the space
of chemically feasible OSDAs thoroughly. In total, we find 469 OSDAs
with verified stabilization energies below−17 kJ/(mol Si), comparable
to or better than known OSDAs for zeolite beta, and greatly expand-
ing our previous list of 152 such predicted OSDAs. We expect that
these OSDAs will lead to syntheses of zeolite beta.
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Zeolites are crystalline nanoporous aluminosilicate minerals
that have wide use in absorption, separation, and catalysis

(1). Presently, a total of 245 zeolite structures, both natural and
man-made and differing in structure and pore size, have been
identified (2). Zeolite beta is a large 3D 12-ring channel system
(3), and it is one of the 17 zeolites of commercial interest (4). Its
industrial uses include the alkylation of benzene (5) and the
separation of organics from water (6). Synthetic zeolites such as
zeolite beta are synthesized by hydrothermal synthesis from
suitable amorphous aluminosilicate precursors (7). To direct the
synthesis toward a particular zeolite structure, organic bases that
act as templates, termed organic structure directing agents
(OSDAs), are added to the reaction medium (8, 9). While template-
free syntheses of zeolite beta have been reported (10), the main
synthetic route uses tetraethyl amine as the OSDA (11). Syntheses of
zeolite beta with roughly 50–100 other OSDAs have been reported.
Zeolite beta consists of three polymorphs: polymorph A (BEA),

polymorph B (BEB), and polymorph C (BEC) (3). At present, no
synthetic route to pure BEA has been obtained. Existing formu-
lations of zeolite beta lead to an intergrown hybrid structure of
BEA and BEB (3). Uniformly structured zeolites can lead to
smaller, cleaner, and more efficient catalytic processes (12).
Moreover, the BEA polymorph is chiral, and an enantiomerically
enriched form of pure BEA would be of great interest for enan-
tiospecific catalysis and separation (13). Ongoing research in our
group is therefore directed toward the design of suitable OSDAs
leading to both pure and enantiomerically enriched BEA.
Selectivity toward a given zeolite is promoted by a structure

directing agent and depends to a large degree on favorable
nonbonding interactions governed by packing in the zeolite
framework (14). In the past, we have successfully built upon this
observation to use structure-based molecular design to obtain
OSDAs for several zeolites (15–17), including a chiral OSDA
leading to an enantiomerically enriched zeolite STW (18). The
methods we have applied in these efforts include algorithms both
for de novo design (19, 20) and virtual combinatorial chemistry
(21), as well as virtual screening of selected sets of available
compounds. At the heart of these algorithms is a computational
procedure to predict the suitability of a molecule to serve as

OSDA for a given zeolite (19). The scoring function calculates a
series of molecular properties of increasing computational
complexity, with the least computationally intensive properties being
used as filters (22). The most computationally intensive calculation
consists of a molecular dynamics evaluation of the stabilization en-
ergy of a putative OSDA in the target zeolite and requires on the
order of 3 h of CPU time when the target is BEA. A de novo design
or virtual combinatorial chemistry experiment typically requires on
the order of 200,000 calls of the scoring function, of which around
10% reach the stage of the molecular dynamics run. In view of our
efforts to design OSDAs for zeolite BEA, it is of great interest to us
to speed up the evaluation of this scoring function. In our research
so far we have performed a large number of calculations, and in this
paper we describe our efforts to effectively tap this database of in-
formation using a data-driven approach.
Machine-learning (ML) algorithms that synthesize existing

data to produce predictive models are seeing a revival in mo-
lecular and materials science thanks to the growing availability of
massive numbers of data (23). Examples include algorithms for
quantum chemistry (24), retrosynthetic chemistry (25), and de
novo design (26, 27). Once properly trained, an ML algorithm is
very fast to produce an output from new input. Therefore, given
the large number of predicted stabilization energies of putative
BEA OSDAs that we have collected thus far, we have trained
an ML algorithm to build a quantitative structure–property re-
lationship to accurately and efficiently predict OSDA-BEA sta-
bilization energies. That is, we trained neural networks to predict
OSDA stabilization energies based on their molecular structures.
We have used 3D-MoRSE (Molecule Representation of Structures
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based on Electron diffraction) descriptors for the OSDA molecules
(28, 29). These descriptors are input to the neural network as
described in Methods. We used this ML approach to replace the
molecular dynamics evaluation of the stabilization energy with
a trained neural network. We further used this approach to
produce putative BEA OSDAs.

Results and Discussion
Training the Models. We used ML to relate 3D structure of BEA
OSDAs to their stabilization energies. A neural network was trained
on the descriptors of molecular structure of OSDAs to predict
stabilization energies (see Methods and SI Appendix, Materials and

Methods). These descriptors encode the 3D molecular structure by
sampling a calculated diffraction pattern. Each scattering parame-
ter, s, will produce one intensity, I, which is one descriptor. Note
that these descriptors are the input to the neural network, not the
output. To determine the best-performing set of hyperparameters
for the neural network, we tested networks with various values of
the maximum scatter parameter (smax), its step size in Fourier space
(Δs), and the number of hidden nodes (h) in the network. Values for
the maximum scatter parameter were 8, 16, 24, and 32 Å, and step
size were 0.125, 0.250, 0.500, and 1.000 Å. For each combination
of these settings, we randomly choose 80% of the total molecules
as a training/test set and set 20% apart for validation (SI Appendix,

Table 1. Top two sets of hyperparameters selected from models 1–4

Model smax Δs
Number of
intensities h

Total number
of weights RMSEtraining RMSEtest RMSEtraining+test RMSEvalidation

1a 24 0.500 49 5 256 1.52 (0.03) 1.79 (0.07) 1.45 1.41
1b 8 0.500 17 8 153 1.59 (0.02) 1.75 (0.06) 1.52 1.47
2a 24 0.500 49 4 205 1.66 (0.04) 1.83 (0.08) 1.50 1.65
2b 8 0.500 17 8 153 1.68 (0.02) 1.84 (0.07) 1.59 1.59
3a 8 0.500 17 2 39 1.61 (0.07) 1.68 (0.14) 1.50 1.64
3b 32 0.500 65 1 68 1.55 (0.04) 1.75 (0.13) 1.55 1.68
4a 32 0.500 65 5 336 1.90 (0.05) 1.92 (0.07) 1.87 1.87
4b 24 0.250 97 2 199 1.91 (0.05) 1.95 (0.09) 1.88 1.89

The RMSEtraining is defined in SI Appendix, Eq. S6, and RMSEtest is defined in SI Appendix, Eq. S5. The values between brackets are the
corresponding SDs. The RMSEtraining+test is defined in SI Appendix, Eq. S9, and RMSEvalidation is defined in SI Appendix, Eq. S8.

Fig. 1. Scatter plots of MD- versus ML-predicted stabilization energies for the OSDAs in the validation set for the eight models (A–H). Models 1a and 1b were
trained on all compounds without weighing. Models 2a and 2b were trained on all compounds with weighing. Compared with models 1a and 1b, models 2a
and 2b have better prediction for OSDAs with MD-calculated energy below −15 kJ/mol Si. Models 3a and 3b were trained on charged compounds only
without weighing. No charged OSDAs have an MD-calculated energy below −17.5 kJ/mol Si, which limited the ability of the neural network to find favorable
OSDAs. Models 4a and 4b used a linear activation function in the output node.
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Materials and Methods and Fig. S1B). The training/test sets were
used to train neural networks with increasing number of hidden
nodes. The total number of weights in the model depends on the
number of input nodes and the number of hidden nodes, the former
being determined by the maximal scatter parameter, smax, and its
increment, Δs. The highest number of hidden nodes was either 10 or
the number of nodes for which the total number of weights was less
than the number of molecules in the training set (29). The best
model was chosen as the one for which the mean root-mean-square
error (RMSE) for test set, RMSEtest (SI Appendix, Eq. S5), was the
lowest. This criterion is adopted to avoid overfitting to the training
set, as discussed in SI Appendix. We trained four variations of the
network: a network weighing all MD energies equally, model 1; a
network weighing the MD energies below −15 kJ/(mol Si) more,
model 2; a network without weighing trained on only the set of
charged OSDAs, model 3; and a network without weighing and in
which the output layer uses a linear activation function, model 4.
A sigmoid activation function was used on the output layer in
models 1–3. The results of the exploration of the hyperparameter
space are listed in SI Appendix, Tables S2–S5. The top two sets of
hyperparameters for each model, for which the mean RMSE on
the test set, RMSEtest, was found to be smallest are summarized in
Table 1. For these best models, the RMSE for the OSDAs in the
validation set RMSEvalidation (SI Appendix, Eq. S8) were calculated.
They are listed in column 10 of Table 1. We also calculated the
RMSE for the total set of OSDAs in the training plus test set
RMSEtraining+test (SI Appendix, Eq. S9). These are listed in column
9 of Table 1. The validation set has not influenced the hyper-
parameter selection procedure. The fact that RMSEtraining+test and
RMSEvalidation are very similar indicates that the neural nets are
well trained and not overfit to the train and test set. For ref-
erence, the tetraethyl amine OSDA has a stabilization energy
of −10 kJ/(mol Si) in zeolite beta A (30). Fig. 1 shows the scatter
plots of the MD-calculated and ML-predicted stabilization energies
for the OSDAs in the validation set for each of the eight models.
Overall, the neural networks were successful at predicting

energies of the OSDAs in the validation set. Models 1a and 1b
have the best rms error for the validation set, RMSEvalidation. By
introducing weighing in the cost function, models 2a and 2b improve
the prediction in the low-energy region below −15 kJ/(mol Si), the
region in which OSDAs for BEA are expected to be effective. While
this increases the rms error for the validation sets, a modest increase
in predictability in this region can be observed in Fig. 1 C and D.
Models 3a and 3b performed equally well (Fig. 1 E and F). However,
no charged OSDAs had MD-calculated energies below −17.5 kJ/mol
Si, which limited the ability of the neural network to find favorable
OSDAs. Using sigmoid activation, the predicted energies will always
be contained in the range of the energies from the training and test
set. While this will keep the neural network from erroneously
extrapolating to molecules not in this range, it slightly distorts

the computed versus predicted relations in Fig. 1. This phe-
nomenon is improved with linear activation, models 4a and 4b,
as shown in Fig. 1 G and H. While the RMSE for model 4 is
slightly higher than in the other models, the difference in
RMSEtraining and RMSEtest is significantly lower, indicating less
overfitting to the training set of this model.
In Table 1 we have a comparison of prediction from single

neural networks RMSEtraining and RMSEtest and prediction from
averages of 30 neural networks RMSEtraining+test and RMSEvalidation.
The RMSE values of the complete training plus test sets and the
validation sets are generally lower than the ones in the training or
testing set. This illustrates the capability of the ensemble fitting to
improve the models (31): The RMSEs of training and test sets,
respectively, are averages taken from multiple single models, SI
Appendix, Eqs. S4–S6, while the RMSEs of the complete training
plus test sets and the validation sets are from energies predicted
from an ensemble of 30 models (SI Appendix, Eqs. S8 and S9).
However, we also observed that even a single neural network
is able to capture most of the predictability of the 30-neural-
network ensemble. This result indicates that the predictions of
the neural networks are stable to convergence issues and choice of
training set.

In Silico Materials Design.We used all eight models in Table 1 in a
de novo evolutionary design algorithm program. For each model
in Table 1, a total number of 1,000,000 trial molecules were
generated by the program and scored using the score vector (see
Methods and SI Appendix, Table S1). Fig. 2A shows the top five
predicted OSDAs for model 1b. In addition, the synthesis
pathway for the top-scoring molecule is shown in Fig. 2B. Table 2
lists, for each run, the best OSDA found, with its ML-predicted
and MD-calculated stabilization energy, the number of compounds
with an ML predicted stabilization energy below −15 kJ/(mol Si),
the total number of molecules for which the stabilization energy was
actually predicted, and the total number of unique molecules gen-
erated. The total number of unique molecules generated during a
run is lower than 1,000,000, because molecules may appear, dis-
appear, and then reappear in the population during the course of
the genetic algorithm (22). In each run, a large number (∼1,000) of
molecules were predicted to have stabilization energies below the
threshold of −15 kJ/(mol Si), column 3 in Table 2. The ML- and
MD energies of the best-scoring molecules obtained with models
1b, 2a, 2b, and 4b are within 1 kJ from one another; the difference
is around 2 kJ for models 1a and 4a. The best-scoring molecules
found with models 3a and 3b are identical. Their ML-predicted
binding energies are slightly different because the two models
have different hyperparameters. The MD-calculated energies differ
because of the stochastic nature of the MD procedure. The gaps
between the ML and MD energies in models 3a and 3b are larger
than for the other models, reflecting the lower prediction precision for

A B

Fig. 2. Results for OSDA design using model 1b. (A)
The top five molecules produced. The molecule
scores in this figure are the ML determined binding
energy in kJ/(mol Si). (B) Proposed synthesis route to
the first molecule in the output shown in A. The
outcome of the synthesis route is listed together with
the acronym of the reaction used (ALKYLATENP), as
well as the structures and catalog names of the
proposed reagents.
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these models (see Table 4). The ML method vastly accelerates the
energy calculation process. An ML prediction of the stabilization
energy of a putative OSDA requires about 28 s of CPU time,
whereas an MD energy calculation requires 160 min of CPU time
on average.
Table 3 shows the cross-section of the putative OSDAs gen-

erated in different runs with ML-predicted stabilization energies
E ≤ −15. kJ/(mol Si). It also lists the number of molecules
generated in each run that were also present in the training set.
There is considerable overlap between the different runs. This
means the different runs have explored overlapping regions in
molecular space. As can be seen in column 8 of this table, even
some molecules of the training and test sets have been redis-
covered. In total, 3,062 highly scoring putative OSDAs have been

discovered through our in silico materials design approach.
Generally, the goal is to generate as many unique, favorable
OSDAs as possible. False positives are not a major concern,
since we can easily screen the 3,062 OSDAs with subsequent MD
calculation. False negatives are much harder to identify, as it is
computationally infeasible to calculate the MD energies for all
OSDAs generated by the eight runs.

Verification. Ultimately, we validated the materials design on
neural network framework by calculating the stabilization ener-
gies of the designed OSDAs and comparing them with MD-
calculated energies. The goal is to test whether the training, test,
and validation sets cover a limited part of the possible chemical
space. If so, a neural network trained and validated on such

Table 2. Best OSDA found with its ML-predicted and MD-calculated stabilization energy, number of compounds with an ML-predicted
stabilization energy below −15 kJ/(mol Si), the total number of molecules for which the stabilization energy was predicted, and the
total number of unique molecules generated in each run
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datasets may not necessarily generalize beyond the space on
which it was trained. Two possible reasons that can lead to
this problem are the possible insufficiency of 3D-MoRSE
descriptors to generally describe the 3D molecular structure
of the OSDAs, and insufficient complexity of the neural
network structure to capture deeper features of the OSDAs’
3D structure. An in silico materials design run may explore a
different chemical space than the training set, and the neural
networks may perform poorly and predict inaccurate ener-
gies. This concern was tested by comparing the MD energies
and ML-predicted energies for the OSDAs.
All molecules generated by in silico materials design and

predicted using the ML methods to have a stabilization energy
below −14 kJ/(mol Si) were subjected to MD calculation of their
stabilization energy for verification. Although it is impractical to
calculate the energy by MD for all OSDAs, such calculation on
the limited number of predicted OSDAs with stabilization enery
below −14 kJ/(mol Si) can give a good estimation of the false
negatives. Table 4 lists this measure of false negatives in column
3, with the total number of compounds with ML-predicted en-
ergies between −15 and −14 kJ/(mol Si), and the number
of compounds among these with MD-calculated energies be-
low −17 kJ/(mol Si). Table 4 also lists the number of compounds
with ML-predicted energies below −15 kJ/(mol Si), the number
of true positives (TPs), and the prediction precision. Dataset S1
shows all compounds with MD energies below −17 kJ/(mol Si)
based upon screening all compounds with predicted ML energies
below −14 kJ/(mol Si). In total, there are 469 compounds. This
expands upon the 152 compounds with stabilization energy be-
low −17 kJ/(mol Si) that were in our training list of 4,781
compounds.
From Table 4 we can see that the false-negative proportion is

roughly 5%. The prediction precision is nearly 80% for most
models, but 50% for model 3. Among the false positives are
some that lie in a different region in the chemical space. For the
run with model 1b, for example, we noted that four high-scoring
molecules were considerably larger in volume than other mole-
cules in the same and the other runs. They are depicted in SI
Appendix, Fig. S3, together with their molecular volume and the
ML-predicted and MD-verified stabilization energies.
To further investigate the issue of exploring chemical space,

we applied a principal coordinate analysis (PCA) analysis (SI
Appendix, Materials and Methods) to the 3D-MoRSE intensities
of all molecules generated in run 1b with a predicted stabiliza-
tion energy to BEA lower than −15 kJ/(mol Si). The scatter plot
of the first and second principal components of these molecules
is shown in SI Appendix, Fig. S4A, in which the red dots corre-
spond to the “large” molecules in SI Appendix, Fig. S3 and are
clearly outliers. SI Appendix, Fig. S4B shows the scatter plot of the

predicted ML stabilization energy versus the molecular vol-
ume. The minimal predicted stabilization energy of a molecule
follows an approximately parabolic curve with the molecular
volume, and the four false-positive hits clearly fall out of this
distribution.
A representation of the molecular space explored by the eight

in silico runs is presented in SI Appendix, Fig. S5A. To construct
this figure, the 2D Tanimoto fingerprints of the 3,062 unique
molecules were generated, and from these a Euclidean distance
matrix was computed (SI Appendix, Materials and Methods). This
distance matrix was used to calculate the principal coordinates of
each of the 3,062 molecules. The first two principal coordinates
are plotted in SI Appendix, Fig. S5A. The fraction of the variance
covered in these two coordinates is 0.20 and 0.10, respectively.
Considerable structure is present in this plot, and this can be
analyzed in a cursory way by picking representative points and
examining the corresponding molecular structures, as is done in
SI Appendix, Fig. S5B. The two large clusters separated by
the first principal coordinate distinguish molecules containing
aromatic 6-cycle (a through e) and charged pyrazole (f and g)
functionalities on the one hand, and charged imidazole func-
tionalities (h through l) on the other hand. Within the two large
clusters, smaller subclusters can be discerned that correspond to
different molecular scaffolds (SI Appendix, Fig. S5B). While the
specific clustering depends on the choice of the 2D descriptors
used for the principal coordinate analysis, this result shows that
the in silico material design program produces a variety of
molecular scaffolds.
The individual subspaces searched by the eight runs are il-

lustrated in the eight subplots of SI Appendix, Fig. S6. In this
figure, the molecules generated in each run are represented as
green and red dots, and the blue dots correspond to molecules
generated in the runs other than the indicated run.

Conclusions
We have used a data set of 4,781 putative zeolite BEA OSDAs
for which the stabilization energies in BEA have been obtained
through computationally intensive MD calculation to train ML
models for predicting stabilization energies using a neural net-
work. Through exploration of the hyperparameter space we have
trained and validated eight models, taking care to strictly sep-
arate training and testing sets on one hand, and validation sets
on the other hand (32). The molecules generated by the in silico
material design fall within the domain of applicability of the
ML algorithm. In total we have found 3,062 distinct putative

Table 4. The number of compounds with ML-predicted energies
below −15 kJ/(mol Si), the number of compounds with ML-
predicted energies between −15 and −14 kJ/(mol Si) and among
which the number of compounds with MD-calculated energies
below −17 kJ/(mol Si), the number of TP, and the prediction
precision for the eight in silico materials design runs

Model EML≤ −15 −15 < EML ≤ −14 (EMD ≤ −17) TP (precision)*

1a 1,058 (1,054)† 839 (32, 3.8%) 812 (76.7%)
1b 1,179 (1,177) 625 (6, 0.9%) 865 (73.4%)
2a 836 (832) 696 (33, 4.7%) 690 (82.5%)
2b 910 (908) 550 (14, 2.5%) 672 (73.8%)
3a 1,857 (1,840) 915 (60, 6.6%) 727 (39.1%)
3b 1,280 (1,280) 1,204 (104, 8.6%) 660 (51.6%)
4a 712 (695) 827 (34, 4.1%) 538 (75.6%)
4b 599 (599) 805 (57, 7.1%) 484 (80.8%)

*In parentheses is prediction precision, defined as TP/(number with
EML≤ −15) ≡ TP/(TP + FP), where FP is false positive and TP is true
positive.
†In parentheses is the number of MD energies, as some MD evaluations
failed.

Table 3. Cross-section of the putative OSDAs generated in
different runs with ML-predicted stabilization energies E ≤ −15.
kJ/(mol Si)

Run 1a 1b 2a 2b 3a 3b 4a 4b In training set

1a 1,058 749 630 560 477 452 497 453 13
1b 1,179 585 691 445 446 402 384 10
2a 836 565 386 374 419 435 11
2b 910 320 312 339 328 7
3a 1,857 1,051 322 254 21
3b 1,280 354 311 12
4a 712 386 17
4b 599 11
Total unique molecules: 3,062

Column 10 lists the number of molecules generated in one run that are
present in the training or validation set.
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OSDAs for zeolite beta, 469 of which are predicted to be excep-
tionally stable. We have shown that this protocol enables an ef-
fective and computationally tractable search for novel OSDAs.

Methods
Neural Network. The structure of the neural network is shown in SI Appendix,
Fig. S1A. There was one hidden layer between the input and output layer.
The input layer consists of structural descriptors I of each OSDA obtained
through the 3D-MoRSE code (29). The output layer predicts stabilization en-
ergies. Sigmoid activation was adopted in the hidden layer. The output layer
adopts either sigmoid activation or linear activation depending on the model.

The samples of OSDAs for training, testing, and validating the neural
network consist of 4,781 putative BEA OSDAs that we have obtained in our
search for OSDAs for pure BEA and chiral BEA zeolite in the past five years. In
this search, our procedure consisted of first designing putative small, achiral
“monomer” OSDAs and then finding suitable chiral linkers to dimerize these
(18). We here use these monomers for training a neural network. To obtain
good-scoring monomer OSDAs for BEA we have used three strategies: de
novo design, virtual screening, and virtual combinatorial chemistry. A de
novo design algorithm (19, 21) was used to generate many putative BEA
OSDAs. Analogs of the highest-scoring hits were selected from the available
building block databases in eMolecules (https://reaxys.emolecules.com/) and
Chemspace (https://chem-space.com/). Finally, we extended this set by gen-
erating alkylated derivatives. In this way, we have obtained 4,781 putative BEA
OSDAs with predicted stabilization energies between −20 and 0 kJ/(mol Si).
These OSDAs consists of a set of 3,875 uncharged molecules and a set of 906
molecules that contain one or several charged N atoms.

In Silico Materials Design. The materials design approach is a de novo design
program that searches and generates synthesizable molecules with desirable
properties. Through a genetic algorithm, this method can search the entire
chemical space defined by a list of predefined well-documented organic
chemistry reactions and a user-supplied database of commercially available
reagents. The output is a set of molecules that score well on the scoring
function and their synthesis route.

The score function used for the design of BEA OSDAs is summarized in SI
Appendix, Table S1. First, it was verified that the molecule to be scored was
amenable to molecular mechanics minimization with the force field used.
Then the total number of rotatable bonds, the largest number of consecutive
sp3–sp3 rotatable bonds, the presence of atoms other than C, N, or H, the
presence of triply bonded C, and the ratio of C atoms to charged N atoms were
calculated. These properties can all be deduced from the molecular topology
and are computationally trivial to obtain. If all of these fell within their re-
spective thresholds, a locally optimal conformation of the molecule was cal-
culated and the molecular volume was obtained. If this fell within its
threshold, a conformational search was performed to obtain the global
minimal energy conformation of the molecule using GACS. This conformation
was used either as a starting point for the MD procedure to obtain the sta-
bilization energy in the zeolite structure, or to calculate the 3D-MoRSE score
to be input into the neural network. Here we chose the latter.

The set of reactions used to synthesize virtual molecules presently
consists of 100 organic chemistry reactions. The database of reagents we
used contains 39,500 commercially available chemicals. To start the run, we
randomly selected reactions, reagents, and tree depths to generate the
initial population of molecules. Here, tree depthwas defined as the number
of reactions that take place to form one solution molecule. This depth was
usually constrained between 3 and 5. The population size was fixed at
npop =100, and every generated molecule was scored. It was possible that
some molecules did not pass the scoring filters (SI Appendix, Table S1) and
therefore did not have the molecular volume or stabilization energy cal-
culated. The population was evolved by applying these reactions and a
genetic algorithm search for improved predicted stabilization energies.

SupplementaryMaterials andMethods, figures, and tables can be found in
SI Appendix. Detailed materials and methods and discussion of overfitting
are available, as well as SI Appendix, Figs. S1–S6 and Tables S1–S5, and a .sdf
file containing the 469 OSDAs with stabilization energies computed by MD
to be below −17 kJ/(mol Si).
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