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Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently
covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-
based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during
dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An
immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues,
conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments
shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue’s need to maintain or regain
homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes
during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to
enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of
inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible
scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a
temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear
phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound
healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries.

1. Introduction

Mononuclear phagocytes are a group of phenotypic distinct
members, often referred to as either macrophages or den-
dritic cells (DC), that derive from myeloid precursors and
that contribute to the functions of peripheral tissues [1].
During the last decades, research has focused on the cell-
type-specific properties of these cells in culture, which then
led to an immunocentric view of their role in disease like
if they were primed like T cells to infiltrate target organs
to cause tissue damage and drive progressive scaring [2,
3]. A more tissue-centric view of these processes, claiming
that the tissues define phenotype and function of resident
and infiltrating immune cells to meet tissues needs during

homeostasis and disease, seems provocative [4, 5]. In this
paper we apply the tissue-centric perspective to discuss the
role of resident and infiltrating macrophages and dendritic
cells in different organs. We examine tissue needs to maintain
homeostasis and how to regain homeostasis upon tissue
injury. Furthermore, we discuss how published data supports
the view that changing tissue environments induce the well-
known different phenotypes of mononuclear phagocytes,
a process that not only enforces each of the different
environments but also explains the contribution of these
cells to the different tissue pathologies. This slightly different
perspective may somewhat shape our understanding of
macrophage heterogeneity and tissue pathology but certainly
also raise new questions for future research.
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2. Tissues Need Mononuclear Phagocytes to
Maintain Homeostasis

All solid organs and most other tissues harbor a network
of DC or macrophages (Table 1). Due to their consider-
able plasticity and heterogeneity, the tissue-based DC and
macrophage populations have been defined as mononuclear
phagocytes [1, 6, 7]. These cells provide several important
physiological functions during homeostasis (Figure 1). For
example, organs like the lung and the liver are exposed
to pathogen components from the air or from the gut
barrier, respectively, which explains the predominance of
a macrophage phenotype that has a higher capacity for
phagocytic clearance of pathogen components. The same
applies to the bone marrow that requires macrophages
for the clearance of the nuclei that get expelled from
erythroblasts during their maturation towards erythrocytes
[8]. In contrast, the gut mucosa hosts dendritic cells that
turn signals from the intestinal flora into the secretion of
mitogenic mediators that assist in maintaining an intact
epithelial lining of the gut as an important component
of the intestinal barrier function [2]. Sterile organs rather
harbor dendritic cells. During homeostasis, dendritic cells
are sensors and guardians of peripheral tolerance due to
their capacity to process self-antigens and signal tolerance
to the T-cell pool upon evading the peripheral organs via
the lymphatics to reach regional lymph nodes [9]. This
functional property constantly assures the quiescence of
the immune system in homeostasis. Dendritic cells share
certain functions with tissue macrophages such as particle
phagocytosis and danger recognition/signaling upon the
recognition of pathogens, hence these cells taken together are
now referred to as the mononuclear phagocyte system.

3. Tissues Need Mononuclear Phagocytes to
Fight Threats to Homeostasis

Tissue injury can be traumatic, infectious, toxic, ischemic,
or autoimmune to which the tissue responds by a set of
evolutionary conserved danger response programs (Figure 2)
[18]. Traumatic injury usually involves vascular injury,
which immediately activates clotting to control the danger
of potentially fatal bleeding. Inflammation is the second
danger response program that is needed to avoid pathogen
entry to control infections [2]. Pathogens release pathogen-
associated molecular patterns (PAMPs), and damaged tissue
cells release damage-associated molecular patterns (DAMPs).
PAMPs and DAMPs have an identical capacity to ligate
Toll-like receptors (TLR) and other pattern recognition
receptors on immune and nonimmune cells in the tissue
to secrete proinflammatory cytokines and chemokines [19–
21] (Figure 2). DAMPs may originate from intracellular
sources that get released by cell necrosis, such as his-
tones [22], HMBG1 [23], ATP [24], or uric acid [25].
Furthermore, proinflammatory macrophages release matrix
metalloproteinases (MMPs) and hyaluronidase that digest
extracellular matrix (ECM) proteins and thereby reduce
the ECM viscosity. This process, together with increased
vascular permeability, induces tissue swelling, promotes

Table 1: Resident mononuclear phagocytes in various organs and
tissues.

Tissue Macrophages Dendritic cells

Skin
Dermal macrophages
[10]

Dermal DCs,
Langerhans cells [10]

Bone Osteoclasts [10]

Bone marrow
Bone marrow
macrophages [11]

Ovary/testis
Ovarian macrophages
[12]

Kidney Interstitial DCs [7, 13]

Pancreas
Dendritic cell precursors
[14]

Spleen

Marginal zone
macrophages, red
pulp macrophages
[10]

iDCs, follicular DCs [15]

Liver Kupffer cells [10]
Plasmacytoid DCs, cDCs
[16]

Colon
Intestinal
macrophages [17]

Lamina propria DCs
[17]

Ileum
Intestinal
macrophages [17]

Lamina propria DCs
[17]

Stomach
Intestinal
macrophages [17]

Lamina propria DCs
[17]

Lung
Alveolar macrophages
[10]

Brain Microglia [10]

DCs: dendritic cells.

leukocyte migration, and increases the accessibility of surface
receptors to their PAMP and DAMP agonists, that is,
inflammation. It is of note that ECM digestion produces
small ECM peptides and glycosaminoglycans, which can
turn into immunostimulatory DAMPs that enhance the local
proinflammatory microenvironment [26]. Tamm-Horsfall
protein/uromodulin is another example for a compartment-
specific DAMP. It is exclusively secreted at the luminal
membrane of distal tubular epithelial cells into the urinary
compartment of the tubular lumen. During tubular injury,
it may lack into the renal interstitium, where it has the
capacity to activate intarenal mononuclear phagocytes via
TLR4 and the NLRP3 inflammasome [27, 28]. This way,
traumatic and infectious injuries induce a PAMP- and
DAMP-rich tissue environment that gets reenforced by
dendritic cell and macrophage activation (Figures 2 and
3) [29, 30]. Activation of innate immunity subsequently
involves the recruitment of additional leukocytes from the
circulation including monocytes as well as IFN-γ-secreting
NK cells to the injured tissue. When, upon arrival, the
infiltrating macrophages get exposed to the PAMP- and/or
DAMP-rich environment, hence, this will lead to their
full activation towards the proinflammatory macrophage
phenotype [20, 31–33]. Polarization to classically activated
macrophages requires interferon-related factor (IRF)5 [34].
Such macrophages secrete IL-1, IL-12, IL-23, TNF-α, and
ROS and induce iNOS, MHCIIhi, and IL1-R, an expression
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Resident dendritic cells Resident and infiltrating macrophages

Homeostasis

• AG uptake and processing 

• Migration to regional LN

• AG presentation to T cells

Disease

• AG presentation inside kidney

• Local cytokine secretion

• Shaping local immunity for 

peripheral tolerance

Homeostasis

• Phagocytosis of debris and pathogens 

• Dead cell clearance

• Matrix turnover

Disease

• Tissue host defense (immunopathology)

• Resolution of inflammation

(anti-inflammatory mediators)

• Wound healing by driving

parenchymal repair and/or scaring

Figure 1: Roles of resident dendritic cells and tissue macrophages in homeostasis and disease. AG: antigen; LN: lymph nodes.
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Figure 2: Tissue microenvironments and predominant macrophage phenotypes. Danger control involves several response programs that
operate from seconds to months after injury. In each of these phases, the tissue environment shapes the phenotype of resident and infiltrating
mononuclear phagocytes, which then enforce the particular environment in a feed-forward loop. Their potential to amplify inflammation,
healing, or scaring has consequences on the tissue that may be beneficial or unfortunate in terms of rapidly regaining homeostasis and
full function of the organ. This illustrates that the evolutionary programs of danger control are not perfect in all settings, but the fact that
they were positively selected during evolution allows only one interpretation: they obviously represented the best compromise between
the different needs of multicellular organisms. Where these programs cause malfunction, also mononuclear phagocytes contribute to the
“disease” process. TLR: Toll-like receptor, ROS: reactive oxygen species, and ECM: extracellular matrix.
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Figure 3: Macrophages in different phases of solid organ pathologies.

profile that was classified as “M1” classically activated
macrophage by in vitro stimulation with IFN-γ, TNF-α,
LPS, or GM-CSF [31]. Polarization towards this bactericidal
macrophage type provides the tissue with efficient support
for local host defense against pathogens. This potentially
life-saving effector functions outweigh the unspecific tox-
icity of the secreted mediators that can cause significant
immunopathology and even transient organ dysfunction
(Figure 2) [31, 35].

The danger response program of classically-activated
mononuclear phagocyte-driven tissue inflammation for host
defense remained evolutionally conserved in sterile solid
organ injuries [36–38]. However, DAMP-driven proinflam-
matory macrophage effects are not needed to kill pathogens
and mostly cause unnecessary immunopathology (“collat-
eral damage”). In DAMP-rich but pathogen-free sterile
inflammation (ischemic, toxic, or autoimmune injuries),
however, this otherwise beneficial response turns into a
maladaptive process, with immunopathology that is not
balanced by any significant benefit for the tissue [39]. In
sterile injuries, the inflammatory phase can be short-lasting,
for example, after a transient insult such as a transient
ischemia or toxin exposure (Figure 4) [40]. By contrast,
inflammation persists upon repetitive or ongoing ischemia
or toxin exposure. For example, proton pump inhibitors
accelerate gastric and duodenal ulcer healing, also because

they reduce persistent acidic damage of the gastric or duo-
denal mucosa, a process that is required for the resolution
of the inflammatory response and for the completion of
the wound healing process [41]. As another example, fetal
dermal wound healing takes place in a sterile environment
without PAMP exposure to the wound. Therefore, much less
proinflammatory macrophages are recruited to the site of
injury, which, together with the higher regenerative capacity
of fetal tissues, explains why fetal wounds heal faster and
without scaring [42]. During the early phase of injury,
proinflammatory macrophages are entirely dispensable in
sterile wounds as their depletion limits the inflammatory
response and fastens the healing process [43]. That is why
sterile (PAMP-free) wound care is a validated therapeutic
strategy to limit the inflammatory response and to enforce
healing of surgical wounds or other skin injuries [44]. In
addition, in wounds with vascular lesions and subcutaneous
bleeding, erythrocyte-derived iron serves as a DAMP that
induces the inflammatory macrophage phenotype, which
then again suppresses the wound healing process [45, 46].

The uselessness of inflammation in sterile injuries pro-
vides the rationale for anti-inflammatory and immunosup-
pressive treatments. For example, inhibiting the recruitment
or activation of proinflammatory mononuclear phagocytes
drastically reduces immunopathology and organ malfunc-
tion in acute and chronic tissue injuries, for example,



Mediators of Inflammation 5

Inflammation
Fibrosis
co-factors

Transient infections or traumata,
myocardial infarction, stroke, acute kindney injury

Repetitive infections triggering
flares of underlying smoldering diseases

Persistent immunopathology in
chronic infections or autoimmunity

Non-inflammatory degenerative disorders

Chronic disorders with secondary inflammation,
e.g. obesity, diabetes, atherosclersosis
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Figure 4: Translating the paradigm of classically activated (M1) and alternatively activated (M2) macrophage into clinical contexts.
Classically activated (M1) macrophages promote tissue inflammation and immunopathology based on their role in host defense against
intracellular pathogens. Extracellular pathogens are mostly attached by humoral factors such as complement, but when they persist,
alternatively activated (M2) macrophages provide means of host defence that involve anti-inflammatory, progenerative, and profibrotic
elements. The balance of inflammation and fibrosis varies over time and is different in different disease states and often operates in parallel.
For this reasons tissue biopsies often become difficult to read and display a mixture of all these elements. The figure provides examples
of common disease entities to illustrate how changing tissue environments involve M1- and M2-macrophages-mediated pathology either
in a sequential manner, in an intermittent manner, or in a parallel manner, which largely depends on the associated underlying disease
processes and cofactors. We propose that the sequential pattern shown at the top was the one that dominated during the evolution of wound
healing from the stage of the first multicellular organisms, for example, healing of mechanical trauma in nonsterile environments. We further
propose that all other mixtures that doctors often get to see in pathology textbooks and in their clinics originate from that and represent
maladaptive variants of this underlying danger response program that was otherwise extremely successful during evolution.

in a variety of kidney diseases such as in anti-GBM
glomerulonephritis [47], lupus nephritis [48–53], antigen-
induced immune complex glomerulonephritis [54], renal
allograft injury [55], ischemia reperfusion injury [40, 56–
58], and adriamycin nephropathy [59]. In addition, envi-
ronmental factors can aggravate tissue injury by activating
mononuclear phagocytes towards a classically activated phe-
notype [60]. These can be circulating PAMPs, for example,
during transient infections (Figures 2 and 4), vaccines or
other drugs with distinct immunostimulatory properties.

For example, the chemokine antagonists Met-RANTES and
AOP-RANTES block monocyte recruitment but still activate
resident tissue macrophages, which is sufficient to aggravate
preexisting immune complex glomerulonephritis [54]. In
contrast, chemokine antagonists without this immunostim-
ulatory side effect were shown to substantially reduce the
related immunopathology in multiple disease models of the
kidney [61, 62], the CNS [63, 64], the liver, and other
noninfectious types of solid organ inflammation as listed in
Figure 3.
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Dendritic cells support host defense by rather leaving
the tissue via the lymphatics to carry foreign antigens to
the regional lymph node, which then trigger antigen-specific
immune responses and the influx of antigen-specific effector
cells that contribute to tissue inflammation. The PAMP-
driven innate immunity strongly activates this process in an
adjuvant-like manner. Hence, PAMP exposure, for example,
during transient infections, can induce the onset or flares of
subclinical or chronic autoimmune disorders (Figure 4) [49–
54, 65–69].

Together, injuries change the homeostatic tissue towards
DAMP- and or PAMP-rich environments which activate res-
ident and infiltrating mononuclear phagocytes. These pro-
duce additional immunostimulatory mediators that setup
local inflammation, a process that is evolutionally conserved
to control invading pathogens. This danger response pro-
gram is often associated with significant immunopathology,
especially in sterile inflammation. This causes unnecessary
tissue injury and becomes a maladaptive disease pathomech-
anism, which provides the rationale for immunosuppressive
and anti-inflammatory therapies.

4. Tissues Need Mononuclear Phagocytes to
Avoid Excessive Immunopathology and to
Orchestrate Repair

Overshooting systemic immune activation holds the risk of
death like in early sepsis [70]. Similarly, overshooting organ
inflammation holds the risk of acute organ dysfunction
like in stroke, myocardial infarction, acute kidney injury,
or severe pneumonia. As a consequence, numerous anti-
inflammatory mediators provide a balance to immunos-
timulatory factors, a process that also allows the resolu-
tion of inflammation upon pathogen clearance [71–73].
Resolution of inflammation is initiated by a shift in the
tissue microenvironment. For example, the early neutrophil
influx into a PAMP-rich environment and DAMP release
from necrotic cells can change once pathogen control is
achieved, so that tissue environments display less PAMPs
and DAMPs but become dominated by increasing numbers
of apoptotic neutrophils. Macrophage clearance of apoptotic
cells is already an important element of peripheral tolerance
during homeostasis in healthy tissues, but it becomes an
element of the resolution of inflammation in disease [71, 72].
Neutrophil phagocytosis triggers macrophage deactivation
and the expression of anti-inflammatory mediators and
growth factors that have the potential to stimulate tissue
healing [74, 75]. In fact, apoptosis of activated neutrophils
and T cells is a mechanism that prevents inappropriate or
persistent immunopathology [74]. This also applies to the
postinflammatory phase of sterile injuries (Figure 3). For
example, transient ischemia reperfusion is associated with
cell necrosis and DAMP release followed by the influx of
neutrophils and classically activated macrophages for 1–
3 days [40]. The excessive phagocytosis of apoptotic neu-
trophils activates the monocytic phagocytes to release TGF-
β and IL-10 [76]. Serum amyloid-P, also named pentraxin-
2, opsonizes apoptotic cells which further promotes the

anti-inflammatory macrophage phenotype [77]. Infiltrating
regulatory T cells also produce IL-10 and TGF-β, which
further supports the polarization towards anti-inflammatory
macrophages and also suppresses of T effector cells [78].
This deactivation of proinflammatory macrophages involves
the transcription factor IRF4, which competes with IRF5,
a nonredundant element of TLR and IL-1R signaling [79–
82]. IRF4-deficiency does not allow this phenotype switch
[80], hence, persistently activated macrophages contribute
to ongoing immunopathology [83]. As another mechanism
that promotes resolution of tissue injury, tissue dendritic
cells produce pentraxin-3, which then blocks P selectin on
the luminal surface of vascular endothelial cells, which blocks
further immune cell recruitment [84–86].

The current macrophage classifications are derived from
decent in vitro study conditions that have not yet integrated
apoptotic cells as a stimulus of differentiation [31, 87–92].
However, the M2c phenotype of macrophages stimulated
with IL-10 and TGF-β display certain characteristics of
anti-inflammatory tissue macrophages (Figure 3) [31, 87–
92]. The fact that M2c macrophages themselves produce
large amounts of IL-10 illustrates how macrophages can
amplify their surrounding environments by secreting similar
cytokines in a feed-forward loop [93]. These cells are needed
to enforce the resolution of inflammation, which is required
to tip the balance of host defense and repair towards tissue
regeneration (Figure 4). To enhance the regeneration pro-
cess, anti-inflammatory macrophages acquire a phenotype
of growth factor-producing cells that now actively drive
epithelial or parenchymal repair. For example, macrophage
depletion during the postinflammatory phase of sterile
wounds delays wound healing and supports hemorrhage
because of a persistent apoptosis of endothelial cells and
detachment of the neuroepithelium [43, 94]. In addition,
postischemic acute kidney injury involves the phenotypic
switch from proinflammatory towards anti-inflammatory
macrophages, a process driven by factors released by dying
tubular epithelial cells and by the phagocytosis of apoptotic
neutrophils [57, 95]. IRF4 or IRAK-M deficiency prevents
this phenotype switch, which supports ongoing disease
activity in a number of acute and chronic disease states [80,
83, 96–98]. In addition, treatment with recombinant IL-4/IL-
10 or genetically modified or transfused IL-10-stimulated
macrophages helps to resolve renal inflammation [87–90,
99]. The same phenomenon improves cardiac remodeling
after myocardial infarction [100]. Glucocorticoids suppress
tissue inflammation by inducing the anti-inflammatory phe-
notype of tissue macrophages [101, 102]. Monocyte recruit-
ment to skeletal muscle may initially result in a proinflam-
matory macrophages phenotype, which then rapidly change
their phenotype into anti-inflammatory macrophages that
assist myogenesis and macrophage depletion that leads to
a significantly reduced diameter of regenerating muscle
fibers [103]. Toxic liver disease is another example of sterile
organ dysfunction. CCl4 induces hepatocyte apoptosis and
subsequent phagocytic clearance by Kupffer cells, a mech-
anism that suppresses liver inflammation [104]. Ischemia-
reperfusion injury of the liver is associated with significant
IL-10 expression, which was found to be crucial for the
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anti-inflammatory capacity of Kupffer cells [105]. In exper-
imental schistosomiasis, IL-4Rα-deficiency of macrophages
was sufficient to cause a lethal septic phenotype [106],
which demonstrates the role of anti-inflammatory cytokines
produced by alternatively activated macrophages in the gut
and the liver, respectively [107]. Finally, axonal regeneration
after spinal cord injury depends on the recruitment of IL-10-
producing macrophages to the CNS [108].

The anti-inflammatory macrophage phenotype does not
only contribute to the resolution of inflammation and
the healing phase upon tissue injuries. Also non-necrotic
environments of solid tumors induce alternative macrophage
activation which then enforces tumor growth [109]. The
same applies to degenerative tissue lesions or tissue damage
upon slowly accumulating toxins dominated by apoptotic
cell death [75].

5. Tissues Need Mononuclear Phagocytes
for Effective Scaring When Epithelial or
Parenchymal Healing Remains Incomplete

Evolution has maintained tissue scaring for its benefits for
the function and survival of organisms. Scaring is necessary
in more complex multicellular organisms when traumatic
amputation or otherwise significant loss of tissue cannot
be rapidly regenerated, a process that requires sealing and
mechanical stabilization to assure function and survival. For
example, a limited pericyte proliferation can assist vascular
stability during regeneration upon injury [110]. However,
myofibroblast proliferation and extensive fibrosis offer struc-
tural benefits only upon focal wounding and strongly depend
on the site or compartment of injury. In diffuse fibrosis of
the skin, like in progressive scleroderma, holds the potential
to destroy the organ, a functional consequence that applies
especially to organs that are commonly affected by diffuse
injuries such as the lung, the liver, and the kidney [18, 111,
112]. But instead of taking fibrogenesis as a mechanism of
progressive organ, destruction fibrous tissue mainly replaces
lost parenchyma; therefore, inhibiting fibrogenesis may not
necessarily be able to restore tissue function unless being
accompanied by significant regeneration of the parenchyma.
Therefore, apart from the healing of tendons, bones, and
fasciae, only insufficient healing of epithelial and vascu-
lar structures is commonly associated with mesenchymal
healing, that is, fibrosis when (1) the damage goes beyond
epithelial layer injury, which can occur in some organs like
skin, intestinal tract, pancreas and other glands or kidney.
Damage to mesenchymal cell structures is more complex and
requires more time, for example, in bone, tendons, heart, and
skeletal muscle. (2) Local progenitor cells do not survive the
injury phase. If at all terminally differentiated cells can divide
is questionable and the concept of their dedifferentiation for
mitotic repair remains under debate [113–120]. The evolving
concept that terminally differentiated cells mostly regenerate
from the division of committed local progenitor cells in
all organs is appealing and could explain why regeneration
remains insufficient when these cells get lost during a severe
injury phase or undergo senescence, for example, during

aging. (3) Repair is compromised by ongoing PAMP or
DAMP exposure like during local infection or by persistent
or remitting injuries that impair the repair process by
persistent inflammation (Figure 4) [103].

An insufficient repair creates a microenvironment that
becomes dominated by the persistent expression of mul-
tiple profibrotic cytokines [44, 94, 121]. In such environ-
ments, mononuclear phagocytes become a major source of
profibrotic cytokines [3]. In vitro, IL-4 and IL-13 induce
STAT6 signaling, which induces a macrophage phenotype
that predominately releases fibronectin and other ECM
molecules and that expresses mannose and scavenger recep-
tors, IL-1R11, FIZZ, and YM-1, that is, M2a macrophages
[31]. It remains to be determined whether anti-inflammatory
and profibrotic macrophages clearly represent two different
types of cells also in vivo, because macrophage plasticity
usually creates a mixture or continuous variant shifts during
tissue remodeling (Figure 4) [35]. However, a pro-fibrogenic
phenotype of myeloid cells already exists at the level of
circulating monocytes, that is, the fibrocyte that shares
phenotypic similarities with monocytes and fibroblasts and
that can produce large amounts of collagen [122–126],
for example, in the liver [127], the lung [128], the heart
[129], and in the kidney [60, 125] (Figure 3). However,
their quantitative contribution to tissue scaring has been
questioned by GFP lineage tracing of collagen 1α1-producing
cells, that found only a minor contribution of fibrocytes to
renal fibrogenesis and scaring [112, 130, 131].

Chemokine receptor CCR1 seems to be essential for
profibrotic macrophage- and fibrocyte-mediated fibrosis
because lack of CCR1 or CCR1 antagonism prevents pro-
gressive tissue scaring in many different organs and various
types of injuries [12, 132–144]. Macrophages that con-
tribute to dermal fibrosis express CXCR3 [145]. Insufficient
macrophage activation in chronic diabetic leg ulcers delays
scar formation, which can be restored by administering
GM-CSF [146]. Similar mechanisms apply to progressive
fibrosis of solid organs (Figure 3). Targeting the MCP-
1/CCR2 axis [147, 148] or deficiency in CCR1/CCR5 blocked
the recruitment of profibrotic macrophages, which was
associated with less liver fibrosis [140] and renal fibrosis
[132, 134, 137, 138, 149–151]. In the lung, CCR2 deficiency
attenuated bleomycin-induced scaring [152], which was
shown to be mediated by IL-13 signaling via IL-13-Rα1
and IL-13-Rα2 to stimulate TGFβ secretion in macrophages
[153]. Together, tissues use their resident and infiltrating
mononuclear phagocytes to fill the gaps of lost parenchyma,
which stabilizes the tissue integrity. This is helpful upon focal
injuries but may contribute to tissue loss in diffuse injuries,
thus this evolutionally conserved danger control program
often becomes a maladaptive disease process, especially when
epithelial healing remains insufficient.

6. Tissues Need Fibrolytic
Mononuclear Phagocytes to Clear Excess
Extracellular Matrix

Progressive lung fibrosis, renal interstitial fibrosis, or liver
cirrhosis is characterized by parenchymal cell loss which
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gets partially replaced by fibrous tissue. Whether fibrogenesis
itself contributes to the loss of parenchymal cells remains
under debate [112, 154]. However, it is a matter of fact
that even though fibrosis is often associated with advanced
disease, it does not always progress to end-stage organ
failure [155]. In fact, fibrosis can be a transient process that
stabilizes tissue integrity during repair and almost entirely
resolves later [44]. For example, dermal wound healing ends
in the smallest possible scar, after a skin cut. Evidence for
inducible fibrolysis in the skin comes from recombinant
TGFβ-3 application in humans as well as preclinical models
[156]. TGFβ-3 application prevented excessive proliferation
of myofibroblasts and scar formation similar to fetal wound
healing [156].

Macrophages are capable of clearing ECM via the
secretion of selected MMPs, a process that limits and poten-
tially reverses fibrosis [156]. For example, scar-associated
macrophages remove fibrous tissue that accumulates after
toxic liver injury by secretion of MMP13 and by recruiting
neutrophils to the scar tissue [157–159]. In addition, such
“fibrolytic” macrophages secrete CXCL10, which blocks the
proliferation of fibroblasts in bleomycin-induced pulmonary
fibrosis [160]. Excessive scaring, obviously, increases the
physiological capacity of tissue macrophages to break down
ECM during homeostasis into a scar tissue-reducing phe-
notype. Hence fibrolytic macrophages need to be added to
the list of functionally important macrophage phenotypes
(Figures 2 and 3). Surface markers that clearly identify
fibrolytic macrophages remain to be described. One should
keep in mind that MMP-secreting macrophages have been
reported to contribute to tissue degradation by chopping
up basement membranes [160]. Therefore, the fibrolytic
macrophage may also rather contribute to tissue atrophy and
further reduce the size and function of a shrunken organ,
if its presence is not associated with extensive regeneration
of de novo parenchyma. In fibrotic livers, however, transfer
of bone marrow-derived macrophages was shown to reverse
hepatic fibrosis and to improve regeneration and function of
the liver [160].

7. Summary and Conclusions

Most tissues host mononuclear phagocytes because they
help them to maintain peripheral tolerance. Mononuclear
phagocytes provide this support by processing “self” into
tolerogenic signals to the immune system (all organs), by
removing cell debris (e.g., bone marrow) and incoming
pathogen components (e.g., liver), and by turning PAMP
recognition into epithelial growth to maintain barriers (e.g.,
gut). As different tissues have different needs to maintain tol-
erance, mononuclear phagocytes display very heterogeneous
phenotypes already during homeostasis. These phenotypes
are a result of the specific environment, which is provided in
each organ. Similarly, when tissue injuries alter the organ-
specific tissue environment, also the resident as well as
the infiltrating myeloid cells will be affected as a result
of their plasticity to polarize to different phenotypes in
different environments. PAMP- and DAMP-rich (necrotic)

environments [161–204] prime proinflammatory mono-
cytic phagocytes for host defense, which, however, involves
immunopathology, especially during sterile inflammation.
Postinflammatory environments including tumor stroma
are dominated by apoptotic cell bodies, which trigger
polarization towards anti-inflammatory or tumor-associated
macrophages that suppress immunity and support cell
growth, which could mean epithelial healing but also tumor
growth. A healing tissue environment, especially during
insufficient epithelial healing, is dominated by growth factors
that prime macrophages towards a profibrotic phenotype
secreting profibrotic cytokines and ECM components. Scar
tissue is hypoxic and lacks growth factors, which enable
fibrolytic macrophages to predominantly secrete proteases
that remove ECM. Together, mononuclear phagocytes are
amplifiers of their surrounding environments because the
tissue primes macrophages according to its needs to sta-
bilize and to reenforce the current environment. Thus,
organ- and disease-phase-specific environments determine
the associated macrophage and dendritic cell heterogeneity,
which assures their support to maintain and regain tissue
homeostasis in whatever condition. Pathogenic roles of these
cells in diffuse tissue injuries are related to maladaptive
wound healing programs.
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